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Abstract

Explainable AI methods facilitate the under-
standing of model behaviour. However, small,
imperceptible perturbations to inputs can vastly
distort explanations. As these explanations are
typically evaluated holistically, before model
deployment, it is difficult to assess when a par-
ticular explanation is trustworthy. In contrast,
uncertainty is easily measured at inference time
and in an unsupervised fashion. Some stud-
ies have tried to create confidence estimators
for explanations, but none have investigated an
existing link between uncertainty and explana-
tion quality. We artificially simulate epistemic
uncertainty in text input by introducing noise
at inference time. In this large-scale empiri-
cal study, we insert different levels of noise
in a myriad of ways and measure the effect
on PLM output and uncertainty metrics. We
find that uncertainty and explanation coherence
have a task-dependant correlation which can
be moderately positive and potentially stems
from noise exposed during the training process;
this suggests that these models may be better
at identifying salient tokens when uncertain,
which can be used for human-AlI collaboration.
While this quality can be at odds with robust-
ness to noise, Integrated Gradients typically
shows good robustness and a relatively strong
correlation to uncertainty given perturbed data.
This suggests that uncertainty is not only an
indicator of output reliability, but could also be
a potential indicator of explanation coherence.

1 Introduction

Though large language models like ChatGPT have
become increasingly popular for personal and in-
dustrial use, these black-box models have been
prone to perpetuate discrimination and output hal-
lucinations (Augenstein et al., 2023; Bang et al.,
2023; Weidinger et al., 2021). To use these mod-
els safely, it is important to instil a level of trust
in their output. Some methods of instilling trust
in a model output include uncertainty estimation

and eXplainable Al (XAl). Uncertainty is a reflec-
tion of a model’s confidence in its output, given,
for example, ambiguous or noisy data. While un-
certainty can be estimated at inference time in an
unsupervised manner, XAl is typically holistically
evaluated for a model and task (Chen et al., 2022;
Hedstrom et al., 2023). However, XAl techniques
give unstable explanations given small changes in
input data (Adebayo et al., 2018; Alvarez-Melis
and Jaakkola, 2018; Lakkaraju and Bastani, 2020).
While these studies have been critiqued for insert-
ing unnatural noise into the input data, even rel-
atively realistic perturbations to images can dis-
rupt most gradient-based saliency map techniques
(Amorim et al., 2023).

Therefore, it is difficult to know when we can
trust a specific explanation. Ideally, we would
like to use XAI to understand why a model suc-
ceeds and fails to identify points of failure in a
model pipeline— these failures could arise from
mistakes in the model training or ambiguity within
the data. It is vital to understand when explanations
are trustworthy, as the inclusion of XAl can cause
an over-reliance on models (Bauer et al., 2023;
van der Waa et al., 2021), give users the false im-
pression of global task understanding (Chromik
etal., 2021), and lead to overall poorer performance
than if no human-AlI collaboration (Schmidt et al.,
2020). Therefore, we would like to assess if the
uncertainty of a model’s output can give any indi-
cation of an explanation’s quality. We expect noise
at inference time, especially for text data: Words
can be accidentally ablated, mispelled or otherwise
mutated. Different authors have distinct linguistic
styles. New words emerge or change in meaning.
Thanks to this noise, many SOTA language mod-
els suffer out-of-distribution issues and, thus, fail
in real-world applications (Alipanabhi et al., 2022;
Ribeiro et al., 2020). As large language models rely
on drawing from large amounts of data (often stem-
ming from sources with variable writing styles and



Noise type Example text
(unperturbed)  “an artful intelligent film that stays within the confines of a well-established genre”
MASK “an [MASK] [MASK] film that stays within the confines of a [MASK] genre”
UNK “an [UNK] [UNK] film that stays within the confines of a [UNK] genre”
charinsert “an artfuV1 intDelligent film that stays within the confines of a well-Mestablished genre”
charswap “an artfjl intellhgent film that stays within the confines of a Pell-established genre”
butterfingers ~ “an artdul intelligegt film that stays within the confines of a well-esfablished genre”
133t “an @r7ful 1n7311193n7 film that stays within the confines of a w311-357@611543d genre”
synonym "an disingenous sound film that stays within the confines of a good-established genre"

Table 1: All 7 types of perturbation visualized on a datapoint at 25% human-hierarchy perturbation

formatting, like social media), we must understand
how this “noise” in the data affects a model’s per-
formance, confidence, and explainability. As text
perturbations can introduce some ambiguity into
the data that is not present at training time, it should
affect a model’s reported uncertainty alongside its
explanation. Given the variety of language models
available, it is also vital to compare how this differs
across different models and XAI methods.

