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ABSTRACT

We describe Kernel RNN Learning (KeRNL), a reduced-rank, temporal eligibility
trace-based approximation to backpropagation through time (BPTT) for training
recurrent neural networks (RNNs) that gives competitive performance to BPTT
on long time-dependence tasks. The approximation replaces a rank-4 gradient
learning tensor, which describes how past hidden unit activations affect the cur-
rent state, by a simple reduced-rank product of a sensitivity weight and a temporal
eligibility trace. In this structured approximation motivated by node perturbation,
the sensitivity weights and eligibility kernel time scales are themselves learned by
applying perturbations. The rule represents another step toward biologically plau-
sible or neurally inspired ML, with lower complexity in terms of relaxed architec-
tural requirements (no symmetric return weights), a smaller memory demand (no
unfolding and storage of states over time), and a shorter feedback time. Finally,
we show that KeRNL can learn long time-scales more efficiently than BPTT in an
online setting.

1 INTRODUCTION

Animals and humans excel at learning tasks that involve long-term temporal dependencies. A key
challenge of learning such tasks is the problem of spatiotemporal credit assignment: the learner
must find which of many past neural states is causally connected to the currently observed error,
then allocate credit across neurons in the brain. When the time-dependencies between network
states and errors are long, learning becomes difficult.

In machine learning, the current standard for training recurrent architectures is Backpropagation
Through Time (BPTT, Rumelhart et al. (1985), Werbos (1990)). BPTT assigns temporal credit or
blame by unfolding a recurrent neural network in time up to a horizon length T , processing the input
in a forward pass, and then backpropagating the error back in time in a backward pass (see Fig. 1a).

From a biological perspective, BPTT – like backpropagation in feedforward neural networks – is
implausible for many reasons. For each weight update, BPTT requires using the transpose of the
recurrent weights to transmit errors backwards in time and assign credit for how past activity affected
present performance. Running the network with transposed weights requires that the network either
has two-way synapses, or uses a symmetric copy of the feedforward weights to backpropagate error.
In either case, the network must alternatingly gate its dynamical process to run forward or backward,
and switch from nonlinear to linear dynamics, depending on whether activity or errors are being sent
through the network.

From both biological and engineering perspectives, there is a heavy memory demand: the complete
network states, going T timesteps back in time, must be stored. The time-complexity of computation
of the gradient in BPTT scales like T , making each iteration slow when training tasks with long time
scale dependencies. Although T should match the length of the task or the maximum temporal lag
between network states and errors for unbiased gradient learning, in practice T is often truncated to
mitigate these computational costs, introducing a bias.

The present work is another step in the direction of providing heuristics and relaxed approximations
to backpropagation-based gradient learning for recurrent networks. KeRNL confronts the prob-
lems of efficiency and biological plausibility. It replaces the lengthy, linearized backward-flowing
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backpropagation phase with a product of a forward-flowing temporal eligibility trace and a spatial
sensitivity weight. Instead of storing all details of past states in memory, synapses integrate their
past activity during the forward pass (see Fig. 1b). The network does not have to recompute the
entire gradient at each update, as the time-scales of the eligibility trace and the sensitivity weight are
learned over time.

2 RELATED WORK

In recent years, much work has been devoted to implementing backpropagation algorithms in a more
biologically plausible way, partly in the hope that more plausible implementations might also be
simpler. The symmetry requirement between the forwards and backwards weights can be alleviated
by using random return weights (Lillicrap et al. (2016) and Nøkland (2016)), however, learning still
requires a separate backward pass through a network with linearized dynamics. Neurons may be able
to extract error information in the time derivative of their firing rates using an STDP-like learning
rule (Bengio et al. (2015)), with error backpropagation computed as a relaxation to equilibrium
(Scellier & Bengio (2017)), at least for learning fixed points.

