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Abstract: In recent years we have made significant progress identifying computational principles 
that underlie neural function. While certainly not complete, we have sufficient evidence that a 
synthesis of these ideas could result in an understanding of how neural computation emerges 
from a combination of innate dynamics and plasticity, and which could potentially be used to 
construct new AI technologies with unique capabilities. I discuss the relevant principles, the 
advantages they have for computation, and how they can benefit AI. Limitations of current AI 
are generally recognized, but fewer people are aware that we understand enough about the 
brain to immediately offer novel AI formulations. 

Principles of neural function and plasticity. 

The flexibility, adaptability and resilience of even simple brains are unmatched by any current 
technology. The recent unexpected difficulties in realizing truly autonomous vehicles, making 
reliable medical diagnoses, detecting offensive online content, creating useful chat-bots and even 
just recognizing faces, show that brains remain functionally more capable than we can currently 
emulate. Significant differences exist between spiking neural networks (SNNs) and the 
superficially-similar artificial neural networks (ANNs) used for Deep Learning (DL), and in these 
differences can be found potential clues to the next AI revolution: 

• Real neurons communicate with spikes where spike timing forms an integral part of the 
neural code1. The computational benefits of sparse spike coding are substantial2. SNNs 
are also rigorously more powerful than their real-valued counterparts3. 

• Networks self-organize to represent feedforward input structure4. The mechanisms the 
brain uses to accomplish this have been established (spike timing dependent plasticity 
(STDP)5-7, several homeostatic mechanisms5,6 and local decorrelating inhibition5-7 
together implement sparse non-negative matrix factorization6,8). 

• Abundant feedback connections build predictive models9-11 by learning to invert the self-
organized feedforward representations (also using STDP11). 

• Oscillations12,13 and quasi-chaotic transitions14,15 continuously reconfigure neural 
circuits based on the needs of the task at hand. Activity levels, oscillation frequencies and 
proximity to phase boundaries are controlled through recurrent thalamic projections16. 

• Multi-scale inhibitory mechanisms7,13,16,17 ensure only best-matching circuits are 
engaged for any given task, implementing powerful k-winner-take-all computations18. 

• Spike conduction delays13,19, oscillations13 and short-term plasticity (STP)19,20 innately 
represent time in the brain19,20. In recurrent neural circuits, STP can maintain memory 
states (working memory) for indefinite lengths of time21. 

• Dopamine modulates the gain of STDP for model-free reinforcement learning (RL)22. 
Other neuromodulators have arguably equally important effects – acetylcholine 
increases the efficacy of feedforward connections and attention to inputs, noradrenaline 
responds to novel and salient inputs, and serotonin to risks and threats23. 

The above principles are well-established, even if all are not yet universally accepted. Other 
principles are more speculative, or the specific underlying mechanisms are not fully established: 



• Brains combine predictive models of the world with oscillations and dynamic circuit 
reconfiguration to create internalized simulations of 'what if' scenarios and future 
plans24,25. These models also flag unexpected and out-of-distribution events26. 

• Closely related to the above is the idea of stochastic sampling11,27. This same process 
probably applies to outputs (actions), including sampling from possible sequences of 
actions (equivalent to ‘what if’ simulations). 

• Dopamine works with oscillations, dynamic circuit reconfiguration and the internal 
world models to implement model-based RL. How this occurs is unclear, but prediction 
of reward and temporal-difference (TD)-style learning will be essential components28. 

• Explicit actions are just the final steps in a series of neural events learned through 
reinforcement – i.e. actions are preceded by sequences of internal neural (cognitive) 
operations that, from the perspective of neural activity patterns and TD learning, are 
indistinguishable from those patterns that directly cause movement of the body in the 
world. High level cognitive functions are therefore simply ‘internal actions’25. 

• Subcortical circuits, particularly the basal ganglia, cerebellum, brainstem and spinal 
cord, fully control well-trained movements and serialization of all other motor outputs. 
These regions may use partially different mechanisms but are still tightly integrated29. 

• Computational principles apply similarly across all of cortex. Differentiation of function 
occurs predominantly through structural connectivity. 

