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ABSTRACT

As deep learning applications are becoming more and more pervasive, the ques-
tion of evaluating the reliability of a prediction becomes a central question in
the machine learning community. This domain, known as predictive uncertainty,
has come under the scrutiny of research groups developing Bayesian approaches
to deep learning such as Monte Carlo Dropout. Unfortunately, for the time be-
ing, the real goal of predictive uncertainty has been swept under the rug. Indeed,
Bayesian approaches are solely evaluated in terms of raw performance of the pre-
diction, while the quality of the estimated uncertainty itself is not assessed. One
contribution of this article is to draw attention on existing metrics developed in the
forecast community, designed to evaluate both the sharpness and the calibration
of predictive uncertainty. Sharpness refers to the concentration of the predictive
distributions and calibration to the consistency between the predicted uncertainty
level and the actual errors. We further analyze the behavior of these metrics on re-
gression problems when deep convolutional networks are involved and for several
current predictive uncertainty approaches. A second contribution of this article is
to propose an alternative metric that is more adapted to the evaluation of relative
uncertainty assessment and directly applicable to regression with deep learning.
This metric is evaluated and compared with existing ones on a toy dataset as well
as on the problem of monocular depth estimation.

1 INTRODUCTION

Nowadays, we are able to teach machines a wide and impressive variety of tasks. With the outcome
of deep learning these past few years, we are also capable of reaching - and even sometimes surpass
- human performances, e.g. for vision tasks (Kokkinos, 2015; Lu & Tang, 2015). However, although
deep learning allows us to attain great performance, it remains imperfect and we still lack the means
to assign a confidence to the predictions of a trained network. While the robustness of deep learning
algorithms to adversarial attacks has been very actively addressed in the recent literature (see e.g.
(Papernot et al., 2016)), the question of predicting the uncertainty of predictions made by deep neural
networks has received much less attention. Yet, for countless applications it is a matter of critical
importance to know whether the estimate output of the algorithm is reliable or not.

In this paper we take the example of depth estimation from single monocular images (see e.g. (Liu
et al., 2016)). For such a task, estimation algorithms are trained to regress a depth map from an
input RGB image. If we want to use such algorithms as a measurement tool, it is required to have,
in addition to the predicted depth, an uncertainty map providing an estimate of the accuracy for each
pixel. Uncertainty prediction is indeed a very valuable information, but it depends on the content of
the images. It is likely that depth estimation on textureless regions will be less accurate, or, that dark
images lead to less accurate estimations than well-exposed images.

In the literature of deep learning, some recent techniques have emerged to estimate uncertainties
along with the network’s predictions (Gal & Ghahramani, 2016; Lakshminarayanan et al., 2017;
Kendall & Gal, 2017). However, these predictive uncertainties are evaluated either by their influence
on the predictions performance, or qualitatively by visually checking the uncertainty maps. This
situation is in contrast with other domains such as forecasting that have established standard tools
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to evaluate predictive uncertainty (Uusitalo et al., 2015; Gneiting et al., 2007; Gneiting & Raftery,
2007). We believe that these evaluation metrics should benefit the computer vision literature to
evaluate the quality of the uncertainty estimate itself.

One of the contributions of this paper is a comprehensive review of the existing metrics that allow
to evaluate the quality of predictive uncertainty. Another contribution is an in-depth analysis of the
behavior of these metrics on regression problems, when deep convolutional networks are involved
and for several current predictive uncertainty approaches. Finally, this paper proposes a novel eval-
uation metric that is more adapted to the evaluation of relative uncertainty assessment and directly
applicable to the current practice in deep learning. This metric is evaluated and compared to the
reviewed ones on a toy dataset as well as in the context of monocular depth estimation from images.

