
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

IN-CONTEXT FINE-TUNING FOR TIME-SERIES FOUN-
DATION MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Motivated by the recent success of time-series foundation models for zero-shot
forecasting, we present a methodology for in-context fine-tuning of a time-series
foundation model. In particular, we design a pretrained foundation model that can
be prompted (at inference time) with multiple time-series examples, in order to
forecast a target time-series into the future. Our foundation model is specifically
trained to utilize examples from multiple related time-series in its context window
(in addition to the history of the target time-series) to help it adapt to the specific
distribution of the target domain at inference time. We show that such a founda-
tion model that uses in-context examples at inference time can obtain much bet-
ter performance on popular forecasting benchmarks compared to supervised deep
learning methods, statistical models as well as other time-series foundation mod-
els. Interestingly, our in-context fine-tuning approach even rivals the performance
of a foundation model that is explicitly fine-tuned on the target domain.

1 INTRODUCTION

Time-series data is ubiquitous in several domains such as retail, finance, manufacturing, healthcare,
and natural sciences. In many of these domains, time-series forecasting, i.e. predicting time-series
into the future, is a critical problem - for example, in applications like retail forecasting, climate
and weather predictions, traffic forecasting. In the last decade deep learning approaches (Salinas
et al., 2020; Oreshkin et al., 2019; Sen et al., 2019) have become popular in forecasting, often
outperforming statistical approaches like ARIMA (Box & Jenkins, 1968). However, until recently,
deep learning approaches for forecasting have adhered to the traditional supervised machine learning
framework of having to train a forecasting model on task-specific training data, before being able to
perform forecasting for that task. On the other hand, in Natural Language Processing (NLP), Large
Language Models (LLMs) (Radford et al., 2019; Brown et al., 2020) have shown the promise of
foundation models i.e. a single pretrained model can perform well and adapt to tasks like translation,
code generation, text summarization during inference time in a zero-shot or few-shot manner.

Motivated by the success in NLP, there has been significant work in recent years on time-series
foundation models for forecasting, ranging from re-purposing LLMs directly for forecasting (Gru-
ver et al., 2023) to fine-tuning pretrained LLMs on time-series data (Zhou et al., 2023; Chang et al.,
2023) to pretraining time-series foundation models from scratch (Das et al., 2024; Goswami et al.,
2024; Woo et al., 2024; Ansari et al., 2024; Garza & Mergenthaler-Canseco, 2023). The last ap-
proach in particular has been shown to obtain strong zero-shot accuracy, rivaling the best supervised
models trained specifically for the target datasets.

Several of these papers (Zhou et al., 2023; Ansari et al., 2024; Goswami et al., 2024) have shown
an opportunity for further accuracy improvement by fine-tuning of their pretrained models on target
datasets. However this breaks the zero-shot paradigm that precisely makes these time-series foun-
dation models so appealing to practitioners who do not want to build training pipelines. This raises
a natural question: Can we recover the benefits of fine-tuning a time-series foundation-model, by
providing examples from a target dataset at inference time?

At the same time, the first iterations of these foundation models lack some of the desirable features
of LLMs with respect to in-context learning: the zero-shot performance of an LLM can be greatly
improved at inference time by using its context window for prompting techniques such as few-
shot (Brown et al., 2020), chain-of-thought (Wei et al., 2022b) or instruction tuning (Wei et al.,

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Analogous to few-shot prompting of a foundation LLM (left), we train a time-series
foundation model to support few-shot prompting with an arbitrary number of related in-context
time-series examples (right). The dashed box encloses the full context window/prompt.

2022a). These papers have shown emergent in-context learning abilities for LLMs i.e. if we prompt
them with related examples, demonstrations and instructions, and then ask a specialized question,
the model is able to reason similarly for the question at hand.

In this work, we study a methodology to enable similar in-context ability for a time-series foundation
model in terms of being able to prompt the model with time-series examples from the target domain,
and recover the benefits of domain-specific fine-tuning. We refer to this as in-context fine-tuning 1

In particular, we train a foundation model that lets us forecast a time-series by providing in its
context window not just the historical values of the time-series, but also examples from other related
time-series that could help the model adapt, at inference time, to the distribution of the target time-
series. For example, consider a highway traffic prediction system that stores hourly data from the
last week, in order to predict the future hourly traffic for a particular highway. Consider a time-
series foundation model that has not seen data in pretraining that captures the temporal patterns in
this traffic data. Then, simply prompting the model with the previous week’s traffic time-series for
that highway might not be enough to obtain accurate zero-shot performance. However, adding to
the prompt historical traffic data from other highways and weeks, might help the model better adapt
to the traffic data distribution, and improve the target accuracy significantly.

To summarize, the main contributions of our paper are as follows:

(i) We introduce the study of in-context fine-tuning for time-series foundation models, and propose
the use of prompts that not only include the usual history of the target time-series for forecasting,
but also include related time-series examples in-context.

(ii) We pretrain a time-series foundation model to be able to effectively utilize these in-context
time-series examples mentioned above. Our training is decoder-only (Liu et al., 2018) and can adapt
not only to any context, horizon pair (up to a certain maximum context) but also to any number of
supplementary time-series examples (again up to a certain maximum number of examples). Appro-
priately trained models can then learn to borrow patterns from these related examples to do better
on the original forecasting task.

(iii) We empirically evaluate the benefits of in-context fine-tuning using our foundation model.
Using evaluations on popular forecasting benchmarks, we show that in-context fine-tuning can lead
to better zero-shot performance on popular forecasting benchmarks as compared to supervised deep
learning methods, statistical models as well as other foundation models. In particular, it obtains up
to 25% better performance than a state-of-the-art time-series foundation model and other supervised
deep learning and statistical baselines. Surprisingly, it even slightly improves upon the performance
of a time-series foundation model that is specifically fine-tuned to the target datasets.

1Terminology: In the LLM domain, this notion is also called “few-shot learning” (Brown et al., 2020), “few-
shot prompting” (Ye & Durrett, 2022), or “in-context tuning” (Chen et al., 2022). Also, borrowing from LLM
literature, we will refer to the generic ability of pretrained foundation models to learn from information in their
context-window at inference time as “in-context learning”. Additionally, we will refer to pretrained models that
do not need gradient-updates via explicit training or tuning for an unseen target dataset as “zero-shot”.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK

As mentioned previously, there has been a spurt of recent work on time-series foundation models
for forecasting. These approaches can be broadly divided into three categories. (i) Prompting LLMs
like GPT-4 to directly predict the future of a numerical series encoded as text. This was investigated
in LLMTime (Gruver et al., 2023); despite the initial promise subsequent works have shown that
such approaches can be lacking in accuracy (Woo et al., 2024; Das et al., 2024). (ii) fine-tuning
pretrained LLMs like GPT2 on time-series data with adapter layers (Zhou et al., 2023; Chang et al.,
2023). These approaches have mostly been shown to work well in the dataset-to-dataset transfer
learning setting (rather than in the zero-shot setting) and they are also disadvantaged from having to
use excessively large models due to their LLM backbones. (iii) Pretraining transformer based models
from scratch on huge volumes of time-series data, which seems to be the most promising approach
towards times-series foundation models (Das et al., 2024; Garza & Mergenthaler-Canseco, 2023;
Ansari et al., 2024; Woo et al., 2024; Goswami et al., 2024). Indeed some of these models have
shown superior zero-shot accuracy when compared to supervised deep forecasters and statistical
methods even on datasets that are outside of their pretraining set.