To compute means to control the flow of information, and to store, recall, organize, integrate and 
transform information in pursuit of a defined outcome or ongoing effect. In the case of the brain, 
it also means to flexibly adapt to unforeseen conditions in ways that no computers can currently 
achieve. The brain accomplishes this by flexibly activating neural assemblies (groups of 
neurons) in combinatorial patterns that best represent the confluence of sensory input and 
current internal state. But what controls which assemblies should be active? Neural assemblies 
respond when they recognise (i.e. are keyed by) particular afferent spike patterns, and only 
when this key-match is good enough to win the multi-scale-inhibition competition. The vital 
insight is that neurons and assemblies respond when they are required and without centralized 
control. This fortuitous outcome is the result of the brain’s multiple plasticity mechanisms that 
bias the dynamics towards activity that is ultimately rewarded30, while extracting features that 
predict reward, and maintaining activity within useful dynamical bounds. 

Neural assemblies, dynamics, cognition and creativity. 

When an assembly becomes active in response to a recognized input, it outputs a transformation 
of its inputs that is shaped by self-organization and reward learning. In so doing it is performing 
a computation on its inputs that meets either innate (self-organizing) or external (reward-
bearing) criteria. Neural connections are convergent, divergent, hierarchical and re-entrant, 
supporting spatiotemporal activity patterns that are exquisitely intricate and inter-dependent. 
Assemblies couple in novel patterns in response to novel inputs, and exploit the chaotic nature 
of the transitions between states to form novel patterns any time, in a manner related to binding 
of representations, fluid intelligence and creativity31. However they are far from random; 
constrained by neural architecture and shaped by plasticity, they are finely honed to be task-
specific. These patterns underlie the combinatorial computational power of the brain. 

The brain does not follow a program. Brain regions do not encode packets of information which 
are transmitted to receiving regions for decoding and processing, and brains do not work 
‘despite the noise’. Due to efficient coding and stochastic sampling, what we are tempted to think 



of as noise is in fact the entire computation11. Engineering-style reductionist simplifications yield 
no insights into neural function. The brain is the ultimate bootstrapped physical dynamical 
system. A neuron simply sits and listens32. When it hears an incoming pattern of spikes that 
matches a pattern it knows, it responds with a spike of its own. That’s it! Repeat this process 
recursively tens to trillions of times, and suddenly you have a brain controlling a body in the 
world or doing something else equally clever. Our challenge is to understand how this occurs. 
We require a new class of theories that dispose of the simplistic stimulus-driven encode/ 
transmit/decode doctrine. We must embrace the brain’s inherent dynamic complexity 
and emergent properties, and explain how plasticity molds the dynamics to capture 
useful couplings across brain regions and between the brain, the body and the world. My 
contention is that the above principles are sufficient to meet this challenge at some level, 
in order to both better understand the brain and to construct better brain-inspired AI. 

Brains to AI. 

The differences between brains and ANNs lead to significant concrete differences in capabilities: 

 AI is difficult to train and typically requires huge amounts of clean labelled data. Due to its 
ability to discover parts-based representations and combine them in novel patterns, the 
brain implements transfer learning by chunking often with just a handful of training samples. 

 AI systems have enormous energy requirements for training and operation. Due to sparse 
efficient spike-time coding, the brain runs on less than the power of a light bulb. 

 AI systems need to be pre-trained and any new information typically requires complete re-
training. The brain learns online continuously using transfer learning and dynamical 
processes (activity patterns) for integrating that knowledge into long-term networks. 

 AI is terribly brittle and can be easily fooled by adversarial input that needs to be shifted only 
slightly outside the training distribution. Brains generalize exceptionally well due to 
modular self-organization, predictive feedback and transient combinatorial dynamics. 

 AI systems can perform only the task for which they are trained. Due to its ability to 
dynamically reconfigure through oscillations and internal actions, the brain can perform 
multiple tasks and switch between them as required. 