2 RELATED WORK

Making uncertainty estimates along with tasks predictions is becoming more and more crucial to the
field of deep learning. To this end, a common path is to transform deterministic neural networks,
in which each parameter is a scalar, into probabilistic Bayesian models, where parameters are re-
placed by probabilty distributions. Because the inference becomes intractable, several papers rely on
approximate solutions. Among the most popular techniques, we count Probabilistic BackPropaga-
tion (PBP) (Hernández-Lobato & Adams, 2015), Monte Carlo Dropout (Gal & Ghahramani, 2016),
but also some non-Bayesian ones such as Deep ensembles (Lakshminarayanan et al., 2017) or the
learned attenuation loss proposed by Kendall & Gal (2017) to capture the aleatoric uncertainty in
the data.

However, this literature still lacks proper metrics to evaluate the quality of the uncertainties. Indeed,
systematic assessment of the uncertainty estimate itself is largely underestimated in the deep learning
community. It is usually the quality of the prediction which is measured, and not the quality of the
estimated uncertainty. Concerning the qualitative results, it is common to see maps of the estimated
uncertainty displayed as images and visually evaluated. Yet, the literature on deep neural networks
still lacks specific methods for the quantitative evaluation of the uncertainty estimates.

In contrast, evaluating predictive uncertainty has been a concern for decades in other fields, lead-
ing to the development of well established metrics. The evaluating predictive uncertainty challenge
(PASCAL Challenge), Quinonero-Candela et al. (2006) proposed two metrics adapted to regression
tasks, that are still commonly used. The normalized MSE aims at evaluating the quality of a predic-
tion and uses the empirical variance of the test estimates to normalize the scores. This is therefore
not a direct way to evaluate the predictive uncertainty. The second one, the average negative log
predictive density (NLPD), directly takes into account the estimated uncertainty and penalizes both
over and under-confident predictions.

A more in-depth treatment can be found in the forecasting literature. Uusitalo et al. (2015) draw
up an overview of methods to estimate uncertainty with deterministic models such as: expert as-
sessment, where an expert in the area rates the confidence of a method using his knowledge; model
sensitivity analysis, determining how the output response of the model change w.r.t. the inputs and
model’s parameters; model emulation, consisting of approximating a complex model by a lower-
order function, to then apply more easily a sensitivity analysis; spatiotemporal variability, using the
spatiotemporal variability as an estimate of the variance; multiple models, where an ensemble of
models are used to describe the same domain; and finally data-based approaches, where enough
data are available to directly assess the statistical uncertainty related to the model outputs.

Gneiting et al. (2007) propose to evaluate a predictive uncertainty forecast in terms of calibration
and sharpness. Calibration refers to the statistical consistency between the predictive distributions
and the observations; sharpness refers to the concentration of the predictive distributions. Several
graphical tools are proposed to visually evaluate if the probabilistic forecasts are calibrated and
sharp. More recently, Kuleshov et al. (2018) propose a method to recalibrate regression algorithms
so that the uncertainty estimates lie in the expected confidence interval. They also propose metrics
to assess both calibration and sharpness of the predictive distribution. However, they consider them
separately while we were driven by the will of assessing both these properties jointly following the
tracks of Gneiting et al. , using scoring rules (Gneiting & Raftery, 2007). We are therefore interested
in the scoring rules, that assess the quality of a forecast, maximizing sharpness subject to calibration.
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However, all these metrics imply that the prediction is a probability distribution, which is seldom
true in practice. Instead, existing deep learning methods usually predict uncertainty as being a scalar
representing the variance of some predictions (e.g. with Monte Carlo sampling). We can easily
convert prediction/uncertainty pairs to a probability distribution but we therefore have to choose
a prior on the distribution. We assess that within reasonable variations, this prior is not of critical
importance since it does not change drastically the ranking between different uncertainty predictions,
as we will see later.

For these reasons, we propose a novel metric to evaluate prediction/uncertainty couples. We call our
metric the Mean Rescaled Confidence Interval (MeRCI). It is based on the calculation of a scaling
coefficient, for the interval centered on the prediction to encompass the ground-truth observation. It
needs no prior on the distribution, allows to effectively rank different methods of estimations and is
parametrized to be robust to outliers.