Some of the above papers have additionally shown (Ansari et al., 2024; Goswami et al., 2024) that
their pretrained models’ performance can be further improved by fine-tuning the model on examples
from the target dataset. While this supervised fine-tuning results in improved per-task accuracy, this
practice breaks the zero-shot paradigm in terms of requiring extra training on the target dataset.

In the NLP domain, a defining property of a foundation LLM is its ability to be further adapted
to domain-specific tasks through either fine-tuning or prompting. In particular, LLMs have been
shown to perform in-context learning on a variety of downstream NLP tasks by prompting them
with a natural language instruction (Radford et al., 2019) and a few demonstrations or examples of
the task. This phenomenon is also referred to as few-shot learning (Brown et al., 2020). Subsequent
works (Min et al., 2022a; Chen et al., 2022) have proposed fine-tuning a pretrained LLM to obtain
better performance on few-shot learning prompts. Other papers (Min et al., 2022b; Wei et al., 2023)
have empirically investigated how few-shot learning works in LLMs. More recently, Shi et al.
(2023) explored a similar idea for in-context pretraining, where they pretrain an LLM on sequences
of related documents. This in-context learning ability is widely recognized as being associated with
the stacked transformers used in the LLMs, and their theoretical properties are studied in a more
precise sense (Garg et al., 2022; Von Oswald et al., 2023; Ahn et al., 2024) for simpler function
classes such as linear regression.

Despite the commonality between time-series foundation models and LLMs, it is not obvious how
(or even if) the phenomenon of few-shot learning for NLP tasks carry over to the time-series setting.
There is no clear definition of few-shot learning in terms of a time-series foundation model. In fact
prior pretrained time-series foundation models like (Ansari et al., 2024; Das et al., 2024; Garza &
Mergenthaler-Canseco, 2023) do not provide a clear opportunity to be prompted with anything apart
from the past values of a time-series in the context window.

3 PROBLEM DEFINITION

Time-series foundation models aim to build a general purpose forecaster that can take in a past
history of a target forecasting task, y1:L = {y1, y2, · · · yL}, where we look back L time-steps and
map them to a forecast ŷL+1:L+H , for a horizon length of H . The aim is to have ŷL+1:L+H as
close as possible to the unseen future yL+1:L+H according to some well defined error metric. Such
a model can be thought of as a function,

g : y1:L → ŷL+1:L+H (1)
which is capable for handling different values of L and H .

In this work, we aim to further enhance the abilities of such models by enriching their context.
In addition to the target task’s history y1:L, we add up to n − 1 in-context examples of the form
{y(1)

1:T1
,y

(2)
1:T2

, · · ·y(n−1)
1:Tn−1

} that can represent the past time-points of other related time-series (with
possibly varying lengths T1, · · · , Tn−1). In the case of our motivating example of highway traffic
prediction, y1:L is a week of hourly traffic data on that highway, and {y(1)

1:T1
,y

(2)
1:T2

, · · ·y(n−1)
1:Tn−1

} are
traffic data on n− 1 nearby highways.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

(a) An example prediction task. (b) A triangular wave. (c) Multiple linear trends.

Figure 2: In (a), we show an example prediction task ({y(1)
1:T1

,y
(2)
1:T2

,y
(3)
1:T3

,y1:L},yL+1:L+H). The
three black dashed lines (separators) separate the four in-context examples, where the goal is to pre-
dict the horizon yL+1:L+H of the example y1:L. In (b) and (c), we show that naı̈vely concatenating
in-context examples together without separators can confuse the model: multiple linear trends look
like a triangular wave if concatenated naı̈vely.

Therefore, the enhanced forecasting problem is aimed at training a model f ,

f :
(
y
(1)
1:T1

,y
(2)
1:T2

, · · ·y(n−1)
1:Tn−1

,y1:L

)
→ ŷL+1:L+H . (2)

As before, our time-series foundation model should be able to handle different values of L and H .
Additionally it should be able to support any number of in-context examples (n − 1) ranging from
zero to a maximum value. With some abuse of notation, let us index the target task’s forecasting
history and horizon as the n-th example i.e. y

(n)
1:Tn

:= y1:L+H , where Tn = L + H . Therefore,

our decoder-only model will work with n examples of the form {y(1)
1:T1

,y
(2)
1:T2

, · · · ,y(n)
1:Tn

} which are

drawn from related time-series. Henceforth, we will refer to {y(i)
1:Ti

}ni=1 as the context (synonymous
with prompt) supplied to the model.

4 MODEL ARCHITECTURE

Figure 3: Our decoder-only architecture for time-series prediction with in-context examples.

Motivated by the strong zero-shot performance achieved by stacked transformer models in decoder-
only mode for time-series forecasting, we propose to adapt a base TimesFM model (Das et al., 2024)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

to leverage the additional information available via in-context examples. In particular, we pretrain
TimesFM in its original fashion to obtain a base checkpoint. We then modify the model architecture
and continue pretraining from the base checkpoint using training data with in-context examples (we
call this phase continued pretraining) to obtain a new pretrained foundation model TimesFM-ICF.
The base TimesFM checkpoint that we start from will be referred to as TimesFM (base).

Adapting their model architecture to make use of the in-context examples is somewhat delicate, and
requires modifications to the original model. A depiction of our proposed model architecture is
given in Figure 3. As in their model, our model partitions each example into non-overlapping input
patches, and uses a shared input residual block (a one-hidden layer perceptron with skip connection,
see Das et al. (2023)), to embed each patch as a token before feeding the tokens into the stacked
transformers in a decoder-only fashion. The output embeddings are mapped to the next output
patches via another shared output residual block.

To teach the model to use the new in-context examples, we adapt the original TimesFM architec-
ture to better handle (1) the in-context example separators, (2) the cross-example attention, and (3)
the positional encoding. Despite these changes, we are still able to leverage the TimesFM (base)
checkpoint, which was pretrained for forecasting given just the history of the target time-series. We
describe the key details of our architecture design below.

4.1 SEPARATORS FOR IN-CONTEXT EXAMPLES

Our context window contains in-context examples from different time-series. Hence the model
needs to be able to separate these, since naı̈ve concatenation can confuse the model. Consider the
example in Figure 2. If we naı̈vely concatenate multiple in-context examples (e.g., linear trends,
Figure 2c) together, then the combination of these trends may appear to the model as an entirely
different time-series (e.g., a triangle wave, Figure 2b). Therefore, we choose to insert a common
learnable separator token after each in-context example. We visually depict these separators as
the dashed lines in Figure 2c. When feeding examples to the decoder, we sequentially pass each
tokenized patch of each time-series example to the model, followed by the separator token at the
end of an example. This process is depicted in Figure 3.

4.2 CROSS-EXAMPLE ATTENTION

In order to allow our model to distinguish between different in-context examples, we allow the
transformer to attend (causally) to all previous patches including the separator tokens. Note that, if
the model did not attend to the separator tokens, then we could never hope to distinguish between
the two scenarios from Figure 2b and Figure 2c. By attending to the previous separator tokens, the
model can potentially distinguish how many in-context examples have been processed so far.

Although at the input to the stacked transformer we use a common separator token to separate the
examples, the output tokens corresponding to the positions of these separator tokens can play a
much more nuanced role as we proceed through the subsequent transformer layers. As the output
tokens corresponding to these separator tokens causally attend to all previous tokens, after several
transformer layers these tokens can, for instance, potentially summarize the information in all the
patches corresponding to their example and/or convey the separation boundaries of the different
in-context examples to the model.