Brains generate explanatory causal models using STDP, predictive feedback and working 
memory. What we currently call AI is fundamentally still big data and correlation analysis, 
predominantly used to generate classifications and occasionally predictions. There are 
exceptions to this rule33,34; interestingly these exceptions tend to draw inspiration directly from 
the brain in order to improve on the capabilities of DL. While improvements are often achieved, 
the insights are applied in piecemeal fashion and many of the compelling advantages of neural 
processing remain ignored and unharnessed. While recurrent ANNs are Turing complete, we 
know from experience with DL that choice of architecture and how information is represented 
make a difference, and that just because a task can theoretically be performed does not mean 
that it can be done efficiently, or even that it can be learned at all. SNNs are more powerful than 
ANNs of equal size, and are dynamically and architecturally ideal for representing spatio-
temporal patterns and for building causal models of the world. It is reasonable to expect that 
there will be classes of problem, relevant for our usage of AI, for which ANNs will fail in practice 
but that can be learned and performed efficiently by SNNs. 

Studies have already shown how deep networks implemented with spiking neurons outperform 
standard DL in some respects. On simple problems they require orders of magnitude fewer 



training samples, they use unlabelled training data, and they generate sparse efficient parts-
based representations35. These early results are significant but they reveal only a small subset 
of the full capabilities of brains and SNNs.  DL requires large quantities of training data because 
typically the full range of input space needs to be explicitly covered during training. Energy 
requirements for training state-of-the-art deep networks are already measured in megawatt-
hours and the curse of dimensionality is causing an exponential increase as ever-larger problems 
are tackled; clearly this is an unsustainable trajectory. While parts-based decompositions and 
generative models can also be implemented using DL, these functions are parsimoniously 
implemented in SNNs by STDP. The fundamental nature of spikes as momentary events 
additionally leads to powerful temporal representations, rapid processing, and intrinsic 
dynamics that allow for stochastic sampling and dynamic reconfiguration of neural circuits to 
match ongoing computational needs. DL offers few of these capabilities. Complex neural 
dynamics mirror the complexity evident in the real world – brains are complex precisely because 
the world is complex36 (‘complex’ is used in the complex systems sense and does not just mean 
‘complicated’). Indeed neural dynamics continuously and task-dependently couple both with the 
body and with sensory events37. The clear implication here is that brains and SNNs are ideally 
suited for embodied interactions with the real world, and the full advantages of SNNs will 
become evident when these neural computational principles are applied to real-world problems. 
Notably, these are exactly the kinds of problems for which DL is having trouble scaling. 

The true computational power of the brain lies in the synergistic integration of all the principles 
of neural computation11,30. To the author’s knowledge, such an integration has never been 
attempted at scale. Oscillations and spike-time coding have rarely, if ever, been combined with 
RL to flexibly route information through a neural network, for example. Further combining such 
a network with self-organizing plasticity could then create a network that can generalize and 
respond flexibly to new inputs; feedback could allow for attention to unexpected inputs; and so 
on. There is a feeling in the ANN community that the dynamics of spiking networks are difficult 
to conceptualize and control. On the contrary, it is quite possible that the synergistic 
combination of principles will lead to intuitive dynamics and a deeper understanding of the 
underlying mechanisms. All the principles that have been discussed here are mechanistic, 
evidence-based, and realistically implementable in neural circuit models and AI 
prototypes. It is probable that revolutionary computational systems can be created in this 
way with only moderate expenditure of resources and effort. 
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Appendix. 

Engineered systems, including our most advanced Artificial Intelligences (AIs) driven by Deep 
Learning (DL), are typically characterised by 1) their suitability for only the specific purposes for 
which they were designed, 2) their inability to operate autonomously in unconstrained real-
world environments, and 3) the increasing engineering effort required as systems become ever 
more complex and purpose-built. 

The brain’s flexibility, and indeed its entire computational capacity, is rooted in the activity 
dynamics of its components1,2 – that is, in neurons connected by synapses into networks. DL 
pioneers LeCun and Hinton have proposed that supervised learning will ultimately need to be 
abandoned, and that unsupervised learning, as occurs in the brain, is the way forward to more 
capable AI3,4. An understanding is emerging that5: “The brain seamlessly merges bottom-up 
discriminative and top-down generative computations in perceptual inference, and model-free 
and model-based control... [We must] explain task performance on the basis of neuronal 
dynamics and provide a mechanistic account of how the brain gives rise to the mind.” Buzsaki 
states more succinctly2: “Brains do not process information: they create it.” 