3 COMMON PERFORMANCE METRICS FOR UNCERTAINTY PREDICTION

We assume a regression settings with a training set of N samples denoted as T = {(xi, y∗i )} where
xi ∈ Rd is the input vector of dimension d and y∗i ∈ R the scalar value to be predicted. In a
standard deterministic regression framework, the regressor is a function defined as fθ : Rd → R,
where fθ(x) is an estimator of the true function f(x), and ŷ = fθ(x) is the prediction made by the
model. Learning such a regressor consists in finding the parameters θ minimizing an empirical loss
defined by 1

N

∑N
i=1 L(fθ(xi), y

∗
i ) where L(·, ·) accounts for the proximity of its two arguments (e.g.

a squared difference). In a probabilistic framework, we predict a whole distribution Py instead of a
deterministic prediction. This distribution has a probability density function py(x) and a cumulative
distribution Fy . In practice, Py is often characterized by its mean value, which is usually used as
the prediction ŷ, and by its standard deviation σ. Different approaches to perform such kind of
predictions shall be reviewed in section 5.

In the literature of forecasting, we can find several metrics for assessing the quality of a predictive
distribution, or forecast. We present here the five most popular ones. All of them are computed as
an empirical expectation :

1

N

N∑
i=1

S(Pyi , y
∗
i ) (1)

where the function S relates to the harmony between the prediction Py and the actual value y∗.
Depending on the variant under consideration, it may account for sharpness, calibration or both. In
the following paragraphs we will refer to S as the adequacy function.

3.1 COVERAGE

The coverage is defined for a fixed confidence level α (e.g. 95%) as the proportion of observations
that actually belong to the associated confidence interval. Denoting CIα(Pyi) the confidence in-
terval of level α for the forecast, then the adequacy function is just the indicator function of the
confidence interval:

Scov(Pyi , y
∗
i ) = 1{y∗i ∈CIα(Pyi )} (2)

The coverage is minimum (0%) if none of the values are in the corresponding confidence interval,
and can reach 100% if all the observations are in the interval. As a result, the coverage only accounts
for the calibration, and can be arbitrarily improved by making non-sharp predictions (in other words
by being pessimistic on purpose).

3.2 STRICTLY PROPER SCORING RULES

In the forecast literature, adequacy functions that are positively oriented are known as scoring rules
(Gneiting & Raftery, 2007). A scoring rule is said strictly proper if in average, it singles out the true
distribution as the optimal forecast in the following sense:

EY∼P∗
y
[S(P ∗y , Y )] < EY∼P∗

y
[S(Py, Y )] (3)

3



Under review as a conference paper at ICLR 2019

for any forecast Py different from the ground-truth distribution P ∗y . Three common and popular
strictly proper scoring rules are:

SQuadratic(Py, y
∗) = 2py(y

∗)−
∫ +∞

−∞
p2y(x)dx (4)

SLogarithmic(Py, y
∗) = log(py(y

∗)) (5)

SSpherical(Py, y
∗) =

py(y
∗)√∫ +∞

−∞ p2y(x)dx
(6)

3.3 CRPS

Another popular metric is the Continuous Ranked Probability Score (CRPS) (Gneiting & Raftery,
2007). The CRPS adequacy function between the forecast Py (with cumulative distribution function
Fy) and y∗ is defined as:

Scrps(Py, y
∗) =

∫ +∞

−∞

(
Fy(x)−H(x− y∗)

)2
dx (7)

where H(t) = 1{t>0} is the Heaviside step function .

The CRPS is expressed in the same unit as the observed variable and reduces to the mean absolute
error if the forecast is deterministic. It is lower bounded by 0 and unlike the previous metrics, it is
oriented negatively.