4.3 POSITIONAL ENCODING

Based on the findings in Haviv et al. (2022), we create the pretrained TimesFM (base) checkpoint
with No Positional Encodings (NoPE), in contrast to the absolute positional encodings (Vaswani
et al., 2017) used in the original TimesFM model. We note that we can achieve the same accuracy
reported in the original TimesFM paper without using any positional encodings. Indeed it has been
hypothesized in Haviv et al. (2022) that the presence of causal attention itself can encode positional
information when there are more than one stacked transformer layers.

The advantages of NoPE for our continued pretraining are two fold: (i) NoPE models usually have
better length generalization, which is particularly important here since we increase the prompt length
by adding in-context examples to the context (ii) If we use the original absolute positional encodings

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

used in (Das et al., 2024), the meaning of these positional encodings in the base model would be
different from their meaning during the continued pretraining with in-context examples. This could
cause problems for the continued pretraining phase.

4.4 OVERALL MODEL

Since our model builds upon the TimesFM architecture (Das et al., 2024), we introduce a similar
notation style for ease of exposition. The model processes in-context examples in the following
fashion. Starting with an example input {y(1)

1:T1
, . . . ,y

(n)
1:Tn

}, each example y
(i)
1:Ti

is partitioned into
input patches of length p:

ỹ
(i)
j = y

(i)
(p−1)j+1:pj ∀j ∈ [⌈Ti/p⌉] and i ∈ [n].

As in (Das et al., 2024), our model takes an additional padding mask m
(i)
1:Ti

to ensure that it makes
good predictions on time-series which are not a multiple of the patch length p. Given these patches
and masks, we feed each patch ỹ

(i)
j through a common MLP embedding layer to obtain tokens:

t
(i)
j = InputResidualLayer(ỹ

(i)
j ⊙ (1− m̃

(i)
j )) ∀j ∈ [⌈Ti/p⌉] and i ∈ [n].

We will slightly abuse notation by denoting the separator token σ as t(i)⌈Ti/p⌉+1 = σ, and let the mask

for the separator token m̃
(i)
⌈Ti/p⌉+1 = 0 (i.e., the separator tokens are never masked). After tokenizing

the input patches, we feed the tokens, together with a learnable separator token σ, autoregressively
to the stacked transformer layers in decoder-only mode. We take ṁ

(i)
j to be the last entry of m̃(i)

j
2,

and denote the sequence of token/mask pairs corresponding to example i as

t̃
(i)
1:j = ((t

(i)
1 , ṁ

(i)
1 ), . . . , (t

(i)
j , ṁ

(i)
j )) ∀j ∈ [⌈Ti/p⌉] and i ∈ [n].

Then, the output of the stacked transformer layer for token t
(i)
j can be described as:

o
(i)
j = StackedTransformer(t̃

(1)
1:⌈Ti/p⌉, σ̃, . . . , t̃

(i−1)
1:⌈Ti/p⌉, σ̃, t̃

(i)
1:j) ∀j ∈ [⌈Ti/p⌉] and i ∈ [n].

Finally, we feed the outputs o(i)
j from the stacked transformer through a residual block to obtain the

predicted time-series:

ŷ
(i)
pj+1:pj+h = OutputResidualLayer(o

(i)
j ).

This corresponds to the model’s prediction of the next h steps (output patch length) of y(i)
pj+1:pj+h.

4.5 LOSS FUNCTION

Similar to (Das et al., 2024), we use Mean Squared Error (MSE) as our point forecast loss.

TrainLossPerContext =
1∑n

i=1⌈Ti/p⌉

n∑
i=1

⌈Ti/p⌉∑
j=1

∥ŷ(i)
pj+1:pj+h − y

(i)
pj+1:pj+h∥

2.

5 PRETRAINING DATA

As mentioned before, we start with TimesFM (base) which was pretrained on a diverse corpus of
about 400B time-points. Please see Table 1 in Appendix A.1 and Das et al. (2024) for more details
on the datasets. We then continue pretraining it on training data containing in-context examples.

Context Generation. We convert individual datasets to generate contexts with in-context examples
that the model sees during the continued pretraining. Recall that the original TimesFM model is

2Intuitively, ṁ(i)
j indicates whether or not patch ỹ

(i)
j is masked from the right. We attend only to patches

which are not padded from the right, and have at least one unpadded values (see Appendix A.1)

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

trained up to a maximum history length of Lmax = 512. During the training of TimesFM (base) a
time-series of length T = Lmax + h is loaded for back propagation where h = 128 is the output
patch length. Therefore, we choose T as the maximum length of our n in-context examples. For any
time-series in a particular dataset, we use windowing with a shift of 1 to generate examples of length
T i.e. for a time-series y1:M the possibles examples are {y1:T ,y2:T+1, · · ·yM−T+1:M}. For time-
series that are less than T in length, we generate padded examples as detailed in Appendix A.1. Now
these examples are packed in groups of n to form the context. We consider two kinds of grouping:

1. Times-series level: For a long time-series, we can split the original time-series into shorter
time-series examples, each of length T , then select n of those shorter examples to form the
context{y(i)

1:T }ni=1 for the original time-series.

2. Dataset level: For each dataset, we can group any n segments of length T from any of the
time-series in that dataset, to form a context. For instance, a set of n segments from any of
the time-series from the Electricity dataset could be grouped to form a context {y(i)

1:T }ni=1.

Both time-series level and dataset level groupings guarantee that the grouped examples have similar
patterns to borrow from each other.

Dataset Mixture. We choose all datasets in Table 1 other than the four Wiki datasets to generate
in-context examples for continued training. The Wiki datasets contain millions of time-series that
correspond to a wide variety of articles, which need not be related to each other. In fact the Wiki
dataset can be potentially clustered into groups of related articles, and the time-series for each group
could be deemed to form a separate dataset. But we leave such preprocessing of the Wiki dataset for
future work and leave these datasets out of our continued pretraining.

For the remaining datasets, we set the number of examples in each context as n = 50 and generate
contexts from both time-series level and dataset level grouping. Note that if all the time-series in a
dataset have a total of N examples, then generating all

(
N
n

)
such contexts is intractable. Therefore,

we randomly generate 20N such groups of n examples as our training contexts.

Following the original TimesFM paper, the training data loader samples 90% real data and 10% syn-
thetic, with the real data mixture providing equal weights to the groups: hourly + sub-hourly, daily,
weekly, and monthly datasets. Moreover, we provide equal weights to the two kinds of examples
i.e., time-series level and dataset level.

6 EXPERIMENTAL RESULTS

Following prior time-series foundation model papers like (Das et al., 2024; Gruver et al., 2023),
we compare the zero-shot performance of our proposal with that of supervised models, statistical
models trained per dataset as well as other zero-shot models. Similar to prior works, we report our
results on a subset of Monash datasets (Godahewa et al., 2021) and the ETT datasets (Zhou et al.,
2021) that have not been seen by our model or the TimesFM (base) model.