In this paper, we conduct a large-scale empirical
investigation into the effect of noise on Pre-trained
Language Models (PLMs), via a controlled experi-
ment where we artificially inject varying degrees
and types of noise (see Table 1) and measure the
impact on model explanations and uncertainty. In
this manner, we also investigate the relationship be-
tween explanation coherence and model certainty.
Here, we provide the following contributions:

* We evaluate the relationship between uncer-
tainty and explanation coherence given per-
turbed and unperturbed data.;

* We assess on a large-scale how the degree of
artificial noise at inference time affects model
performance, confidence and explanation co-
herence across a variety of transformer-based
language models, degrees of perturbation, and
methods of perturbation;

* We compare four popular XAl methods in
their robustness to noise across noise types
and models at different levels of perturbation.

We find that uncertainty metrics often show a
low, positive correlation to explanation coherence;
however, the correlation between epistemic un-
certainty and explanation coherence can become
negative with noise insertion, if there is no noise
present during training. Given perturbed data, this
relationship often becomes weakest with Smooth-
Grad and strongest with Guided Backpropogation
and Integrated Gradients; Integrated Gradients and

SmoothGrad show the greatest robustness to noise,
suggesting that saliency maps can be robust while
maintaining a relationship with uncertainty.

2 Related Work
2.1

There are many ways to assess a model’s trustwor-
thiness for a task or inference. The confidence in
an output can be quantified via its uncertainty, and
the reasonability of an output can be assessed via
XALI. Furthermore, the overall quality of an XAI
method can be evaluated, either via the similarity
to human annotations or via other metrics like ro-
bustness to noise or conciseness (Hedstrom et al.,
2023; Chen et al., 2022; Atanasova et al., 2020).
There is some controversy within these measures:
Models that output explanations with high similar-
ity to human-annotations may result in unfaithful
explanations, as models may not actually rely on
this information to compute their output (Jin et al.,
2023). Moreover, these explanations can also be
unstable and prone to large changes in output given
small changes in input data (Adebayo et al., 2018;
Alvarez-Melis and Jaakkola, 2018; Lakkaraju and
Bastani, 2020; Hedstrom et al., 2023; Chen et al.,
2022). However, as these studies assess for explana-
tion changes given imperceptible changes in (often
image) data, we lack understanding as to how these
explanations change on large-scale perturbations.

Measures of trustworthiness

2.2 Noise on PLM Performance

Several other studies have looked specifically at the
effect of noise on the performance and confidence
of BERT-related models. Surprisingly, many of
these found contrasting effects of noise on machine
and human ability to perform natural language un-
derstanding tasks. Perturbations that would not
affect a human’s ability to understand text signifi-
cantly perturb BERT performance (Jin et al., 2019;
Wang et al., 2022), yet perturbations that worsen



human performance do not affect model perfor-
mance (Feng et al., 2018; Gupta et al., 2021; Sinha
etal., 2021). The impact of different kinds of noise
differs across model types (Moradi and Samwald,
2021), and the more “learnable” a kind of noise
is for a model, the less performance decays given
augmented data (Zhang et al., 2022). However, as
these studies focus on BERT-related models, there
18 limited focus on other model families, like GPT,
and they typically do not evaluate explanations.

2.3 Uncertainty Measures

The ‘learnability’ of a trait or type of noise can be
likened to epistemic uncertainty, which is a mea-
sure of uncertainty in a model’s parameters. This
is believed to be malleable given more training
time and data (Gal and Ghahramani, 2015). In
contrast, aleatoric uncertainty stems from noise
inherent in the data generation process (Kendall
and Gal, 2016). Many studies conflate the two
forms of uncertainty by only looking at the soft-
max of the output logits as a measure of confidence
(hereon named predictive uncertainty). However,
these measures can be prone to over-confidence.
For example, when provided highly perturbed data,
model confidence increases, even with the addition
of calibration methods (Feng et al., 2018; Gupta
et al., 2021). As these studies use the conflated
measure of predictive uncertainty, it is difficult to
ascertain the cause of this confidence increase.

