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ABSTRACT

The problem of building machine learning models that admit efficient representa-
tions and also capture an appropriate inductive bias for the domain has recently at-
tracted significant interest. Existing work for compressing deep learning pipelines
has explored classes of structured matrices that exhibit forms of shift-invariance
akin to convolutions. We leverage the displacement rank framework to automati-
cally learn the structured class, allowing for adaptation to the invariances required
for a given dataset while preserving asymptotically efficient multiplication and
storage. In a setting with a small fixed parameter budget, our broad classes of
structured matrices improve final accuracy by 5–7% on standard image classifica-
tion datasets compared to conventional parameter constraining methods.

1 INTRODUCTION

State of the art deep neural networks often require billions of parameters, necessitating reduced pa-
rameterization in resource-constrained settings. Among the broad families of approaches for learn-
ing more compact models, one line involves constraining the layers with some form of dense struc-
ture and learning directly over the parameterization of this structure. Much previous work in this
area has explored classes of matrices that implicitly encode a shift-invariant structure (Cheng et al.,
2015; Ding et al., 2017; Sindhwani et al., 2015). While their explicit aim is to accelerate training
and reduce memory costs, this structure also introduces an inductive bias that is well-suited for im-
age and audio data. Convolutional networks (LeCun et al., 1998) have demonstrated that leveraging
such inductive bias, which forms a rich prior (Ulyanov et al., 2017), is essential to learning repre-
sentations that are both fast and high quality. We aim to learn such priors or invariances from data
rather than handcrafting them, while retaining the efficiency of previous approaches.

Our approach uses low displacement-rank (LDR) structured matrices, which decouple invariance
and compactness. In fact, this formulation was originally used to define matrices with shift invari-
ance structure (Kailath et al., 1979). LDR matrices encode invariance through two sparse displace-
ment operators and control compactness through a low-rank remainder matrix. Unlike schemes for
sparse or repeated parameters, the structured matrix approach produces a dense and regular struc-
ture in the final weight matrix with guaranteed compression (usually from quadratic to linear space).
Because of their strong regularity and constraints, these matrices provide an opportunity to im-
pose structure based on prior knowledge of how they might interact with the specific task or data.
Previous work on LDR matrices (Sindhwani et al., 2015) used fixed and specialized displacement
operators, as fast multiplication algorithms were only known for limited classes of operators. By
employing recent progress in structured dense matrix multiplication (De Sa et al., 2018) that allows
fast multiplication and compact storage of a much larger class of structured matrices, we learn over
both the low-rank component and the displacement operators. We use constructions that unify and
extend many of the previously considered structured classes and achieve improved performance on
downstream tasks, while also seeking to explain what makes this family of constructions effective.

Background on Displacement Rank. The displacement approach is a broad method for represent-
ing structure that was originally used to describe matrices exhibiting shift invariance that are almost
Toeplitz. It represents a structured matrix A through a displacement operator ∇M,N defining a
linear map A 7→MA −AN on matrices, and a low-rank residual R, so that if MA −AN = R
then A can be manipulated solely through the compressed representation (M,N,R). Many impor-
tant classes of structured matrices such as Vandermonde and Cauchy matrices have been shown to
satisfy a displacement property (Appendix A). However, conventionally a given family of matrices
is described with respect to a fixed displacement operator M,N, and parameterized only by the
remainder R. In particular, the application of displacement rank in machine learning has been con-
fined to the Toeplitz-like matrices, which fix M,N to be shift or cycle operators (see Definition 1).
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2 CAPTURING INDUCTIVE BIAS BY LEARNING DISPLACEMENT OPERATORS

Although seldom mentioned, the use of displacement rank to represent functions has an interpretable
invariance-preserving or perturbation-resisting effect. For a feature map represented as a Toeplitz-
like matrix, its displacement property involving shift operators implies that shifting the input to the
feature map yields a shifted output. More generally, the compressed displacement representation
(M,N,R) can be viewed as decomposing into two parts: the displacement operator∇M,N models
high-level structures and invariances in the data, and the remainder R performs more fine-tuned fit-
ting like a standard low-rank approximation. Therefore learning a broader class of operators allows
for modeling more general structures. Leveraging this insight as well as recent algorithms (De Sa
et al., 2018), we construct simple neural nets with LDR layers where the displacement operators
include variable parameters to be learned automatically from data. The resulting weight matrices
still retain near-linear time and space properties (Appendix A).