6.1 OUT-OF-DOMAIN FORECASTING ON MONASH

Monash archive (Godahewa et al., 2021) is a collection of 30 datasets of different training and predic-
tion lengths that covers granularities ranging from minutes to years and domains including finance,
demand forecasting, weather and traffic. The archive reports four official metrics for several statisti-
cal baselines such as Exponential Smoothing(ETS) and ARIMA, as well as supervised ML baselines
like CatBoost (Prokhorenkova et al., 2018), DeepAR (Salinas et al., 2020) and WaveNet (Oord et al.,
2016). We report our results on the 18 datasets that were also considered for zero-shot forecasting
in Das et al. (2024). We provide more details in Appendix A.2.1.

The datasets contain time-series with vastly different scales and therefore we cannot aggregate the
raw metrics. Therefore, following prior works (Gruver et al., 2023; Das et al., 2024) we calculate the
MAE for all methods and normalize them by the MAE achieved by a naive baseline that just repeats
the last time-point’s value in the history for the whole horizon. Then we report the Geometric Mean
of these scaled MAE values across all datasets. Note that when dealing with normalized metrics it is
better to report the Geometric Mean (Fleming & Wallace, 1986). We borrow the official numbers for

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Tim
esF

M-IC
F

Tim
esF

M (B
ase

)

N-BEA
TS

FFN
N

Pat
chT

ST

Dee
pA

R

CatB
oo

st
TB

AT
S

ET
S PR

Tra
nsf

orm
er

Th
eta

Wav
eN

et

(DHR-)
ARIMA

llm
tim

e(Z
S) SE

S
0.0

0.2

0.4

0.6

0.8

1.0

Sc
al

ed
 M

AE
 (G

M
)

(a) Monash

Tim
esF

M-IC
F

Pat
chT

ST
N-HiTS

Tim
esF

M (B
ase

)

FE
Dfor

mer

Auto
for

mer

Pyr
afo

rm
er

Inf
orm

er

Log
Tra

ns
0.0

0.2

0.4

0.6

0.8

1.0

M
AE

 (A
vg

)

Horizon=96
Horizon=192

(b) ETT

Figure 4: In (a), we report the geometric mean of scaled MAE for Monash datasets. We include
all official Monash baselines as well as TimesFM-ICF, TimesFM (base). TimesFM (base) yields
a 7% improvement over the next best baseline. We also report one standard error similar to (Das
et al., 2024). In (b), we report the average MAE numbers for 4 datasets ETTh1, ETTh2, ETTm1 and
ETTm2. Similar to prior work like (Nie et al., 2022), the numbers are reported for rolling validation
over the test split which makes up the last 1/5th of time-points in each dataset. We also report one
standard error. TimesFM-ICF yields a marked improvement of at least 25% over other baselines.

all baselines from (Godahewa et al., 2021) except for TimesFM (base)(we evaluate our base model)
and LLMTime (we use the precomputed output from the original paper).

The results are summarized in Figure 4a. We can see that TimesFM-ICF performs the best followed
by TimesFM (base) and N-BEATS. It can be seen that TimesFM-ICF yields a 7% improvement over
the closest supervised baseline (N-BEATS), which has been trained per dataset. More importantly,
we obtain a 7% improvement over TimesFM (base), thus showing the value of in-context fine-tuning
for time-series foundation models. Note that TimesFM-ICF, TimesFM (base) and LLMTime are the
only zero-shot methods in this benchmark.

6.2 OUT-OF-DOMAIN FORECASTING ON ETT

A group of long horizon datasets have been commonly used for benchmarking (mainly) transformer
based deep learning algorithms starting from (Zhou et al., 2021). Some of the datasets in these
benchmarks are in our pretraining datasets (like Electricity and Traffic). Therefore, for the interest of
zero-shot evaluation we use the 4 Electricity Transformer Temperature (ETT) datasets, specifically
ETTh1, ETTh2 (hourly) and ETTm1, ETTm2 (15 min).

In terms of baselines, following (Das et al., 2024), we compare against Informer (Zhou et al.,
2021) and subsequent works like Pyraformer (Liu et al., 2021), FEDFormer (Zhou et al., 2022),
PatchTST (Nie et al., 2022). We also compare with N-HiTS (Challu et al., 2023) which yields an
improvement over N-BEATS (Oreshkin et al., 2019) for these datasets. Similar to Das et al. (2024),
we focus on the task of predicting horizon lengths 96, 192 given a history of 512 time-steps. We
provide rolling validation numbers for the test time-period which consists the last 1/5-th of the time-
points. This is standard for these benchmarks (Nie et al., 2022), where the datasets are split into
train:validation:test in the ratio 7:1:2.

We present the MAE obtained for horizon lengths 96 and 192 averaged over the 4 datasets in Fig-
ure 4b. Note that since the MAE is computed on scaled datasets in this benchmark (Zhou et al.,
2021), we can directly report the arithmetic mean across datasets. We see that TimesFM-ICF yields
a marked improvement of more than 25% on mean MAE over the nearest baseline. PatchTST, N-
HiTS and TimesFM (base) perform similarly and are much better than the other baselines. In this
case, all the datasets have in-context examples with enough time-points to cover T time-steps, unlike
in Monash where 9 out of 18 datasets have time-series of length less than 512 time-steps. Therefore,
we can see more value from in-context fine-tuning. We provide a more fine-grained analysis with
the number of in-context examples on ETTh datasets in Sections 6.4.1 and 6.4.2.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Tim
esF

M-IC
F

FT-
Tim

esF
M (F

ull)

FT-
Tim

esF
M (L

P)

Tim
esF

M (B
ase

)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Sc
al

ed
 M

AE
 (G

M
)

(a) Fine-tuning per Dataset

Tim
esF

M-IC
F-5

0e
x

Tim
esF

M-IC
F-4

ex

Tim
esF

M (L
H)

Tim
esF

M (B
ase

)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Sc
al

ed
 M

AE
 (G

M
)

(b) Longer History

Figure 5: In (a), we report the geometric mean of scaled MAE across the Monash datasets. FT-
TimesFM corresponds to fine-tuning the original TimesFM (base) model per dataset either (1) Full
fine-tune or (2) Linear Probed (see Section 6.3). We can see that TimesFM-ICF is clearly better than
FT-TimesFM models even though it is zero-shot. In (b), we compare TimesFM-ICF with a base
TimesFM model trained with a longer maximum supported history of 2048 time-points. We can see
that TimesFM-ICF performs better than TimesFM (LH) in terms of the scaled MAE (GM) metric
on Monash. This is further discussed in Section 6.4.2.

6.3 COMPARISON WITH FINE-TUNING PER DATASET

One of the main motivations of this work was to see whether we can recover the gains from fine-
tuning foundation models on the target domain without doing any gradient updates. Therefore, in
this section, we compare against a very strong baseline: for every dataset in our Monash benchmark
from Section 6.1 we fine-tune the TimesFM (base) model on the training set and evaluate it on the
test set. We do two kinds of fine-tuning (1) we update all the model weights which we will refer to
as FT-TimesFM (Full) (2) we hold all the transformer layer fixed while only the input and output
residual blocks are fine-tuned, which we will refer to as FT-TimesFM (LP) 3.

The aggregated scaled MAE numbers are presented in Figure 5a. TimesFM-ICF actually yields close
to 3% improvement over FT-TimesFM (Full) which is already a 4% improvement over TimesFM
(base). This shows that in-context fine-tuning can sometimes be better than per-dataset fine-tuning,
even though we do not perform any gradient updates! The advantages of our method are further
highlighted by the fact the total time required for fine-tuning on all datasets is 115 minutes (not
including job scheduling times) for the cheaper FT-TimesFM (LP) method while the total inference
time for TimesFM-ICF is merely 4 minutes 4.