2.4 Uncertainty and XAI

Other works in the intersection of uncertainty and
XAI try to quantify the uncertainty of a given ex-
planation, by developing new models (Bykov et al.,
2020) or looking at ensemble explanations (Chai,
2018; Slack et al., 2020; Marx et al., 2023), or
they attempt to explain the causes of a model’s un-
certainty (Brown and Talbert, 2022; Watson et al.,
2023). In Marx et al. (2023), they find that the size
of the dataset is inversely proportional to the un-
certainty of the explanations, which suggests that,
with increased training data, XAl techniques tend
to converge and that epistemic uncertainty may af-
fect XAl explanations. However, these methods
do not look at existing links between XAI and un-
certainty and look mainly at image and synthetic
datasets.

In summary, most studies investigating noise on
model output look only at small levels of pertur-
bation and focus on a small subset of language
models (if any). Furthermore, they conflate differ-

Dataset Task Size

SemEval 2013 Sentiment Training: 4133

Task 2 Classification ~ Annotated Test: 1659

SST-2 + Sentiment Training: 67349

Hummingbird  Classification — Annotated Test: 62

HateXplain Hatespeech Training: 15383
Detection Annotated Test: 1142

Table 2: Our training and test datasets. We restrict
our test datapoints to those including human-annotated
explanations (‘Annotated Test’).

ent aspects of uncertainty or create new measures.
In our paper, we investigate the effect of differ-
ent scales of perturbations on a range of popular
language models, including GPT2. In addition, to
avoid conflating sources of uncertainty, we specifi-
cally examine the interaction between XAl and a
common measure of epistemic uncertainty to assess
the relationship between the two model outputs.

3 Methods
3.1 Datasets

We identify relevant tasks and datasets for this in-
vestigation by limiting ourselves to publicly avail-
able datasets in the English language. We select
simple, popular text classification tasks (sentiment
classification, hatespeech detection) with text that
has been annotated for importance at word-level
granularity by multiple (2+) annotators. We sum-
marize the datasets in Table 2. Within sentiment
classification, we choose two datasets: Humming-
bird (Hayati et al., 2021) and the Semeval-2013
Task 2 dataset (Nakov et al., 2013). Hummingbird
1s a re-annotated subset of several datasets, includ-
ing the SST-2 dataset (Socher et al., 2013). We
restrict the Hummingbird Sentiment test dataset
to only datapoints originating from the SST-2 val-
idation set, and train on the SST-2 train dataset.
We remove neutral datapoints from SemEval-2013
dataset and HateXplain (Mathew et al., 2020), to
avoid issues with the sufficiency of highlighted text
as explanations (Wiegreffe and Marasovi¢, 2021).

3.2 Models

We test the performance of four different
open-source large pre-trained language models:
BERT},se (Devlin et al., 2018), RoBERTay, (Liu
et al., 2019), ELECTRA (Clark et al., 2020) and
GPT-2edium (Radford et al., 2019), chosen due to
their variety in pretraining and their popularity. We
describe their finetuning in Appendix A.



The effect of perturbation pattern on model output
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Figure 1: The effect of increasing text perturbation on mean model performance, confidence, and explanation
coherence across three different hierarchies: (1) Random perturbation; (2) Human-based perturbation, following
human annotation and POS tags; and (3) Gradient-based perturbation, following ranking of Hotflip gradients.

3.3 Perturbations

At test time, we introduce varying levels, hierar-
chies, and types of perturbations to simulate epis-
temic uncertainty. A singular type of perturbation
is applied to space-delimited words following dif-
ferent hierarchies for increasing levels, or propor-
tions, of the text (0%, 5%, 10%, 25%, 50%, 70%,
80%, 90%, 95%).

We use three hierarchies for preferential per-
turbation: random-importance, human-importance,
and gradient-importance. Random-importance is
determined randomly, though the pattern of per-
turbed words is preserved across increasing levels
of perturbation. Human-importance is determined
by the word-level annotations of the dataset. Non-
annotated words are then ranked via their part-of-
speech tag. We assess the efficacy of this strate-
gic POS perturbation approach in Appendix C.1.
Gradient-importance is calculated specific to each
model as it is ranked by words with the greatest
average change according to the Hotflip candidates
table (Ebrahimi et al., 2018). When combining
tokens to create full words, we take the mean of
token gradients to create the final gradient. This
was determined after taking a subsample of the dat-
apoints and choosing the aggregation method that
gave the lowest mean ranking to NLTK stopwords.