Other work has focused on replacing batch learning with online learning. Typically, BPTT is im-
plemented in a setting where data is prepared into batches of fixed sequence length T and used to
perform learning in a T -step unrolled graph; however, online learning, with a constant stream of
data error signals, is a more natural description of how the world supplies a learning system with
data. BPTT without truncation struggles with online learning, as it must repeatedly backpropagate
the error all the way through a continuously expanding graph. Since computation of the unbiased
gradient scales with the length of the graph, gradient computation increases linearly with time. For
a task with T timesteps, the total computation of the gradients scales like T 2.

Real Time Recurrent Learning (RTRL, Williams & Zipser (1989)) and Unbiased Online Gradient
Optimization (UORO, Tallec & Ollivier (2017), Ollivier et al. (2015)) deal with this issue by keeping
track of how the synaptic weights affect the hidden state in a feedforward way. Decoupled Neural
Interfaces (DNI Jaderberg et al. (2016)) estimates the truncated part of the gradient by continually
predicting the future loss with respect to the hidden state.

KeRNL offers this same advantage, in addition to other benefits. RTRL requires that the network
keep track of an unwieldy rank-3 tensor, which could not be stored by any known biological entities.
UORO factorizes this into rank-2 objects but still requires non-local computations like vector norm
operations. Finally, DNI requires an entire separate network to keep track of the synthetic gradient.
KeRNL is distinguished by its simplicity, requiring only rank-2 tensors. All computations are local,
and synapses need to integrate over only a few relevant quantities.

3 THE LEARNING RULE

Consider a single-layer RNN in discrete time (indexed by t) with readout, input, and hidden layer
activations given by yt,xt, and ht, respectively (boldface represents vectors, with vector entries
denoting the activity of individual units). The dynamics of the recurrently connected hidden units
are given by:

ht+1 = σ
(
gt+1

)
= σ

(
W recht +W inxt + b

)
(1)

where W rec, W in are the recurrent and input weights, b are the hidden biases, σ is a gen-
eral pointwise non-linearity, and gt represents the summed inputs (pre-nonlinearity) to the neu-
rons at time t. The readout is given by yt = σout (W outht + bout). The objective function
is C = C({(x0,y0), · · · (xT ,yT ), ŷT }), where ŷT is the target output, in the case where er-
ror feedback is received at the end of an episode of length T , and C =

∑T
t=0 C

t when errors
Ct = C({(x0,y0), · · · (xt,yt), ŷt}) are received continuously over the episode. The parameters
W in,W rec,W out,b,bout are trainable.

Assuming the readout weights and biases (W out,bout) are trained in the usual way, the KeRNL
update rule for the RNN weights W = {W in,W rec} is simply:

(∆Wjk)t = −η
∑
i

δtiβije
t
jk, (2)
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where δti ≡ dCt

dhti
=
∑
l
dCt

dytl

dytl
dhti

is the gradient of the cost with respect to the current hidden state,
βij is a set of learned sensitivity weights, and

etjk ≡
∑
τ

K(τ, γj)σ
′(u)

∣∣∣∣
gt−τj

st−τk (3)

is a local eligibility trace (Williams (1992)) consisting of a temporally filtered version of the product
of presynaptic activation and a postsynaptic activity factor. The temporal filter or kernel, K, in
the eligibility has learnable time-scales; in this manuscript we use the simplest version of a low-
pass temporal filter, a decaying exponential with a single time-constant γj per neuron: K(τ, γj) =
exp(−γjτ), though one can imagine many other function choices with multiple timescales. The
role of the eligibility is to specify how strongly a synapse Wjk should be held responsible for any
errors in neuron j at the present time, on the basis on how far in the past the presynaptic neuron k
was active. Here st−τk = {xt−τk , ht−τ−1

k } stands in for the activation of the neuron presynaptic to
the synapse being updated. 1. Since the eligibility trace can be computed during the forward pass,
KeRNL does not require backpropagating the error through time. Furthermore, KeRNL only uses
at most rank-2 tensors, so neurons and synapses could plausibly do all of the required computation.
The contrast between BPTT and KeRNL is depicted in Fig. 1a,b.