4 PROPOSED METRIC

The previous section introduces several metrics for assessing the quality of a forecast. To be appli-
cable, they require the prediction to be defined through a distribution. However, most deep learning
regression methods merely output a scalar value ŷ along with a standard deviation σ. Therefore,
assessing the quality of these methods with existing metrics depends on the choice of a distribution
centered around the predicted value and with the correct variance. By simplicity, one could use a
Gaussian prior, but this choice is completely arbitrary. Here we present a metric that wriggles from
this difficulty by establishing a score based solely on the parameters ŷ and σ estimated with the
regressor.

We aim for a metric that reflects the correlation between the true error and the estimated uncertainty.
Further, we want this metric to be scale independent and robust to outliers. Inspired by the notion of
calibration and with scale invariance in mind, we propose to rescale all the σi’s by a common factor
λ so that the rescaled uncertainties σ̃i = λσi are compatible with the observed errors, that is to say
|ŷi − y∗i | ≤ σ̃i. Robustness to outliers is achieved by relaxing this constraint such that it is verified
by only a certain number of the samples. In practice, we choose to use 95% of inliners to compute
the MeRCI score. We show in section 6 that it is a good trade-off for a robust yet representative
MeRCI score. In other words, we look for the smallest factor λ95 such that 95% of the observed
errors are less than their corresponding rescaled predicted uncertainty.

Then, the Mean Rescaled Confidence Interval that we propose is an average uncertainty, performed
over the λ-rescaled estimated uncertainties and averaged over the number of evaluated points N :

MeRCI =
1

N

N∑
i=1

λ95 σi (8)

To obtain an efficient computation of the scaling factor, we first evaluate all ratios λi =
|ŷi−y∗i |
σi

and
then extract the 95th percentile which corresponds exactly to the desired value.

The MeRCI is inherently insensitive to scaling and allows us to compare methods that predict very
different ranges of uncertainties. Besides, a range of relevant values can easily be exposed for this
metric. On one hand, the MeRCI score is always lower bounded by the corresponding score for
an ideal uncertainty prediction called the oracle. This oracle merely predicts an uncertainty equal

4



Under review as a conference paper at ICLR 2019

to the actual observed error, which yields to λ95 = 1 and a MeRCI score reducing to the Mean
Absolute Error. On the other hand, any uncertainty prediction that performs worse than a constant
uncertainty predictor (i.e. a non-informative predictor) is clearly not worth pursuing. As a result,
the MeRCI score obtained by the constant predictor provides a form of upper bound.

In its construction, the MeRCI score follows the track outlined by Gneiting et al. (2007). It re-
flects the best possible sharpness under the constraint that the uncertainty estimate is calibrated, in
the sense that it is consistent with 95% of the samples. Also, the oracle is the sharpest possible
uncertainty predictor once the estimated values ŷi are fixed.

5 PREDICTIVE UNCERTAINTY METHODS

We consider several approaches to perform regression tasks with predictive uncertainty. First of all,
we take the most used and popular methods in the literature of deep learning, among which we find
Bayesian techniques. Due to its small overhead, Monte Carlo Dropout (MCD) (Gal & Ghahra-
mani, 2016) is one such technique. At test time, the dropout is kept activated to perform Monte Carlo
sampling. The final prediction is the average of the different estimates and their standard deviation
is used as a measure of uncertainty.

We also explore some popular ensemble techniques. In ensemble learning, multiple algorithms are
used to obtain a predictive performance. Here, the different deterministic outputs are combined
together (usually averaged) to obtain the final prediction and their standard deviation is associated to
the degree of uncertainty of the prediction. A classical ensemble approach consists in training several
networks on the same task but with different initial random seeds. It is the approach employed in
Deep Ensembles (Lakshminarayanan et al., 2017), and we refer to this method as Multi Inits (MI).
Another popular ensemble way to estimate uncertainty is Bagging (Breiman, 1996). It involves
using several subsets of the dataset to train several networks.