Scaled-cycle operators. We first investigate a straightforward generalization of Toeplitz-like ma-
trices, which were previously examined in deep learning, and for a small parameter budget outper-
formed other compression approaches (Sindhwani et al., 2015).

Definition 1. For f ∈ R, let Zf denote the f -unit circulant matrix
[
01×(n−1) f
In−1 0(n−1)×1

]
. The

case Z±1 is used to define the Toeplitz-like matrices (see Appendix A, Table 1), and corresponds to
the cycle matrix (Appendix A.2, Figure 3a). These matrices generally represent shifts or cycles. For
a vector x ∈ Rn, define Zx = diag(x)Z1 to be the matrix with the same sparsity pattern as Z1 but
parameterized by x (Appendix A.2, Figure 3b).

This class with “scaled-cycle” operators aligns with our goal of learning inductive bias (i.e. param-
eters of the displacement operator), as they are the most natural extension to Toeplitz-like matrices
where we can observe the effects of learning over progressively more parameters in the operator.
Surprisingly, this class also includes other previously considered models that were not realized to
have low displacement rank (Appendix A.3). This emphasizes the representative power of our new
structures, while our results here also provide insights into such previous work.

Tridiagonal-plus-corner operators. We next consider a broader class of matrices, with operators
consisting of tridiagonal matrices (Appendix A.2, Figure 3c). This class is extremely rich, en-
compassing the classic classes of structured matrices (Toeplitz, Vandermonde, etc.), all previously
studied forms of displacement rank (De Sa et al., 2018), the practical ACDC layer of Moczulski
et al. (2016) (see Appendix A.3), and even normal low rank matrices (by setting M = I and N = 0).

3 EMPIRICAL EVALUATION

We follow the experimental setting of Chen et al. (2015) and Sindhwani et al. (2015) by testing
a very compact architecture, a single hidden layer neural network, on a challenging MNIST vari-
ant (Larochelle et al., 2007) and a grayscale version of CIFAR-10. (Details in Appendix B.) In Sind-
hwani et al. (2015) it was shown that for comparable numbers of parameters, Toeplitz-like structured
transforms significantly outperform other approaches such as Random Edge Removal, Dark Knowl-
edge, HashedNets, and Low-rank Decomposition (Hinton et al., 2015; Ciresan et al., 2011; Chen
et al., 2015). Using this as a baseline, we focus on comparing different types of displacement struc-
tures and on how parameters of different types (e.g. in the displacement operator vs. in the low-rank
remainder) contribute to performance.

Results. Figure 1 shows that for a constant total number of parameters, our classes with learned
operators outperform the fixed classes — as well as an unconstrained model of the same dimensions
(623290 parameters) on MNIST-noise, demonstrating the value of an appropriate inductive bias. In
particular, tridiagonal-plus-corner outperforms the best fixed class by 7.2% on MNIST-noise and
4.9% on the grayscale version of CIFAR-10. We include other classic displacement rank types,
which Sindhwani et al. (2015) and Zhao et al. (2017) indicate as an unexplored possibility.

Of particular note is the poor performance of low-rank matrices. As mentioned in Section 1, a fixed
displacement operator ∇M,N is a linear map on the space of matrices, meaning that a fixed class
of low displacement rank such as the Toeplitz-like matrices has essentially the same parameteri-
zation, i.e. they are merely the low-rank matrices under a different basis. We hypothesize that the
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(a) MNIST-noise dataset (b) CIFAR-10 dataset

Figure 1: Relationship between parameters vs. performance on a compact network.

main contribution to their marked performance difference is the effect of the displacement operator
automatically taking care of certain patterns and invariances in the data. The improvement in the
displacement rank classes, from Vandermonde-like to Toeplitz/Hankel-like to our new classes with
learned operators, comes from more accurate representations of these invariances.

Note that the “Toeplitz-like” curve starts from the Toeplitz-like (rank 1) class and progressively
increases the displacement rank. On the other hand, the “learned operators” curve also starts from
the Toeplitz-like (rank 1) class but progressively relaxes the displacement operator. The results
imply that on a per parameter basis, the parameters governing high-level structure are much more
effective at increasing performance than the standard rank parameters.