Figure 1: a), b) Schematic depicting the difference in the flow of information between a) BPTT, b) KeRNL.
c) Schematic depicting how KeRNL (Blue) can be used to find long term memory solutions when BPTT (red)
struggles

KeRNL emerges from the following Ansatz:

∂hti
∂ht−τj

≈ βijK(τ, γj). (4)

We call ∂hti/∂h
t−τ
j , a key term in the computation of the gradient, the sensitivity tensor in an

extension of the usage in Fiete & Seung (2006)). This sensitivity describes how the activity of
neuron j at a previous time t − τ affects the activity of neuron i at the current time t. While the
true sensitivity is a 4-index tensor summarizing many interactions based on the many paths through
which activity propagates forward in a recurrent network, we approximate it with a product of a
(learnable) rank-2 sensitivity weight matrix β and a temporal kernel K with (learnable) inverse-
time coefficients γ. The sensitivity weights βij describe how strongly neuron j affects neuron i on
average, while the temporal kernel describes how far into the future the activity of a neuron affects
the other neurons for learning. We describe how to learn these parameters (β, γ) in the next section.

We arrive at KeRNL by using our Ansatz for the sensitivity (4) in the computation of a gradient-
based weight update, instead of using the true sensitivity. First, we write down the full gradient rule
for a recurrent network. If the parametersWij are treated as functions that can vary over time during
a trial, then the derivative can be written as a functional derivative:

dC

dWjk
=

1

T

T∑
t=0

δC

δWjk(t)
. (5)

This is simply mathematical notation for the “unfolding-in-time” trick, in which the network and
weights are assumed to be replicated for each time-step of the dynamics of a recurrent network,

1The rule to update the hidden layer biases is given by (∆bi)
t = −η

∑
i δ
t
iβije

t
j where etj =∑

τ exp(−γjτ)σ′(gt−τj ) integrates over a clamped input.
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and separate gradients are computed for each time-replica of the weights; the actual weight updates
are simply the average of the separate weight variations for each time-replica. We next apply the
sensitivity lemma Fiete & Seung (2006) to express gradients with respect to weights as gradients
with respect to input activations, times the presynaptic activity: δC

δWjk(t) = δC
δgj(t)

sk(t). Thus,

dC

dWjk
=
∑
τ

δC

δgj(t− τ)
sk(t− τ) =

∑
i

∑
τ

δC

δhi(t)

δhi(t)

δgj(t− τ)
sk(t− τ) (6)

=
∑
i

t∑
τ=0

δC

δhi(t)

δhi(t)

δhj(t− τ)
σ′(u)

∣∣∣∣
gj(t−τ)

sk(t− τ) (7)

By replacing the sensitivity δhi(t)/δhj(t− τ) with our Ansatz (4), we arrive at our learning rule,
KeRNL(2).

The time-dependent part of the computation– a leaky integral of the product of the presynaptic
activity multiplied by the instantaneous change in the postsynaptic activity– can be computed during
the forwards pass, without any backpropagation of activity or error signals.

4 LEARNING THE SENSITIVITY WEIGHTS AND INVERSE-TIMESCALES

For our Ansatz to align as well as possible with the gradient, we allow the sensitivity weights β and
inverse-timescales γ to be learned. We learn these parameters by tracking the effect of small i.i.d.
hidden perturbations ξ during the forward pass. In order to do so our hidden neurons must store two
values, the true hidden state h, and a perturbed hidden state h̃, which is generated by applying noise
to the neurons during the forward pass:

h̃t+1 = σ
(
W rec(h̃t + ξt) +W inxt + b

)
, (8)

The effect of previous noise on the current hidden state can be computed using the sensitivity

h̃ti − hti =
∑
τ

∑
j

∂hti
∂ht−τj

ξt−τj (9)

We train γ, β to predict the network’s response to these noisy perturbations. We take gradients with
respect to the objective function.