While this is surprising, we believe that one reason could be that in many of the smaller datasets in
Monash, fine-tuning the weights of a foundation model can actually lead to catastrophic forgetting
of the learnt patterns which is also observed in LLMs (Luo et al., 2023). Indeed on the smaller
datasets like tourism yearly, bitcoin and us births, TimesFM-ICF is better than FT-TimesFM and
vice versa on larger datasets like Australian electricity demand. We provide per dataset metrics and
more details about the fine-tuning in Section A.5.

6.4 ABLATION

We now present two important ablation studies that justify the benefits of in-context examples, as
well as the advantages of our technique versus others like training longer-history models.

6.4.1 NUMBER OF EXAMPLES

The number of in-context examples is an important consideration that dictates the performance of
our model. We perform an ablation where we vary the number of in-context examples from 1 to the

3LP is meant to stand for Linear Probing even though here we are tuning the MLP layers.
4The inference numbers are reported on TPUv5e with 8 tensor cores.

9

https://cloud.google.com/tpu/docs/v5e-training


486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

maximum during our training i.e. n = 50. The corresponding results are reported on the ETTh test
set in Figure 6. We can see a monotonic increase in performance with more in-context examples.
We chose to perform this ablation on the ETT datasets since, unlike the Monash datasets, all time-
series are big enough to provide complete in-context examples of length T , which makes it easier to
perform this experiment.

1 4 10 20 30 40 50
Number of examples

0.0

0.1

0.2

0.3

0.4

M
AE

etth1
etth2

Figure 6: The performance of the model gets better with increasing number of in-context examples
on ETTh1 and ETTh2.

6.4.2 LONGER HISTORY

In this section, we compare the performance of TimesFM-ICF with a version of TimesFM
(base) trained with a longer history L = 2048 which we will refer to as TimesFM (LH). We pro-
vide the aggregate scaled MAE on Monash datasets in Figure 5b where we include two versions
of TimesFM-ICF, one with 4 in-context examples (TimesFM-ICF-4ex) and one with 50 in-context
examples (TimesFM-ICF-50ex). We can see that TimesFM (LH) yields a modest 1% improvement
over TimesFM (base) (which has a maximum history of 512) while TimesFM-ICF-50ex yields a 7%
improvement. Even TimesFM-ICF-4ex which uses the same total context length for all in-context
examples as TimesFM (LH) is 3% better than the baseline.

This shows that our technique of in-context fine-tuning can be more effective than training a longer
history model, especially when there is a mix of short-history and long-history time-series. This is
because, for in-context fine-tuning, many short time-series can be packed as in-context examples
inside the context, while for the case of usual long history training such time-series will just be
padded and most of the context is wasted. As shown in the detailed results in Appendix A.2, the
long history model performs better on longer datasets like australian electricity demand, but degrades
on shorter datasets like cif and tourism yearly.

7 CONCLUSION

In this paper, we introduce and study a methodology for in-context fine-tuning of a time-series
foundation model for forecasting. In particular, we start with a base foundation model and adapt it
to be able to effectively utilize, at inference time, not just the history of the target time-series for
forecasting, but also in-context examples from related time-series. Our results show that in-context
fine-tuning can lead to significantly better zero-shot performance on popular forecasting benchmarks
compared to the base foundation model and state-of-the-art supervised models. Furthermore, it even
outperforms a version of the base foundation model that is explicitly fine-tuned on the target domain.

While we have chosen a specific base time-series foundation model (TimesFM) for our in-context
fine-tuning approach, it would be an interesting direction of future work to study these adaptations
for other base foundation models. It would also be interesting to study better forms of relative posi-
tional encodings specifically designed for handling in-context examples and length generalization.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to imple-
ment preconditioned gradient descent for in-context learning. Advances in Neural Information
Processing Systems, 36, 2024.

Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen, Xiyuan Zhang, Pedro Mercado, Huibin Shen,
Oleksandr Shchur, Syama Sundar Rangapuram, Sebastian Pineda Arango, Shubham Kapoor, et al.
Chronos: Learning the language of time series. arXiv preprint arXiv:2403.07815, 2024.

George EP Box and Gwilym M Jenkins. Some recent advances in forecasting and control. Journal
of the Royal Statistical Society. Series C (Applied Statistics), 17(2):91–109, 1968.

Tom B Brown et al. Language models are few-shot learners. Advances in Neural Information
Processing Systems, 2020.

Cristian Challu, Kin G. Olivares, Boris N. Oreshkin, Federico Garza, Max Mergenthaler, and Artur
Dubrawski. NHITS: Neural Hierarchical Interpolation for Time Series forecasting. In The Asso-
ciation for the Advancement of Artificial Intelligence Conference 2023 (AAAI 2023), 2023. URL
https://arxiv.org/abs/2201.12886.

Ching Chang, Wen-Chih Peng, and Tien-Fu Chen. Llm4ts: Two-stage fine-tuning for time-series
forecasting with pre-trained llms. arXiv preprint arXiv:2308.08469, 2023.

Yanda Chen, Ruiqi Zhong, Sheng Zha, George Karypis, and He He. Meta-learning via language
model in-context tuning. Association for Computational Linguistics, 2022.

Abhimanyu Das, Weihao Kong, Andrew Leach, Shaan K Mathur, Rajat Sen, and Rose Yu. Long-
term forecasting with TiDE: Time-series dense encoder. Transactions on Machine Learn-
ing Research, 2023. ISSN 2835-8856. URL https://openreview.net/forum?id=
pCbC3aQB5W.

Abhimanyu Das, Weihao Kong, Rajat Sen, and Yichen Zhou. A decoder-only foundation model for
time-series forecasting. International conference on machine learning, 2024.

Philip J Fleming and John J Wallace. How not to lie with statistics: the correct way to summarize
benchmark results. Communications of the ACM, 29(3):218–221, 1986.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes. Advances in Neural Information Processing
Systems, 35:30583–30598, 2022.

Azul Garza and Max Mergenthaler-Canseco. Timegpt-1. arXiv preprint arXiv:2310.03589, 2023.

Rakshitha Godahewa, Christoph Bergmeir, Geoffrey I Webb, Rob J Hyndman, and Pablo Montero-
Manso. Monash time series forecasting archive. arXiv preprint arXiv:2105.06643, 2021.

Mononito Goswami, Konrad Szafer, Arjun Choudhry, Yifu Cai, Shuo Li, and Artur Dubrawski.
Moment: A family of open time-series foundation models. arXiv preprint arXiv:2402.03885,
2024.

Nate Gruver, Marc Finzi, Shikai Qiu, and Andrew Gordon Wilson. Large language models are
zero-shot time series forecasters. arXiv preprint arXiv:2310.07820, 2023.

Adi Haviv, Ori Ram, Ofir Press, Peter Izsak, and Omer Levy. Transformer language models without
positional encodings still learn positional information. arXiv preprint arXiv:2203.16634, 2022.

Peter J Liu, Mohammad Saleh, Etienne Pot, Ben Goodrich, Ryan Sepassi, Lukasz Kaiser,
and Noam Shazeer. Generating wikipedia by summarizing long sequences. arXiv preprint
arXiv:1801.10198, 2018.

Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X Liu, and Schahram Dustdar.
Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and fore-
casting. In International conference on learning representations, 2021.