Then, inspired by state-of-the-art, we also propose several techniques to predict uncertainty in a
deep learning framework. Firstly, we propose to consider the network at different stages of the
training as being as many different networks as there are epochs. Assuming that, we can simulate
an ensemble method coming with no additional cost, with standard training procedures. However,
unlike snapshot ensembles (Huang et al., 2017), we do not use a particular learning rate policy
during the learning stage. Moreover, we aim to use this kind of ensemble technique seeking more
to produce a meaningful uncertainty map than enhancing the overall prediction. We refer to this
method as Multi Epochs (ME). On a par with multiple initializations, we propose to use several
architectures and refer to this ensemble technique as Multi Networks (MN). Here again, we average
the outputs to obtain the prediction and use their standard deviation as the measure of uncertainty.
Finally, we think that because we want to measure the correlation between the uncertainty and the
error, we can try to directly learn the error of a trained network with another one. The output of this
network that learns the error will be therefore the uncertainty estimate paired with the prediction of
the initial network. It is referred as Learned Error (LE).

6 EXPERIMENTAL VALIDATION: METRICS BEHAVIOR ON A TOY DATASET

In this section, we want to understand how the different metrics we have presented behave on prac-
tical machine learning problems, especially on regression tasks. In order to get an intuition on this
question, we start with a simple toy example on which we analyze the metrics behavior.

6.1 EXPERIMENTAL PROTOCOL

The toy dataset corresponds to a simple one-dimensional regression task. The data consists of 20
training examples, sampled uniformly in the interval [−4; 4]. Their corresponding targets are gener-
ated as y = x3 + ε, where ε ∼ N (0, 32). We add a high bias to each training point in the interval
[−2.3;−1.3] to simulate some outliers, as illustrated in Figure 1. A similar dataset has already
been used to qualitatively evaluate predictive uncertainty in Hernández-Lobato & Adams (2015)
and Lakshminarayanan et al. (2017).
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Figure 1: The toy dataset.

Given x, we learn to regress y using a neural network with one hidden layer consisting of 100
neurons. We use the ReLU non-linearity and a dropout with dropping probability of 0.2 on the
hidden layer. The network predictions on the testset are also illustrated in Figure 1. As expected,
we see that the predictions are less accurate outside of the training set as well as in the outliers
interval. We are interested in the comparison of several uncertainty estimations techniques. To
make it possible, we keep the network predictions fixed in all our experiments. From there, we vary
how the uncertainty estimations are calculated with 4 different uncertainty estimation techniques:
Multi Inits, Bagging, Monte Carlo Dropout and Multi Epochs.

We will use this toy dataset to discuss how the different metrics are biased to optimistic and pes-
simistic uncertainty estimations; how robust they are to outliers; and finally verify that they correctly
rank the evaluated uncertainty estimation techniques.

6.2 SENSIBILITY TO OPTIMISM AND PESSIMISM

We start by studying the simple case of a constant uncertainty estimator, always giving the same
uncertainty value σ regardless of the data. To do so, we plot the evolution of each metric as σ evolves
from an overly optimistic setting to an overly pessimistic one. In practice, we choose σ in [0; 100]
(Figure 2). We see that the classical metrics are greatly impacted by the scaling of σ, displaying
large variations between the extreme cases. We observe that, notwithstanding the considered metric,
the optimum value of σ is rather low, meaning that it depends more on the method’s calibration than
on the metric itself.

As expected, we confirm that the coverage is only sensitive to calibration. As such it can be arbi-
trarily enhanced by increasing σ. Since it does completely ignore the sharpness, we shall not use it
anymore in the rest of the paper. CRPS is rather sensitive to sharpness since its score keeps wors-
ening as σ increases. The other scoring rules react more strongly to calibration. In turn, we see that
MeRCI score is constant with respect to σ, and is therefore unbiased to overly optimistic or pes-
simistic forecasts. Such invariance property is available by design in MeRCI, because we consider
that in practice the estimated uncertainties merely cast an insight on the relative magnitude of errors.