Cβ =
(
h̃ti − hti −

∑
j

βij
∑
τ

exp(−γjτ)ξt−τj

)2

(10)

which we have generated by substituting our Ansatz (4) into (9). 2

Taking gradients with respect to this objective function gives us the following update rule for the
sensitivity weights and inverse-timescales.

∆βtij = −ηmδtβiΩ
t
j(ξ)

∆γtj = −ηm
∑
i

δtβiβijΓ
t
j(ξ)

(11)

Here δβi

t ≡
∑
j βijΩ

t
j − (h̃ti − hti) represents the error in reconstructing the effect of the per-

turbation via the sensitivity weights and Ωtj(ξ) ≡
∑
τ exp(−γjτ)ξt−τj and Γtj(ξ) ≡

dΩtj
dγj

=

−
∑
τ τ exp(−γjτ)ξt−τj are integrals that neuron hj performs over the applied perturbation ξ. In

our implementation, we update these parameters immediately before we compute the gradient using
(2). The full update rule is described in the pseudocode table.

2If we don’t care about the size of the gradients and only the direction, we can use the cost function Cβ =

− (h̃t−ht)·Ot

||h̃t−ht|| ||Ot|| where Oti =
∑
j βij

∑
τ exp(−γjτ)ξt−τj . This cost function trains the parameters to predict

the correct direction of the perturbed hidden state minus the hidden state and works for algorithms where the
gradient is divided by a running average of its magnitude (RMSProp, Adam).
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Algorithm 1 Pseudocode table describing the implementation of Online-KeRNL on an RNN. For
Batched-KeRNL we only update parameters when t = T

while t ≤ T do
ht ← σ

(
Wht−1 +W inxt−1 + b

)
/* propagate data forwards */

h̃t ← σ
(
W (h̃t−1 + ξt−1) +W inxt−1 + b

)
/*propagate noisy network forwards */

Ωj
t ← exp(−γj)Ωjt−1 + ξj

t /*Integrate over perturbations*/
Γj
t ← exp(−γj)Γjt−1 − exp(−γj)Ωjt−1 /*Derivative of Ωt w.r.t. γt */

etjk ← exp(−γj)et−1
jk + σ′(gtj)stk /*Update eligibility traces*/

δtβi ←
∑
j βijΩ

t
j − (h̃tj − htj) /* Calculate error in predicting effect of perturbations */

βtij ← βt−1
ij − ηmδtβiΩ

t
j /*Update sensitivity weights */

γtj ← γt−1
j − ηm

∑
i δ
t
βi
βijΓ

t
j /*Update kernel coefficients */

δti =
∑
l
dC
dytl
W out
li /*Compute error in hidden state */

W t
jk ←W t−1

jk − η
∑
i δ
t
iβije

t
jk /*Compute and apply gradients*/

end while

5 EMPIRICAL RESULTS

We test KeRNL on several benchmark tasks that require memory and computation over time, show-
ing that it is competitive with BPTT across these tasks. We implemented batch learning with KeRNL
and BPTT on two tasks: the adding problem ( Hochreiter & Schmidhuber (1997); Hochreiter et al.
(2001)) and pixel-by-pixel MNIST (LeCun et al. (1998)). We implemented an online version of
KeRNL with an LSTM network on the An, Bn task (Gruslys et al. (2016)) to compare with results
from the UORO algorithm (Tallec & Ollivier (2017)). 3

The tuned hyperparameters for BPTT and KeRNL were the learning rate, η, and the gradient clipping
parameter, gc (Pascanu et al. (2013)). For KeRNL, we additionally permitted a shared learning rate
parameter for the sensitivity weights and kernels, ηm. In practice, the same hyperparameter settings
η, gc tended to work well for both BPTT and KeRNL. The additional hyperparameter for KeRNL,
ηm, did not need to be find tuned, and often worked well across a broad range (across several orders
of magnitude, so long as it not too small but smaller than η).