We introduce seven different noise types to the
datapoints (see Table 1), selected from previous
work in text perturbation: At a fine-grained level,
we introduce a random character into a random sec-
tion of the word (charinsert), randomly replace
a character in a word (charswap) or replace a ran-
dom character with a character nearby on a qwerty
keyboard (butterfingers). These insertions have
been implemented in other studies on adversarial

perturbation in text (Zhang et al., 2022; Moradi
and Samwald, 2021). At the word level, we re-
place words with tokens, such as MASK, as has been
done in perturbation-based studies (Madsen et al.,
2021). We also compare MASK replacement with
UNK tokens, to assess if Masked Language Mod-
elling in pre-training tasks helps models better han-
dle MASK-related perturbations. We also convert the
entire word to 133t speak (133t) (Eger et al., 2019;
Zhang et al., 2022), and swap the word with a se-
mantically related word (synonym) using publicly
available corpora (Pavlick et al., 2015; Fellbaum,
1998; Loper and Bird, 2002), manually-made dic-
tionaries (e.g. for public Twitter IDs) or randomly
generated replacements (e.g. for URLs). Not all
words have valid synonyms; therefore, we are only
able to perturb about 16.2% of words in the Hum-
mingbird dataset and 18.4% of the SemEval dataset.
These mainly consist of rare or slang words, and
non-parseable hashtags or misspellings in the case
of the SemEval dataset. Our precise rules for syn-
onym replacement can be found in Appendix B.

3.4 Explanation techniques

We focus on local gradient-based explanations as
they have been shown to perform best across a
range of metrics, models, and tasks (Atanasova
et al., 2020). These explanation measures use back-
propagation to compute a saliency map over input
features for a specific datapoint to audit a model’s
decision. The simplest implementation uses the gra-
dient of the input as the saliency score (Simonyan
et al., 2013); however, the output can be very noisy
(Smilkov et al., 2017). Therefore, we rely on
modified versions of the technique: SmoothGrad
(SG) returns the average saliency map obtained by
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Figure 2: The effect of increasing text perturbation on mean model performance,

coherence across the different types of perturbation.

perturbing the original input with Gaussian noise
(Smilkov et al., 2017). Guided Backpropogation
(GBP) uses a different computation of gradients (by
ignoring all negative values) to visually improve its
saliency maps (Springenberg et al., 2014). InputX-
Gradients (IXG) considers both the importance of
the feature and the strength of the expressed dimen-
sion (Shrikumar et al., 2016). IntegratedGradi-
ents (IG) accumulates the gradients between an in-
put of interest and a neutral baseline (Sundararajan
etal., 2017). We use the Captum implementations
of these saliency maps (Kokhlikyan et al., 2019).

3.5 Evaluation design

For comparisons to the human annotations and
across models, we combine all gradients back to
word level (i.e. space-delimited). We use accuracy
as a reflection of model output quality. To mea-
sure model confidence, we use several measures of
uncertainty: We calculate predictive uncertainty
(PRU), which is traditionally reported in the litera-
ture, via the entropy of the softmax logits (to re-
duce overconfidence (Pearce et al., 2021)). We
approximate epistemic uncertainty (EPU) via the
entropy of model predictions after 100 inferences
with dropout left on (Kendall and Gal, 2016). As
a measure of explanation coherence, we take the
Mean Average Precision (MAP) of model gradients
with respect to the human-level annotations.

As a Kolmogorov—Smirnov test of the MAPs
and both measures of entropy violate the assump-
tion of normality (p < 10~?), we use Spearman’s
Rank Correlation! to assess shared trends across
models and datasets. We calculate the correlation
coefficient between the MAP of the gradients to the

'We use the implemententation in SciPy v1.11.4

confidence and explanation

human annotations and both measures of entropy
at a data-point level. We only include datapoints
that are correctly predicted, to ensure the relevance
of the annotated explanations. We divide our inves-
tigation between perturbed and un-perturbed data,
and across model, attribution method, and dataset,
to assess the generalisability of findings.