6.3 ROBUSTNESS TO OUTLIERS

Unlike classical metrics, MeRCI can be tailored towards obtaining more or less tolerance to erro-
neous data by tuning the percentile value. To gain better understanding, we plot the evolution of
MeRCI with respect to the chosen percentile in Figure 3. For comparison purposes, we made 1000
independent runs for each method and we display the median MeRCI evolution curve. In this toy
dataset, the ratio of corrupted data is known in advance (and is marked with a vertical red line in
the figure). As expected, the evolution of the MeRCI score increases smoothly as the number of
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Figure 2: Evolution of scores for each metric according to a given constant uncertainty estimator

Figure 3: Evolution of the MeRCI score for each method based on the chosen percentile. The red
line marks the actual percentage of outliers

expected inliners increases. Besides, MeRCI is robust to outliers since it ranks the different uncer-
tainty estimation techniques in the same order given sufficient data (here from the 74th percentile)
and until the outliers upset the scores with too much weight in the final decision (92th percentile). In
practice, the percentile should be chosen according to the number of supposed outliers. Yet it is also
noticeable that knowing the exact amount of outliers is not strictly needed to obtain a meaningful
MeRCI score. Indeed, there is no brutal change around the correct outlier ratio (red line). Therefore
in later experiments, we use the 95th percentile, giving some latitude to handle up to 5% of possible
outliers.
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Table 1: Quantitative evaluation on the toy dataset

higher is better lower is better
Method Qs Ls Ss CRPS MeRCI
Oracle - - - - 19

Constant - - - - 81
Multi Inits -0.65 -6.0 0.07 19.0 64
Bagging -0.02 -4.8 0.13 16.8 53

Monte Carlo Dropout -0.03 -4.9 0.11 17.1 60
Multi Epochs -28 -6.9 0.0 19.3 81

6.4 RESULTS

Finally, we discuss the scores obtained for each uncertainty estimation technique. We expect Bag-
ging as the top technique because it benefits from external sources of data. We also expect Multi
Epochs to be the worst one, since in this setting, the network is likely to converge to a local mini-
mum. Therefore there won’t be much informative variance across epochs.

We show the results in Table 1. We also highlight the relative ranking of the different uncertainty
estimation techniques with respect to each metric by using colors: from yellow for the best technique
to red for the worst. For visibility the worst score is in gray. According to this table, all metrics
including MeRCI agree on the ranking. As expected, they all classify Multi Epochs as the worst
technique. Interestingly, this technique is clearly marked off by MeRCI as uninformative (obtaining
as bad a score as a constant uncertainty prediction). Finally, the top techniques are Bagging and
Monte Carlo Dropout with close scores according to every metric.

In a simple setting like this toy example, we demonstrate that all the classical metrics are well
behaved in their ability to correctly rank different uncertainty estimation techniques. We also show
that our proposed metric properly follows these tracks, being therefore ready for a more realistic
evaluation setup.

7 ANALYSIS: THE REAL-WORLD TASK OF MONOCULAR DEPTH ESTIMATION

We now scale to real-world data with the study of a regression-based computer vision task.

7.1 EXPERIMENTAL PROTOCOL

This section presents experiments on depth estimation from monocular images on the NYU-Depth
v2 indoor dataset Nathan Silberman & Fergus (2012). We use the set of 16K images proposed by
Moukari et al. (2018). Also, we use their hourglass-type architecture, with a dilated ResNet200
pre-trained on ImageNet for the encoder part and 4 up-projection modules followed by a final con-
volution for the decoder. We then add dropout with probability 0.2 after the first 3 up-projection
modules, in order to perform Monte-Carlo sampling at test time for the corresponding experiment.

7.2 RESULTS: QUALITATIVE EVALUATION

We first show a qualitative evaluation obtained for the monocular depth estimation, in the case where
the predictor is common for each method. In Figure 4, we show an example of a test image 4(a),
the prediction of the common predictor 4(b) and finally the absolute error between the prediction
and the ground truth 4(c). Note that, according to the absolute error map, a few demarcated regions
should be marked as uncertain: namely the carpet, the bedside lamp, the pillow and the window.