We implemented both the RMSprop (Tieleman & Hinton (2012)) and Adam (Kingma & Ba (2014))
optimizers and reported the best result.

5.1 ADDING PROBLEM

In the adding problem, the network receives two input streams, one a sequence of random numbers
in [0, 1], and the second a mask vector of zeros, with two entries set randomly to one in each trial.
The network’s task is to sum the input from the first stream whenever there is a non-zero entry in
the second. This task requires remembering sparse pieces of information over long time scales and
ignoring long sequences of noise, which is difficult for RNNs when the sequences are long.

We tested the performance of two networks on a variety of sequence lengths, up to 400, using
both BPTT and KeRNL, Table 2. The networks were an IRNN, which is an RNN with a ReLU
non-linearity where the recurrent weight matrix is initialized to identity, and a RNN with tanh non-
linearity. The implementation details are described in Appendix A.

Untruncated BPTT applied to an IRNN performed very well on this task, but less so on the RNN
with tanh nonlinearity. KeRNL was somewhat unstable on the IRNN, but it outperformed BPTT
with the tanh nonlinearity (Fig. 2).

We believe that KeRNL outperforms BPTT on the tanh nonlinearity because our Ansatz allows the
sensitivity dht

dht−τ to have relatively long timescales, while the BPTT sensitivities are squashed by the

3KeRNL can be implemented more generally on any circuit dynamics with Markov architecture, including
LSTMs. For LSTMs, the gradient terms are slightly more complicated in form, but still easy to compute
(Appendix).

5



Published as a conference paper at ICLR 2019

Learning Rule, Network Algorithm η gc ηm
BPTT, tanh RNN RMS Prop 10−3 100.0 –

BPTT, ReLU IRNN RMS Prop 10−4 100.0 –
KeRNL, tanh RNN RMS Prop 10−3 100.0 10−5

Table 1: Tuned hyperparameters for the adding problem with sequence length 400.
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Figure 2: Single-trial example of cross validation loss on the adding problem for sequences of length
200,300,400.

tanh nonlinearity. By applying gradients generated by our Ansatz (instead of the true gradients) we
push our network toward a solution with longer time scales via a feedback alignment-like mechanism
(Lillicrap et al. (2016),Nøkland (2016)), as schematized in Fig. 1c.

To investigate the importance of learning the kernel timescales, we implemented KeRNL without
training the sensitivity weights (β) or the inverse timescales (γ). When these parameters are not
learned, KeRNL is still able to perform the task for the shorter 200-length sequence (Table 2) im-
plying that a feedback-alignment-like mechanism (Lillicrap et al. (2016), Nøkland (2016)) may be
enabling learning even when the error signals are not delivered along the instantaneous gradients.

For longer sequences, however, learning the sensitivity and timescale parameters is important.
Surprisingly, learning the inverse timescales is even more important than learning the sensitivity
weights. We hypothesize that as long as the timescales over which error is correlated with outcome
are appropriate, sensitivity weights are relatively less important because of feedback-alignment-like
mechanisms. We show an example of how the timescales may change in Fig. 3.

5.2 PIXEL-BY-PIXEL MNIST

Our second task is pixel-by-pixel MNIST (LeCun, 1998). Here the RNN is given a stream of pixels
left-to-right, top-to-bottom for a given handwritten digit from the MNIST data set. At the end of the
sequence, the network is tasked with identifying the digit it was shown. This problem is difficult,
as the RNN must remember an long sequence of 784 singly-presented pixels. We tuned over the
same hyperparameters as in the adding problem, looking at performance after 100, 000 minibatches.
Neither KeRNL nor BPTT worked well with a tanh nonlinearity, but both performed relatively well
on an IRNN, Fig. 3. KeRNL preferred a slightly lower learning rate η than BPTT.