Finally, to evaluate the change in explanation
coherence with noise, we calculate the Pearson cor-
relation of the new saliency maps with the original
saliency maps and the perturbation pattern.

4 Results

4.1 Noise on uncertainty and explanations

4.1.1 The effect of perturbation prioritization

We present the aggregated effect of different hi-
erarchies of perturbation as described in §3.3 in
Figure 1. All perturbations impair model perfor-
mance, uncertainty, and explanation coherence, but
human-prioritised perturbation has the greatest im-
pact up to very high levels of perturbation. While
random and gradient-based perturbation generally
have similar impact on task performance, uncer-
tainty and explanation coherence, gradient-based
perturbation strategies have a stronger impact on
these metrics at low levels of perturbation. In-
terestingly, the decrease in explanation coherence
is markedly smaller given increasing perturbation
than that for task performance and uncertainty.

4.1.2 The effect of perturbation type

We show the aggregated effect of the investigated
noise types listed in Table 1 in Figure 2. Though
all perturbation types adversely impact task perfor-
mance and human agreement, this effect is smaller
for synonym and butterfinger. In contrast, token



replacements have the greatest detrimental effect.
Surprisingly, while most perturbations augment un-
certainty as they increase in scale, we do not see
this with 133t perturbation and epistemic uncer-
tainty. This is investigated further in Appendix C.2
and find it owes to dataset-level differences. We fur-
ther show-case model-level differences in Figure 3
and in Appendix C.3, where we find that BERT and
RoBERTa show the greatest increase in uncertainty
given MASK tokens and decrease in uncertainty with
increasing 133t speak. This is surprising, given
that, while previous studies using 133t perturbation
(Zhang et al., 2022; Eger et al., 2019) do not report
confidence measures, Zhang et al. (2022) note that
this perturbation was one of the most “learnable”
perturbations for the models, which we expect to
correlate with epistemic uncertainty.

4.2 The relationship between uncertainty and
explanation coherence

We assess the correlation between uncertainty and
explanation coherence across all datasets, saliency
maps, and models in Table 3. Before perturbation,
we surprisingly find a tendency for low to moder-
ate positive correlation between uncertainty and ex-
planation quality for the SemEval and HateXplain
datasets. While SST-2 shows a weak correlation be-
tween the metrics before perturbation, this becomes
moderately negative after perturbation. Typically,
attribution methods that show a stronger correlation
to uncertainty levels before perturbation continue
to show a relatively stronger correlation given per-
turbed data. We see similar patterns in correlation
between all attribution methods; however, Smooth-
Grad (SG) typically shows much weaker correlation
after perturbation, whereas Guided Backpropaga-
tion (GBP) and Integrated Gradients (IG) show the
strongest.

4.3 The change in explanation with increasing
noise

In Figure 4, we visualize the robustness of saliency
maps across low and high levels of perturbation.
At low levels of perturbation (10%), IG shows the
greatest correlation to the original saliency map
regardless of the type of noise introduced to the
datapoint. At higher levels, SG has the greatest
general robustness to noise. Interestingly, at high
levels of perturbation, while SG is equally robust to
all types of perturbation, IG and IXG show greater
robustness to synonym and charswaps.

We also investigate model-level differences at

low levels of perturbation in Figure 5 and find that
Integrated Gradients shows the greatest robustness
for the models BERT, RoBERTa, and ELECTRA.
However, SmoothGrad has the greatest robustness
for GPT2. Figure 4 also shows the correlation to
noise across saliency map and perturbation types.
None of the saliency maps show any strong corre-
lation to noise. Therefore, despite lower saliency
being attributed to previously salient tokens given
increasing noise, models do not seem to attribute
saliency to the input noise instead.

In summary, while perturbation decreases model
performance and explanation coherence, it has a
task-dependent effect on uncertainty. We also see
dataset-level differences in correlations between ex-
planation coherence and uncertainty, which is often
moderately positive; the strength of this association
given perturbed data differs also between saliency
maps, where SmoothGrad is typically weakest.
Furthermore, Integrated Gradients is most robust
against all types of noise at low levels of perturba-
tion for most models. SmoothGrad shows greater
robustness for GPT2 and for all models at high
levels of perturbation.