This hypothesis has significant implications for results of experiments that purport to find low-
dimensional manifolds in population firing rates, for example in diffusion models of decision 
making. Working memory combined with stochastic sampling only gives the appearance of a 
simple low-D representation. The brain is not accumulating evidence in the firing rates of a large 
neural population; this would be exceedingly inefficient (a low-D manifold on low-D firing rates). 
Instead, it is doing stochastic sampling of the possible interpretations of the input. The afferent 
evidence from which it is sampling is also not held in firing rates; it’s held in the states of network 
activity in lower regions (which themselves are doing stochastic sampling of evidence from 
regions below them). As the evidence is accumulated (probably in STP, not firing rates), firing 
rates increase because the probability distributions are narrowing and the sampling is being 
constrained. The network activity that we interpret as firing rates is actually a series of complex 
information-rich spatiotemporal patterns that store a huge amount of information about the 
context, stimulus, upcoming response and ongoing self-generated brain state. 

According to Friston1: “By studying the dynamics and self-organization of functional networks, 
we may gain insight into the true nature of the brain as the embodiment of the mind.” Structurally, 
the brain contains large overlaps between its functional modules and strong cross-connections 
between hierarchies at all levels. Such anatomical structure causes complex patterns of 
competition and coupling that interact through and across multiple hierarchical levels 
simultaneously. Active assembly boundaries are fluid, ranging in size from a handful of neurons 
up to large regions, and no single module is ever at the top, or in control, from the perspective of 
either static connectivity or dynamic activity. Neural computation therefore manifests as a 
continuous superposition of transient dynamic states, flexibly mediated in the short term by 
opposing forces of competition and coupling within and between neural assemblies and the 
world, and in the long term by self-organization and reward. 

Assemblies are activated by input that they recognize. Output spikes that are generated by an 
active assembly add to the input spike patterns being received by other neurons, and influence 
their activities to modulate and further direct the computations that are performed. Once the 
particular input that activated an assembly disappears, or the brain state changes, input to the 
assembly no longer matches, and the assembly naturally shuts down until it next receives keying 
input. This mechanism has the effect of always finding a part of the brain to process any given 



input or brain state – when the key-match is good the brain responds quickly, driving lateral 
inhibition and pre-emptively shutting down other neurons and regions which might otherwise 
have responded. If the match is poor the brain responds more slowly since a poor match needs 
longer to drive neurons to threshold. STDP, RL and homeostatic mechanisms cause the 
recruitment of more neurons to represent common inputs and well-trained tasks through the 
following mechanism: Commonly-occurring inputs will cause excessive firing of the associated 
assemblies which will then homeostatically raise their thresholds to reduce their firing rates. This 
will give other neurons that were previously inhibited by lateral inhibition from those assemblies 
a chance to respond instead, and when they do STDP will then solidify their new roles in 
representing the input. This recruitment process increases the fidelity and discriminability of 
representations of common inputs and also increases processing speed due to finer and better 
key-matches. 

I am not advocating for a biophysically-detailed bottom-up approach nor a top-down cognitive 
model. This is ‘sideways-in’, where relevant biophysical principles are abstracted and combined 
in such a way as to bring about emergence of function as occurs in the brain. The primary 
modelling level (the level that is modelled explicitly) is the level of neurons, synapses and spikes. 
At the level below are ion channels, neurotransmitter release, synaptic currents and membrane 
dynamics – these are abstracted and modelled as mathematical functions rather than explicitly. 
At the level above are populations of neurons, oscillations and network dynamics – these emerge 
from interactions of components at lower levels. The central modelled level is therefore one level 
below the emergent properties of interest. Spikes and channel dynamics are non-complex even 
when they are stochastic. The complex functional properties of the brain emerge at the level of 
networks and population dynamics. 

Each of the computational principles – spike-time coding, self-organization, short term plasticity, 
reward learning, homeostasis, feedback predictive circuits, conduction delays, oscillations, innate 
dynamics, stochastic sampling, multi-scale inhibition, winner-take-all, and embodiment – are 
research topics that have been separately investigated, some quite extensively. However, a rich 
understanding of neural function can only be obtained by understanding how these principles 
synergistically combine6-8. Next-generation AI using these principles will inherit the many 
advantages of directly brain-inspired neural processing. If similar attention is given to these SNN 
mechanisms as has been given to ANNs over the last 10 years, it seems reasonable to expect that 
next-gen AI can be realized, or at the very least extensive progress in this direction can be made. 
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