11

https://arxiv.org/abs/2201.12886
https://openreview.net/forum?id=pCbC3aQB5W
https://openreview.net/forum?id=pCbC3aQB5W


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie Zhou, and Yue Zhang. An empirical study
of catastrophic forgetting in large language models during continual fine-tuning. arXiv preprint
arXiv:2308.08747, 2023.

Sewon Min, Mike Lewis, Luke Zettlemoyer, and Hannaneh Hajishirzi. Metaicl: Learning to learn
in context. Association for Computational Linguistics, 2022a.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke
Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work? In
EMNLP, 2022b.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
words: Long-term forecasting with transformers. International conference on learning represen-
tations, 2022.

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves,
Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A generative model for
raw audio. arXiv preprint arXiv:1609.03499, 2016.

Boris N Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. N-beats: Neural ba-
sis expansion analysis for interpretable time series forecasting. In International Conference on
Learning Representations, 2019.

Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and Andrey
Gulin. Catboost: unbiased boosting with categorical features. Advances in neural information
processing systems, 31, 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. Deepar: Probabilistic fore-
casting with autoregressive recurrent networks. International Journal of Forecasting, 36(3):1181–
1191, 2020.

Rajat Sen, Hsiang-Fu Yu, and Inderjit S Dhillon. Think globally, act locally: A deep neural network
approach to high-dimensional time series forecasting. Advances in neural information processing
systems, 32, 2019.

Weijia Shi, Sewon Min, Maria Lomeli, Chunting Zhou, Margaret Li, Victoria Lin, Noah A Smith,
Luke Zettlemoyer, Scott Yih, and Mike Lewis. In-context pretraining: Language modeling be-
yond document boundaries. arXiv preprint arXiv:2310.10638, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordv-
intsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient
descent. In International Conference on Machine Learning, pp. 35151–35174. PMLR, 2023.

Jingyuan Wang, Jiawei Jiang, Wenjun Jiang, Chengkai Han, and Wayne Xin Zhao. Towards effi-
cient and comprehensive urban spatial-temporal prediction: A unified library and performance
benchmark. arXiv preprint arXiv:2304.14343, 2023.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. ICLR, 2022a.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022b.

Jerry Wei, Jason Wei, Yi Tay, Dustin Tran, Albert Webson, Yifeng Lu, Xinyun Chen, Hanxiao Liu,
Da Huang, Denny Zhou, et al. Larger language models do in-context learning differently. arXiv
preprint arXiv:2303.03846, 2023.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Gerald Woo, Chenghao Liu, Akshat Kumar, Caiming Xiong, Silvio Savarese, and Doyen Sahoo.
Unified training of universal time series forecasting transformers. International conference on
machine learning, 2024.

Xi Ye and Greg Durrett. The unreliability of explanations in few-shot prompting for textual reason-
ing. Advances in neural information processing systems, 35:30378–30392, 2022.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the AAAI conference on artificial intelligence, 2021.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency
enhanced decomposed transformer for long-term series forecasting. In International Conference
on Machine Learning, pp. 27268–27286. PMLR, 2022.

Tian Zhou, Peisong Niu, Xue Wang, Liang Sun, and Rong Jin. One fits all: Power general time
series analysis by pretrained lm. arXiv preprint arXiv:2302.11939, 2023.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 MORE DETAILS ABOUT OUR MODEL AND BASELINES

Monash Baselines. For the results on Monash datasets, we borrow the official numbers from (Go-
dahewa et al., 2021). For LLMTime (Gruver et al., 2023) we use the pre-computed outputs supplied
by the original authors.

We also add the PatchTST (Nie et al., 2022) as a baseline for this benchmark because it is the best
performing baseline (only worse than our models) in the ETT datasets. For this model we use the
hyperparameters used by original paper for the ETTh datasets 5.

ETT Baselines. On the ETT datasets, the baseline numbers (except TimesFM (base)) are borrowed
from the official numbers reported in Table 2 of (Das et al., 2023). We evaluate the base model,
TimesFM (base) as well as our method in a rolling validation manner on the test splits to obtain the
corresponding metrics.

TimesFM (base). Following Das et al. (2024), we train a 200M model with 16 attention heads, 20
layers, a input patch length of 32 and output patch length of 128. The model dimension is set to
1280. We use the learning rate schedule in (Vaswani et al., 2017) with peak learning rate of 5e− 4.
The hidden dims of both the residual block and the FFN in the transformer layers are set as the same
as model dimensions. We keep layer norm in transformer layers but not in the residual blocks. The
only difference between the model in Das et al. (2024) and our base model is that we use NoPE
instead of teh absolute positional encoding (Vaswani et al., 2017). As we have mentioned before,
this leads to no loss in accuracy while being easier to extend to our in-context fine-tuning setting.

Fine-tuning Per Dataset. On the Monash benchmark, we also compare with TimesFM (base) fine-
tuned on the train set for every dataset and the forecasting on the corresponding test set. For all our
fine-tuning runs, we use a batch size of 16 and a maximum of 10k iterations. Note that this means
that the fine-tuned model will see many more training examples than the in-context examples given
to our model. For the fine-tuning runs, we use the same decoder only loss function that was used in
the original pretraining of TimesFM (base), the only difference is that the training is not restricted
to the training set of one dataset. We do two kinds of fine tuning:

• Full: All weights in the model are updated during fine-tuning.
• Linear Probing (LP): We hold the transformer weights fixed and only update the parameters

in the input and output residual blocks.

TimesFM-ICF. We continue to train TimesFM-ICF model from TimesFM (base). Therefore, most
of the parameters in the model remain the same. Here, are the key training details that are unique to
TimesFM-ICF:

• Separator Token: We have a trainable separator token that is also updated during the con-
tinued pretraining. The token is nothing but a learnt embedding whose dimension is equal
to the model dimension i.e. 1280 in our case.

• Number of Examples: We use a maximum of n = 50 in-context examples for each context
during training.

• Padding: In short datasets like M4 yearly and quarterly, each time-series might have num-
ber of time-points much less than T = 640. Sometimes the number of time-points are even
less than our input patch length p = 32. For such cases, a whole time-series can fit into one
of the n examples and they are preprocessed in the following manner:

– If the length of the time-series l is less than p, we left pad with k padding time-points
such that p < k + l < 2p. This is because we want the decoder only model to predict
something meaningful for the second patch after seeing the first patch and if not, is
penalized by the loss on the second patch. If the l > p, we do not need to perform this
left padding.

– Lastly, we right pad such that the length of the total padded example is T = 640.
5https://github.com/yuqinie98/PatchTST/blob/main/PatchTST_supervised/

scripts/PatchTST/etth1.sh

14

https://github.com/yuqinie98/PatchTST/blob/main/PatchTST_supervised/scripts/PatchTST/etth1.sh
https://github.com/yuqinie98/PatchTST/blob/main/PatchTST_supervised/scripts/PatchTST/etth1.sh


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

– Note that the last patch in such examples would be padded from the right i.e., they
will have real time-series values for the first few points and padding for the rest. We
make sure that such incomplete from the right patches are not attended by subsequent
tokens belonging to examples coming after.

The pretraining datasets are detailed in Table 1.

Table 1: List of datasets included in pretraining. All datasets except the Wiki datasets are also
repurposed for continued pretraining with in-context examples.