Table 2 exhibits the relative ranking of the methods for this specific image according to each metric.
We see from the table that all state-of-the-art metrics globally agree on the ranking and designate
Multi Network as being the top method. On the other hand, MeRCI puts Multi Networks at position
4. According to MeRCI, the most correlated predictive uncertainty method with the true error is
Multi Epochs, while it is ranked from position 2 to 4 according to the other metrics. Moreover,
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Table 2: Methods scores and ranking for a specific NYU Depth v2 testset image according to each
metric

Method Qs Ls Ss CRPS MeRCI
Multi Inits -3.4 -1.9 0.87 0.12 0.40
Bagging -2.7 -1.6 0.90 0.12 0.55

Monte Carlo Dropout -7.5 -3.3 0.61 0.13 0.37
Multi Epochs -2.3 -1.6 0.87 0.12 0.34

Multi Networks 1.8 0.25 1.3 0.10 0.41
Learned Error -67 -3.1 0.80 0.13 2.3

(a) input (b) prediction (c) absolute error

(d) Multi Inits (e) Bagging (f) Monte Carlo Dropout

(g) Multi Epochs (h) Multi Networks (i) Learned Error

Figure 4: A NYU Depth v2 test case. First row: the test image along with a predicted depth map
and the corresponding absolute errors. Remaining rows: predictive uncertainties.

Monte Carlo Dropout has a bad ranking using the classical scoring rules (being number 5 or 6)
while it is the second best method when using MeRCI. Unlike the toy example, we observe a clear
disagreement between the various metrics. We look further to understand this discordance visually.

We display the 6 uncertainty estimates obtained with the different methods in Figure 4. Only two
methods show high uncertainty in the region corresponding to the window : namely Multi Epochs
and Monte Carlo Dropout. This region is clearly the most important as it is the one with the highest
errors according to the error map Figure 4(c). Furthermore, Multi Epochs also displays high uncer-
tainty at the carpet location, while Monte Carlo Dropout misses this place. This is the reason why
MeRCI ranked these methods as the two top ones, but favors Multi Epochs. Meanwhile, we see
that Multi Networks, which is ranked first for all the common metrics, has yet poor correlation with
the true error. Indeed, it shows high uncertainty around the pillow but misses all the other important
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Table 3: Quantitative evaluation on the NYU Depth v2 test set. For comparison purpose, the depth
prediction is the same for all the estimators.

higher is better lower is better

Method Qs Ls Ss CRPS MeRCIU G L U G L U G L U G L
Oracle - - - - - - - - - - - - 0.356

Constant - - - - - - - - - - - - 1.11
MI -3.1 -3.0 -4.3 -4.7 -3.4 -2.8 0.56 0.56 0.50 0.32 0.32 2.5 1.22

Bagging -3.1 -3.0 -4.4 -4.8 -3.5 -2.9 0.55 0.56 0.50 0.32 0.32 2.5 1.18
MCD -7.7 -7.5 -10 -5.7 -4.8 -4.3 0.40 0.41 0.36 0.34 0.34 2.5 1.10
ME -2.9 -2.7 -4.1 -4.9 -3.7 -3.0 0.54 0.54 0.48 0.32 0.32 2.5 0.91
MN -0.45 -0.37 -1.1 -3.3 -1.9 -1.6 0.73 0.74 0.67 0.30 0.30 2.5 1.18
LE -137 -134 -169 -5.2 -4.3 -3.8 0.46 0.46 0.41 0.33 0.33 2.5 4.31

spots. It also captures variance on the edges of the RGB image which is inconsistent to the true error.
This is due to the fact that some of the different networks involved in the estimations produce sharper
outputs but at the price of some artifacts transferred from the RGB images (Moukari et al., 2018).
Eventually, although Learned Error completely fails to capture the relevant error information, some
scoring rules do not rank it as the worst one while it is correctly classified by MeRCI. More visual
results are presented in the appendix, including in particular images for which the depth ground truth
are locally erroneous. This allows to analyze further how MeRCI handles these configurations.