Learning Rule Algorithm η gc ηm
BPTT RMSProp 10−5 100.0 -

KeRNL RMSProp 10−6 100.0 10−8

Table 3: Hyperparameters for pixel-by-pixel MNIST.

While the KeRNL algorithm is able to learn almost as quickly on pixel-by-pixel MNIST, it does not
reach as high an asymptotic performance. Still, it performs reasonably well relative to BPTT on the
task.
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Learn β, Fix γ 0.170 0.171
Fix β, Learn γ 0.031 0.076

Learn β, Learn γ 0.008 0.031
BPTT 0.020 0.171

Figure 3 & Table 2: Learning of KeRNL parameters. Left: Histogram of inverse time coefficients before
training (blue) and after 7 × 104 minibatches (orange) on the adding problem (200): the network learns the
relative importance of certain time-scales. Right: Examining the relative importance of learnable parameters in
KeRNL: Performance on BPTT and various versions of KeRNL using a tanh RNN after 7× 104 minibatches:
fixing the sensitivities, β, while learning the inverse timescales, γ, is better than doing the reverse.

Figure 4: Left: Cross validation accuracy on pixel-by-pixel MNIST using BPTT (red) and KeRNL(blue).
Right: Normalized dot product between gradients (purple) and RMSProp gradients (green) computed by
KeRNL and BPTT

5.3 ONLINE KERNL

While KeRNL is comparable in speed to BPTT for batch learning, we expect it to be significantly
faster for online learning when the time-dependencies are of length T . Untruncated BPTT requires
information sent back T steps in time for each weight update, thus the wallclock speed of compu-
tation of the gradients at each weight update in online learning scales as T , and the total scaling
is thus of order T 2. If BPTT updates are truncated S < T steps back in time, the scaling is ST .
KeRNL requires no backward unrolling in time, thus online KeRNL requires only O(1) time per
weight update, for a total scaling of T . As a result, optimized-speed online-KeRNL should run
faster than truncated online BPTT by a factor T when the trunctation time is similar to the total
time-dependencies in the problem.

We tested the performance of online KeRNL against UORO, another online learning algorithm, and
online BPTT on the An, Bn task, where the network must predict the next character in a stream
of letters. Each stream consists first of a sequence of n As followed by a sequence of n Bs. The
length, n, of the sequences is randomly generated in some range. The network cannot solve this
task perfectly, as it can not predict the number of As before it has seen the sequence, but can do
well by matching the number of Bs to the number of As. We generated n ∈ {1, 32}. The minimum
achievable average bit-loss for this task is 0.14.

To compare with results in the literature, we implemented KeRNL in an LSTM layer, with h repre-
senting a concatenation of the hidden and cell states (Details in Appendix B). Instead of optimizing
common hyperparameters, we simply used the values from Tallec & Ollivier (2017), which included
decaying the learning rate in time as ηt = η/(1 + α

√
t). However, we varied the learning rate ηm,

with ηtm = ηm/(1 + α
√
t).

Results other than those for KeRNL are from Tallec & Ollivier (2017). With very little hyperparam-
eter tuning, online KeRNL is able to do very well on the An, Bn task, coming close to the minimum
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Algorithm-Optimizer η ηm α
KeRNL-Adam 10−3 10−2 0.03

Table 4: An, Bn hyperparameters

Algorithm KeRNL 1 Step BPTT 2 Steps BPTT 16 Step BPTT UORO
Bit Loss 0.149 0.178 0.149 0.144 0.147

Table 5: Average cross-entropy bit-loss (over 104 minibatches) on the online An, Bn task after 106 mini-
batches

entropy. Although 17-step BPTT and UORO outperformed KeRNL, we expect speed-optimized
versions of KeRNL to be much faster (wall clock speed) in direct comparisons.