Dataset Granularity # Time series # Time points

Synthetic 3,000,000 6,144,000,000
Electricity Hourly 321 8,443,584
Traffic Hourly 862 15,122,928
Weather (Zhou et al., 2021) 10 Min 42 2,213,232
Favorita Sales Daily 111,840 139,179,538
LibCity (Wang et al., 2023) 15 Min 6,159 34,253,622
M4 hourly Hourly 414 353,500
M4 daily Daily 4,227 9,964,658
M4 monthly Monthly 48,000 10,382,411
M4 quarterly Quarterly 24,000 2,214,108
M4 yearly Yearly 22,739 840,644
Wiki hourly Hourly 5,608,693 239,110,787,496
Wiki daily Daily 68,448,204 115,143,501,240
Wiki weekly Weekly 66,579,850 16,414,251,948
Wiki monthly Monthly 63,151,306 3,789,760,907
Trends hourly Hourly 22,435 393,043,680
Trends daily Daily 22,435 122,921,365
Trends weekly Weekly 22,435 16,585,438
Trends monthly Monthly 22,435 3,821,760

A.2 DETAILED METRICS ON MONASH AND ETT

A.2.1 MONASH

Table 2 presents the per-dataset MAE numbers of TimesFM-ICF against other supervised and zero-
shot methods on Monash.

Table 2: MAE of TimesFM-ICF against other supervised and zero-shot methods on Monash.

(DHR-)ARIMA CatBoost DeepAR ETS FFNN N-BEATS Naive PR PatchTST SES TBATS Theta TimesFM (Base) TimesFM-ICF Transformer WaveNet llmtime(ZS)

australian electricity demand 1045.92 241.77 302.41 1282.99 258.76 213.83 659.60 247.18 248.35 659.60 370.74 665.04 426.12 338.98 231.45 227.50 459.96
bitcoin 3.62e+18 1.93e+18 1.95e+18 1.10e+18 1.45e+18 1.06e+18 7.78e+17 6.66e+17 1.84e+18 5.33e+18 9.90e+17 5.33e+18 1.90e+18 9.58e+17 2.61e+18 2.46e+18 1.75e+18
fred md 2957.11 2475.68 4264.36 2041.42 2339.57 2557.80 2825.67 8921.94 2005.86 2798.22 1989.97 3492.84 2514.63 2021.52 4666.04 2508.40 2013.49
nn5 daily 4.41 4.22 3.94 3.72 4.06 4.92 8.26 5.47 5.56 6.63 3.70 3.80 3.57 3.74 4.16 3.97 9.39
pedestrian counts 635.16 43.41 44.78 216.50 46.41 66.84 170.88 44.18 45.90 170.87 222.38 170.94 42.55 43.71 47.29 46.46 70.20
saugeenday 22.38 21.28 23.51 30.69 22.98 27.92 21.50 25.24 21.52 21.50 22.26 21.49 30.54 24.91 28.06 22.17 28.63
traffic hourly 0.04 0.02 0.01 0.03 0.01 0.02 0.03 0.02 0.01 0.03 0.04 0.03 0.01 0.01 0.01 0.02 0.03
us births 526.33 441.70 424.93 419.73 557.87 422.00 1152.67 574.93 556.23 1192.20 399.00 586.93 446.49 399.74 452.87 504.40 459.43
weather 2.45 2.51 2.02 2.35 2.09 2.34 2.36 8.17 2.12 2.24 2.30 2.51 1.98 2.10 2.03 2.29 2.32
cif 2016 469059.49 603551.30 3200418.00 642421.42 1495923.44 679034.80 386526.37 563205.57 271198.00 581875.97 855578.40 714818.58 438028.90 647255.33 4057973.04 5998224.62 715086.33
covid deaths 85.77 475.15 201.98 85.59 144.14 158.81 353.71 347.98 246.55 353.71 96.29 321.32 124.86 113.78 408.66 1049.48 304.68
hospital 19.60 19.17 18.25 17.97 22.86 20.18 24.07 19.24 18.52 21.76 17.43 18.54 17.95 17.26 36.19 19.35 24.62
nn5 weekly 15.38 15.29 14.69 15.70 15.02 14.19 16.71 14.94 15.38 15.66 14.98 15.30 14.15 15.38 20.34 19.34 15.91
solar weekly 839.88 1513.49 721.59 1131.01 1050.84 1172.64 1729.41 1044.98 1525.59 1202.39 908.65 1210.83 1380.09 1424.71 576.35 1996.89 2049.09
tourism monthly 2536.77 2537.04 1871.69 2004.51 2022.21 2003.02 5636.83 2187.28 2587.16 5302.10 2940.08 2069.96 3406.55 2018.07 2146.98 2095.13 4724.94
tourism quarterly 10475.47 10267.97 9511.37 8925.52 8981.04 8640.56 15845.10 9092.58 13271.98 15014.19 9972.42 7656.49 9535.86 8202.19 9521.67 9137.12 14121.09
tourism yearly 95033.24 79567.22 71471.29 94818.89 79593.22 70951.80 99456.05 82682.97 99574.68 95579.23 94121.08 90653.60 75955.39 80365.15 74316.52 69905.47 140081.78
traffic weekly 1.22 1.17 1.18 1.14 1.15 1.11 1.19 1.13 1.15 1.12 1.17 1.13 1.06 1.09 1.42 1.20 1.17

Scaled MAE (GM) 0.945 0.773 0.748 0.810 0.704 0.700 1.000 0.822 0.724 1.086 0.774 0.937 0.694 0.643 0.862 0.938 0.971

A.2.2 ETT

Table 3 presents the MAE numbers of TimesFM-ICF against other methods on ETTh1, ETTh2,
ETTm1 and ETTm2 respectively, with forecasting horizons of 96 and 192 respectively.

A.3 VARYING THE NUMBER OF IN-CONTEXT EXAMPLES

Table 4 and 5 shows the accuracy metric numbers of TimesFM-ICF on ETT and Monash respectively
when different numbers of in-context examples are used.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 3: MAE of TimesFM-ICF against other baselines on ETT

Autoformer FEDformer Informer LogTrans N-HiTS PatchTST Pyraformer TimesFM (Base) TimesFM-ICF

avg 96 0.400 0.362 0.686 0.781 0.336 0.335 0.556 0.348 0.207
192 0.430 0.406 0.883 0.979 0.381 0.368 0.643 0.387 0.265

etth1 96 0.446 0.415 0.769 0.740 0.393 0.401 0.612 0.398 0.263
192 0.457 0.446 0.786 0.824 0.436 0.429 0.681 0.427 0.330

etth2 96 0.368 0.374 0.952 1.197 0.345 0.337 0.597 0.350 0.206
192 0.434 0.446 1.542 1.635 0.401 0.376 0.683 0.392 0.265

ettm1 96 0.492 0.390 0.560 0.546 0.350 0.346 0.510 0.369 0.207
192 0.495 0.415 0.619 0.700 0.383 0.370 0.537 0.405 0.265

ettm2 96 0.293 0.271 0.462 0.642 0.255 0.256 0.507 0.274 0.152
192 0.336 0.318 0.586 0.757 0.305 0.296 0.673 0.323 0.201

Table 4: MAE of TimesFM-ICF on ETT with different numbers of in-context examples.