Interpretation of Learned Displacement Operators. Figure 2a and 2b show the heat map of the
weight matrix W (784×784) trained on MNIST-noise dataset. The learned scaled-cycle operator is
able to pick up regularity in the 28×28 input (flattened as a 784-vector), as the weight matrix exhibits
much stronger grid-like periodicity of size 28 compared to the learned Toeplitz-like matrices. This
periodicity might be attributed to learned patterns of the subdiagonal of the operator (i.e. the x vector
in Definition 1), whose Discrete Fourier Transform as shown in Figure 2c peaks at 28 and 56. The
operators of Toeplitz-like matrices, with a constant subdiagonal, are unable to pick up such patterns.
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(c) DFT of the learned subdiagonal

Figure 2: Visualization of learned weight matrix (a,b), and frequencies of the scaled-cycle subdiagonal (c).

4 CONCLUSION

Convolution layers in neural networks are extraordinarily effective at capturing the right inductive
bias, as their filters use hand-crafted locality constraints that match the input modality (e.g. 2D
image data). For the related problem of compressing dense fully-connected layers, many lines of
work end up using similar but more domain-agnostic structured constructions, such as circulant
and Toeplitz variants, that encode general dense convolutions. We further relax such Toeplitz (and
related) structure and manage to recover domain-specific properties such as periodicity — akin
to the type of structure imposed by specialized sparse convolution filters — while retaining fast
multiplication and efficient storage properties.
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Structured Matrix M A B Displacement Rank r
Toeplitz Z1 Z−1 ≤ 2
Hankel Z1 ZT

0 ≤ 2
Vandermonde diag(v) Z0 ≤ 1
Cauchy diag(s) diag(t) ≤ 1

Table 1: Commonly used classes of structured matrices.

A PROPERTIES OF DISPLACEMENT RANK

The displacement rank approach has been used to capture many important types of matrices fre-
quently used in fields such as engineering and signal processing. Table 1 summarizes the displace-
ment representations of these classic matrix families.

A.1 CONNECTION BETWEEN DISPLACEMENT RANK AND INVARIANCE

Consider a Toeplitz-like matrix A representing a feature map, so that it satisfies the equation ZA−
AZ = R for some low rank R (where Z is a shift matrix, see Definition 1). For any input vector x,
the displacement equation implies that A(Zx) = Z(Ax) +Rx. Up to some simple error term Rx,
this means that shifting the input to the feature map yields a shifted output.
Proposition 1. If MA − AN = R, then the displacement equation implies that A(Nx) =
M(Ax)−Rx. Thus, up to some simple error term Rx, this means that we can recover the original
input after some perturbation N of the input.

A.2 RECONSTRUCTION AND MULTIPLICATION FOR OUR CLASSES OF STRUCTURED
MATRICES

In this work, we introduce broad classes of displacement structure which we then automatically
learn over to better capture invariances and biases in the domain. The displacement operators for the
Toeplitz-like class as well as our new classes are drawn in Figure 3.


0 0 · · · 1
1 0 · · · 0
...

...
. . .

...
0 · · · 1 0


(a) Cycle matrix


0 0 · · · x0

x1 0 · · · 0
...

...
. . .

...
0 · · · xn 0


(b) Scaled-cycle matrix


b0 a0 · · · s

c0 b1
. . .

...
...

. . . . . . an−1
t · · · cn−1 bn


(c) Tridiagonal (plus corners)

Figure 3: Operator matrices for Toeplitz-like (a) and our learned classes (b,c).

Multiplication algorithms for these classes have been described in detail in previous works.

First, we mention an old reconstruction formula that can be used to recover matrices satisfying a
special property from their displacement representation. This method was also used in Sindhwani
et al. (2015) for a very specific case.
Theorem 1 (Pan & Wang (2003)). If an n × n matrix M is such that ∇A,B[M ] = GHT where
G = [g1, · · · , gr],H = [h1, · · · , hr] and the operators satisfy An = aI and Bn = bI for some
scalars a, b, then M can be expressed as:

M =
1

1− ab

r∑
j=1

Krylov(A, gj)Krylov(BT , hj)
T (1)

For the matrices with low displacement rank with respect to scaled-cycle operators, we can utilize
this reconstruction.
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Proposition 2. Zn
x = aI , where a =

∏n−1
i=0 xi.

Proof. Define Dx = diag(x). Then note that Zx = Z1Dx, Z2
x =

[x1x2e3 x2x3e4 ... xn−2xn−1en x0x1e1 x0x1e2] = ZxZ1 diag(x), and so on. At
each step, we shift the columns of Zx left and scale each column by the corresponding entry of x.
Thus, after multiplying Zx by itself n − 1 times, all columns have been shifted left n − 1 times
(producing the sparsity pattern of In) and have been scaled by

∏n−1
i=0 xi.