To test how computation time for truncated-BPTT and KeRNL compare in the online setting, we
implemented a dummy RNN, where the required tensor operations were performed using a random
vector for both the input data and the error signal (Table 6, both algorithms were implemented in
Python for uniformity; Details in Appendix A). KeRNL is faster than truncated BPTT beyond very
short truncation lengths.

Algorithm KeRNL 1 Step BPTT 3 Step BPTT 10 Step BPTT 20 Step BPTT
CPU Time 14.1 4.23 7.22 17.8 30.9
Table 6: Average CPU time (in units of 10−5 sec.) per time step for truncated BPTT and KeRNL.

6 CONCLUSIONS, DISCUSSION & FUTURE WORK

In this paper we show that KeRNL, a reduced-rank and forward-running approximation to back-
propagation in RNNs, is able to perform roughly comparably to BPTT on a range of hard RNN
tasks with long time-dependencies. One may view KeRNL as imposing a strong prior on the way in
which neural activity from the past should be assigned credit for current performance, through the
choice of the temporal kernels K in the eligibility trace, and the choice of the sensitivity weights β.
This product of two rank-2 tensors in KeRNL (replacing the rank-4 sensitivity tensor for backprop-
agation in RNNs), assumes that the strength of influence of a neuron on another at fixed time-delay
can be summarized by a simple sensitivity weight matrix, βki, 4, and a decay due to the time dif-
ference given by K. This strong simplifying assumption is augmented or mitigated by the ability
to (meta)learn the parameters of the sensitivity weights and kernels in the eligibility trace, giving
the rule simultaneous simplicity and flexibility. The form of the KeRNL ansatz or prior, if well-
suited to learning problems in recurrent networks, serves as a regularizer on the types of solutions
the network can find, and could even, for good choices of kernel K, provide better solutions than
BPTT. We present limited evidence that KeRNL may combat the vanishing gradient problem with
tanh units by imposing a prior of long time-dependencies through the eligibility. Finally, we show
that KeRNL can be implemented online, where it has a shorter computation cycle than BPTT.

KeRNL is a step toward biologically plausible learning. It eschews the segmented two phase back-
propagation algorithm for a computation that is largely feedforward. It does not require the segmen-
tation and storage of all past states, instead using an integrated activity or eligibility trace, and it
gives rise to a naturally asymmetric structure that is more similar to the brain.

While we show empirically that KeRNL performs hill-climbing, there is no guarantee that the gra-
dients computed by KeRNL are unbiased. In the future, we hope to show empirically that KeRNL
is able to perform well on more realistic tasks, and obtain some analytical guarantees on the per-
formance of KeRNL. We hope the present contribution inspires more work on training RNNs with
shorter, more plausible feedback paths. More generally, we hope that the present work shows how,
with the use of reduced-rank tensor products and eligibility traces, to construct entire nested families
of relaxed approximations to gradient learning in RNNs.

4This is not an entirely unreasonable assumption since we assume some static set of weights W ∗ki can
produce the desirable time-varying trajectory on the task.
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A IMPLEMENTATION DETAILS

For the adding problem and pixel-by-pixel MNIST, we tested performance by varying η and gc over several
orders of magnitude: η = {1e−03, 1e−04, 1e−05, 1e−06, 1e−07}, gc = {1, 10, 100}, using both Adam
(Kingma & Ba (2014)) and RMSProp (Tieleman & Hinton (2012)). We then varied ηm = {1e − 03, 1e −
04, 1e − 05, 1e − 06, 1e − 07} on KeRNL. We found that KeRNL was relatively robust across ηm. For all
sequence lengths, we used the hyperparameters that performed best on the task with sequence length 400.
Besides the recurrent weights of the IRNN, all other weight matrices were initialized using Xavier initialization
(Glorot & Bengio (2010)). We initialized β with Xavier initialization for the tanh RNN, and to the identity for
the IRNN. This choice was motivated by the initial sensitivity of the IRNN ( ∂hti

∂ht−τj

= δij). For the kernels, we

initialized γj = ( 1
sequence length )nj where the nj ∼ U([0, 2]) are sampled uniformly and independently. Finally

we used the alternative cost function described in footnote 2. We trained on both of these tasks using the Python
numpy (Walt et al. (2011)) package.