Number of in-context examples 1 4 10 20 30 40 50

etth1 0.430 0.421 0.411 0.398 0.387 0.378 0.371
etth2 0.392 0.386 0.377 0.368 0.344 0.331 0.320
Average MAE 0.411 0.404 0.394 0.383 0.366 0.354 0.345

A.4 LONG HISTORY

Table 6 and 7 show respectively the aggregated (geometric mean of scaled MAE) and the raw MAE
numbers on Monash of different TimesFM models, with the focus on the comparison between
TimesFM-ICF and TimesFM (LH) which is a long-2048-history TimesFM model. We compare
TimesFM-ICFin two different modes: (i) 50ex, in which the model has access to 50 in-context ex-
amples, and (ii) 4ex, in which the model has access to only 4 in-context examples. In mode (ii), the
aggregate length of all in-context examples is the same as the length of the history used by TimesFM
(LH).

A.5 FINE-TUNING PER DATASET

Table 8, 9 and 10 present the detailed accuracy and timing metrics to compare TimesFM-ICF and
FT-TimesFM on Monash. While TimesFM-ICF is more accurate, it is also significantly faster than
straighforward fine-tuning on the target dataset. Both are results of the TimesFM-ICF’s in-context
learning capability.

A.6 ILLUSTRATIVE EXAMPLES

We illustrate visually in Figure 7 how in-context examples can help disambiguate the prediction
tasks, by plotting the actual forecasts from TimesFM-ICF with and without the in-context examples.
In the left two figures, the history is not sufficiently informative for the model to make an accurate
prediction. By providing in-context examples together with this short history (see the right two
figures), however, the model is able to make a more accurate forecast.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 5: Scaled MAE (GM) of TimesFM-ICF on Monash with different numbers of in-context
examples.

Number of in-context examples 1 4 5 10 20 30 40 50

Scaled MAE (GM) 0.667 0.675 0.667 0.658 0.651 0.657 0.653 0.643

Table 6: Scaled MAE (GM) on Monash for long history length

Scaled MAE (GM)

TimesFM-ICF-50ex 0.643
TimesFM-ICF-4ex 0.675
TimesFM (LH) 0.685
TimesFM (Base) 0.694

Table 7: Detailed breakdown of MAE on Monash for long history length

TimesFM (LH) TimesFM-ICF-4ex TimesFM-ICF-50ex TimesFM (Base) naive

australian electricity demand 468.81 492.56 338.98 426.12 659.60
bitcoin 1.50e+18 1.32e+18 9.58e+17 1.90e+18 7.78e+17
cif 2016 709069.14 477038.11 647255.33 438028.90 386526.37
covid deaths 151.64 131.75 113.78 124.86 353.71
fred md 1519.00 1795.34 2021.52 2514.63 2825.67
hospital 17.64 17.23 17.26 17.95 24.07
nn5 daily 3.52 3.74 3.74 3.57 8.26
nn5 weekly 15.05 14.80 15.38 14.15 16.71
pedestrian counts 43.96 46.30 43.71 42.55 170.88
saugeenday 25.87 29.40 24.91 30.54 21.50
solar weekly 1211.10 1324.05 1424.71 1380.09 1729.41
tourism monthly 2629.16 2155.61 2018.07 3406.55 5636.83
tourism quarterly 8595.55 8952.65 8202.19 9535.86 15845.10
tourism yearly 89423.79 85239.54 80365.15 75955.39 99456.05
traffic hourly 0.01 0.01 0.01 0.01 0.03
traffic weekly 1.08 1.09 1.09 1.06 1.19
us births 473.87 447.00 399.74 446.49 1152.67
weather 1.87 2.12 2.10 1.98 2.36

Scaled MAE (GM) 0.685 0.675 0.643 0.694 1.000

Table 8: Monash Per-Dataset Fine-tune (scaled MAE)

scaled MAE (GM)

FT-TimesFM (Full) 0.663
FT-TimesFM (LP) 0.676
TimesFM-ICF 0.643
TimesFM (Base) 0.694

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 9: MAE on Monash of TimesFM-ICF compared to models fine-tuned and evaluated on (the
training and test set, respectively, within) each individual dataset within Monash

FT-TimesFM (Full) FT-TimesFM (LP) TimesFM-ICF TimesFM (Base) naive

australian electricity demand 178.07 262.83 338.98 426.12 659.60
bitcoin 1.33e+18 1.43e+18 9.58e+17 1.90e+18 7.78e+17
cif 2016 724237.52 1344910.30 647255.33 438028.90 386526.37
covid deaths 181.89 85.12 113.78 124.86 353.71
fred md 2296.35 2330.96 2021.52 2514.63 2825.67
hospital 19.53 18.86 17.26 17.95 24.07
nn5 daily 3.42 3.37 3.74 3.57 8.26
nn5 weekly 15.24 15.02 15.38 14.15 16.71
pedestrian counts 41.80 40.88 43.71 42.55 170.88
saugeenday 22.07 25.22 24.91 30.54 21.50
solar weekly 882.09 1610.53 1424.71 1380.09 1729.41
tourism monthly 2469.08 2069.82 2018.07 3406.55 5636.83
tourism quarterly 10140.35 10725.62 8202.19 9535.86 15845.10
tourism yearly 88210.94 85915.69 80365.15 75955.39 99456.05
traffic hourly 0.02 0.01 0.01 0.01 0.03
traffic weekly 1.19 1.12 1.09 1.06 1.19
us births 405.81 397.24 399.74 446.49 1152.67
weather 1.81 1.84 2.10 1.98 2.36

Scaled MAE (GM) 0.663 0.676 0.643 0.694 1.000

Table 10: Timing breakdown (in minutes) of forecasting TimesFM-ICF compared to individually
fine-tuning then evaluating models on a per-dataset basis in Monash

FT-TimesFM (Full) FT-TimesFM (LP) TimesFM-ICF

australian electricity demand 6.350 2.370 0.048
bitcoin 9.600 4.620 0.053
cif 2016 8.610 4.230 0.069
covid deaths 26.470 9.520 0.178
fred md 10.310 6.020 0.077
hospital 15.720 3.610 0.347
nn5 daily 11.120 5.360 0.076
nn5 weekly 9.220 3.950 0.081
pedestrian counts 17.120 12.050 0.063
saugeenday 9.440 4.090 0.048
solar weekly 9.040 5.030 0.085
tourism monthly 6.780 4.120 0.209
tourism quarterly 11.200 6.140 0.226
tourism yearly 10.350 5.160 0.288
traffic hourly 20.250 16.920 0.413
traffic weekly 7.700 11.790 0.428
us births 10.190 5.580 0.047
weather 7.540 4.910 1.394

Total 207.010 115.470 4.130

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

(a) In-context examples help the history disambiguate between an increasing trend and an oscillating
seasonality.

(b) In-context examples help the history disambiguate between an increasing linear trend and a
triangular wave.

Figure 7: Two illustrative examples on how in-context examples can help disambiguate the predic-
tion tasks, that likely patterns based solely on the history can get proved or disproved by the patterns
from the in-context examples.

19


	Introduction
	Related Work
	Problem Definition
	Model Architecture
	Separators for In-context examples
	Cross-example Attention
	Positional Encoding
	Overall Model
	Loss Function

	Pretraining Data
	Experimental Results
	Out-of-domain Forecasting on Monash
	Out-of-domain Forecasting on ETT
	Comparison with Fine-tuning per dataset
	Ablation
	Number of examples
	Longer History


	Conclusion
	Appendix
	More Details about our Model and Baselines
	Detailed Metrics on Monash and ETT
	Monash
	ETT

	varying the number of in-context examples
	Long History
	Fine-tuning per Dataset
	Illustrative Examples