The more general case of tridiagonal-plus-corner displacement operators can be handled by the
general algorithm of De Sa et al. (2018). In this work, for simplicity and ease of implementation we
approximate them using the same reconstruction formula (1).

A.3 SUBSUMING THE ACDC CONSTRUCTION

Moczulski et al. (2016) used the abstraction of “Structured Efficient Linear Layers” to describe a
line of work on using structured matrices to compress fully-connected neural network layers, en-
compassing circulant weight matrices (Cheng et al., 2015), low-distortion projections (Yang et al.,
2015), and so on. The novel construction that Moczulski et al. (2016) introduced were structured
layers with the form AFDF, where A,D are diagonal matrices and F is the Discrete Fourier Trans-
form. This turns out to have a displacement property, which is a consequence of the multiplicative
closure property of displacement rank:
Proposition 3 (Pan (2012)). If MA−AN = 0 and NB−BP = 0, then M(AB)− (AB)P = 0.

Using the fact that the Fourier Transform F diagonalizes the cycle matrix Z1, and applying this
property, shows that these matrices have displacement rank 0 with respect to a displacement operator
consisting of one scaled-cycle matrix Zx and one cycle matrix Z1.

Furthermore, Moczulski et al. (2016) considers a more practical version ACDC, which is the ap-
proximation of the first construction where F is replaced with the Discrete Cosine Transform C.
Using the fact that the DCT diagonalizes the Chebyshev polynomials’s Jacobi matrix implies that
this construction also satisfies a displacement property, but with respect to tridiagonal matrices.

B EXPERIMENTAL DETAILS

For the experiments we use a neural network with a single hidden layer. We set the learning rate to
10−3 and momentum parameter to 0.9 for all methods. In Figures 1, we compare the performance
of our learned classes with the fixed classes Toeplitz-like, Hankel-like, Vandermonde-like, and low
rank. We also compare with an unconstrained weight matrix of the same dimensions of the structured
classes (denoted “unconstrained, h = n”, where n is the size of the input in Figure 1), as well as
an unconstrained weight matrix where the number of hidden units is adjusted to yield the same total
number of parameters (denoted “unconstrained” in Figure 1). The MNIST-noise dataset we test on
was constructed via adding correlated pixel noise sampled from a zero-mean multivariate Gaussian
distribution. Larochelle et al. (2007) construct six versions of this dataset with varying levels of
background pixel correlation, and we test on the most challenging variant.

Method Number of Parameters Mean Test Accuracy (Standard Deviation)
Learned tridiagonal+corner, r = 1 14904 0.784 (0.018)
Learned scaled-cycle, r = 1 11770 0.765 (0.018)
Toeplitz-like, r = 4 14906 0.712 (0.012)
Hankel-like, r = 4 14906 0.704 (0.019)
Unconstrained 623290 0.6761 (0.002)
Vandermonde-like, r = 4 15690 0.626 (0.005)
Low rank, r = 4 14906 0.546 (0.006)

Table 2: Performance on MNIST-noise dataset.
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Method Number of Parameters Mean Test Accuracy (Standard Deviation)
Unconstrained 1059850 0.4326 (0.003)
Learned tridiagonal+corner, r = 1 19464 0.3966 (0.001)
Learned scaled-cycle, r = 1 15370 0.36406 (0.010)
Toeplitz-like, r = 4 19466 0.3472 (0.011)
Hankel-like, r = 4 19466 0.34005 (0.002)
Vandermonde-like, r = 4 20490 0.31405 (0.002)
Low rank, r = 4 19466 0.311 (0.002)

Table 3: Performance on CIFAR-10 dataset.

Rectangle Dataset. We also provide an example of a case where the learned operators do not
exceed the performance of the fixed classes. In this dataset, created by Larochelle et al. (2007),
the task to classify, based on a binary image of a rectangle, whether the length is larger than the
width. On this dataset, unlike the others, expanding the class beyond Toeplitz-like only reduces
performance. We hypothesize this is because the necessary invariances for success on this simple
dataset are already contained within the Toeplitz-like class, and further expansion of the class leads
to overfitting.

Method Number of Parameters Mean Test Accuracy (Standard Deviation)
Toeplitz-like, r = 4 14906 0.992 (0.003)
Learned scaled f-unit-circulant, r = 1 11770 0.989 (0.003)
Learned tridiagonal+corner, r = 1 14904 0.988 (0.009)
Unconstrained 623290 0.953 (0.001)

Table 4: Performance on rectangles dataset.
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