7.3 RESULTS: QUANTITATIVE EVALUATION FOR A COMMON PREDICTOR

The quantitative results are presented in Table 3. As we want to see the impact of the different priors
in the predicted distributions, we computed the analytical scoring rules and CRPS for three different
probability density functions: a Uniform prior (U), a Gaussian prior (G) and a Laplace prior (L).
We see that, despite the fact that the chosen priors have different decay behaviors, the choice of the
probability density function does not influence a lot the relative ranking of the different methods.
All these scores are based on predictive distributions, yet the form of the distribution does not have
a major impact on the assessed quality of a method. On the other hand, MeRCI does not rely on any
prior and is much more straightforward for judging different techniques.

Similarly to the single-image qualitative evaluation, Multi Networks is by far the best method with
respect to all the classical state-of-the-art metrics. According to (Gneiting et al., 2007; Gneiting &
Raftery, 2007), it means it has the best sharpness subject to calibration. However, MeRCI shows
that this uncertainty estimation technique is less correlated with the true error than a constant (hence
uninformative) uncertainty prediction.

Here again, MeRCI underlines Multi Epochs as the best forecast (in fact the only one to outperform
a constant uncertainty prediction). This favored rank is supported by the fact that training a large
network on a complex task and with a stochastic minimization scheme naturally yields oscillations
around a minimum. What is more, along the last epochs, the network will focus on learning what
is still improvable: i.e. regions with high errors. Thus, using the standard deviation of estimations
obtained across epochs allows to capture these variations and highlights error-prone regions.

8 CONCLUSIONS

This paper has drawn a comprehensive review of the existing metrics used for evaluating predic-
tive uncertainty and have analyzed the behavior of these metrics in regression tasks, firstly on a toy
dataset and then on the real-world case of monocular depth estimation. We then proposed a novel
metric, the Mean Rescaled Confidence Interval (MeRCI), also dedicated to the assessment of pre-
dictive uncertainty. We first showed that the proposed metric behaves healthily on the toy dataset,
while giving latitude to be robust to outliers if needed (thanks to its percentile parameter). Then, we
demonstrate that the proposed metric is closely related to the true error of the prediction and there-
fore more reliable than the previous ones, within the particular case of monocular depth estimation.
Moreover, we saw that compared to previous methods, MeRCI has the advantage of being directly
applicable to regression tasks with deep learning, without needing any prior on the distribution.
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SUPPLEMENTARY MATERIAL

A RESULTS: QUANTITATIVE EVALUATION FOR PROPER PREDICTORS

Table 4: Quantitative evaluation on the NYU Depth v2 testset. For each method, we perform its own
prediction and uncertainty.

higher is better lower is better
Method Qs Ls Ss CRPS MeRCI

MI -3.0 -3.4 0.57 0.31 1.20
Bagging -3.0 -3.5 0.55 0.32 1.19

MCD -7.7 -5.0 0.37 0.37 1.20
ME -2.8 -3.7 0.53 0.32 0.91
MN -0.63 -2.3 0.66 0.32 1.20
LE -81 -4.6 0.43 0.33 4.70

In Table 4 we show the quantitative evaluation on the NYU Depth v2 testset, where each method
is used with its own couple prediction/uncertainty to compute the scores. Using proper predictors
for each method allow us to compare the true scores of each technique, depending both on their
calibration and sharpness. Indeed, fixing the prediction to be identical for each method bias the
analysis of sharpness under calibration constraint: methods based on a mean of their estimations
present different calibrations.

Because we show in Section 7.3 that the prior on the predictive distribution does not have a major
impact on the ranking, we choose to only present results under a Gaussian prior. Results are very
similar to the one presented in Table 3 with a common predictor. This means that, for this study, the
proper calibrations computed for each method are close to each others. Hence, conclusions drawn
in Section 7.3 remain the same.
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B QUALITATIVE ANALYSIS
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