For the dummy RNN, we used the Python numpy package (Walt et al. (2011)) to perform matrix algebra
on a RNN with 100 hidden nodes, 100 input nodes and a tanh nonlinearity. We called “matmul” for matrix
multiplication and “einsum” for other tensor operations. We used the “tanh” and “cosh” functions to compute
the nonlinearity and its derivatives.

B KERNL FOR LSTM NETWORKS

In this section we describe how to implement KeRNL on an LSTM Hochreiter & Schmidhuber (1997) in more
detail. The dynamics of the LSTM (without peepholes) are as follows

it = σ(W iixt +W ihht−1 + bi)

f t = σ(W fixt +W fhht−1 + bf )

gt = tanh(W gixt +W ghht−1 + bg)

ot = σ(W oixt +W ohht−1 + bo)

ct = f tct−1 + gtit

ht = ottanh(ct)

(12)

where ht is the hidden state, ct is the cell state and it, f t,gt,ot are the input, forget, cell and output gates
respectively. In order to implement KeRNL we consider the total hidden state H = {h, c} to be a concatenation
of the hidden and cell states. This a suitable choice, as the next total hidden state can be fully determined by
the current total hidden state and the parameters of the network. We let the first n indices of H be the hidden
state and the next n be the cell state. Derivatives with respect to the cost function are given by

dC

dθ
=

∑
i,j

∂C

∂Ht
i

∂Ht
i

∂Ht−τ
j

∂Ht−τ
j

∂θ
(13)

where θ stands in for the twelve trainable weights and biases. Our sensitivity Ansatz is ∂Hti
∂Ht−τj

=

βij exp(−γjτ). The input terms are now partial derivatives of this total hidden state with respect to the in-
put parameters. As an example

∂Ht
j

∂W fi
jk

=


∂htj

∂W
fi
jk

if j ≤ n
∂ctj−n

∂W
fi
jk

if j > n
=

0 if j ≤ n
∂ctj−n

∂W
fi
jk

if j > n
(14)

where
∂htj
∂Wfi = 0 since the hidden state only depends on these parameters through the cell state. As earlier, we

train our input weights and kernels by tracking the effect of applying perturbations during the forward pass. Our
sensitivity weights β are a 2 x 2 array of matrices linking the cell and hidden states of the past to the current
cell and hidden states. Since readout occurs from the hidden state, ∂C

∂cti
= 0, and we only need to consider

∂hti
∂ct−τj

= βhcij exp(−γcj τ) and ∂hti
∂ht−τj

= βhhij exp(−γhj τ). The sensitivity weights βhc , βhh and time scales

γc, γh can be learned as in the case of the simple recurrent network by applying perturbations ξh,t, ξc,t to
hidden and cell state and minimizing the cost function: Cβ,γ =

∑
i(h̃

t
i − hti −

∑
τ,j β

hc
ij exp(−γcj τ)ξc,t−τj −∑

τ,j β
hh
ij exp(−γhj τ)ξh,t−τj )2. Our example gradient with respect to the input weights of the input gate is

given by
dC

dW fi
jk

=
∑
i

dC

dhti
βhcij

∑
τ=0

exp(−γcj τ)ct−τ−1
j σ′(nett−τj )xt−τk (15)
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where nettj represents the presynaptic input to f tj . The other gradients can be calculated in an analogous manner.

C KERNL ON PENNTREEBANK

In the interest of full disclosure, we note that KeRNL did not perform well on next word prediction on the Pen-
nTreebank dataset. We tested an LSTM network across a wide variety of learning rates and gradient clippings
and were not able to achieve near state of the art performance using KeRNL.
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