5 Discussion

While noise consistently deteriorates model perfor-
mance and explanation coherence, the impact of
increasing noise on model confidence varies across
model and task. Unlike previous studies, we do not
typically see an increase in confidence after pertur-
bation (Feng et al., 2018; Gupta et al., 2021), but
rather a decrease. However, both studies perturb
at the word and sentence structure-level, unlike
our study. Interestingly, we see the greatest differ-
ence between perturbation patterns at low levels of
perturbation. Overall, human-based perturbations
have the strongest effect on task performance and
uncertainty measures. Gradient-based perturbation
is only more effective than random perturbation
at low levels of perturbations. This suggests that
these human annotations are faithful indicators of
salient tokens, as their perturbation degrades model
performance more than gradient-based approaches.

Across all models, realistic perturbations, such
as charswap or synonym have the smallest impact
on task performance and explanation coherence,
yet masking has the greatest impact. Furthermore,
MASK has the greatest effect on both measures of
confidence. This is surprising, given that both
BERT and RoBERTa have masked-language mod-
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Figure 3: The differential effect of increasing levels of text perturbation on predictive (left) and epistemic uncertainty
(right) across 7 different kinds of noise between our four investigated models.

Before Perturbation

| Including Perturbed Text

Predictive uncertainty |

Epistemic uncertainty

| Predictive uncertainty

| Epistemic uncertainty

model dataset| GBP

IXG

I1G

SG| GBP IXG

IG SG

| GBP IXG IG SG

| GBP IXG IG  SG

SST-2|0.076
SemEval|0.237
HateXplain|0.268

BERT

0.068
0.248
0.270

-0.128 -0.155

0.238 0.249
0.265 0.262

-0.052 -0.060 0.041 0.039
0.235 0.247 0.234 0.247
0.211 0.229 0.263 0.267

-0.104 -0.099 -0.069 -0.069
0.149 0.165 0.150 0.165
0.293 0.178 0.297 0.181

-0.240 -0.228 -0.248 -0.219
0.151 0.166 0.148 0.164
0.243 0.139 0.259 0.148

SST-2|0.040
SemEval|0.200
HateXplain|0.565

ELECTRA

0.002
0.232
0.458

-0.050 -0.089

0.199 0.232
0.573 0.464

-0.127 -0.065 -0.050 -0.058
0.201 0.233 0.199 0.231
0.539 0.430 0.568 0.462

-0.096 -0.096 -0.043 -0.050
0.162 0.169 0.162 0.169
0.444 0.240 0.452 0.247

-0.383 -0.380 -0.164 -0.175
0.163 0.171 0.162 0.170
0.425 0.221 0.448 0.244

SST-2|0.088
SemEval|0.213
HateXplain|0.529

RoBERTa

0.048
0.234
0.434

0.030 -0.000
0.212 0.234
0.517 0.424

-0.367 -0.330 -0.174 -0.200
0.215 0.235 0.213 0.235
0.502 0.407 0.503 0.408

-0.124 -0.101 -0.084 -0.069
0.149 0.155 0.148 0.154
0.396 0.218 0.390 0.213

-0.357 -0.324 -0.267 -0.246
0.149 0.155 0.147 0.153
0.371 0.195 0.379 0.201

SST-2|0.078
SemEval |0.220
HateXplain|0.393

GPT2

0.181
0.278

0.124 -0.014
0.218 0.182
0.386 0.278

-0.150 -0.237 -0.036 -0.088
0.221 0.184 0.219 0.181
0.380 0.270 0.399 0.284

-0.092 -0.068 -0.013 -0.004
0.127 0.120 0.127 0.121
0.300 0.106 0.298 0.105

-0.232 -0.241 -0.094 -0.068
0.128 0.122 0.127 0.120
0.291 0.097 0.304 0.110

Table 3: The Spearman Rank Correlation between explanation coherence (MAP) and both measures of uncertainty
across model, dataset and saliency map. We bold the saliency map with the strongest correlation for each comparison.

eling pretraining (Devlin et al., 2018; Liu et al.,
2019), and calls into question the use of MASK
tokens for faithfulness measures (Madsen et al.,
2023).

In the case of hatespeech detection, UNK and
133t surprisingly reduce data and model uncer-
tainty (see Figure 7); this could explain the positive
correlation between uncertainty and explanation
coherence for HateXplain, as highly perturbed ex-
amples will show lower uncertainty as explanation
coherence decreases. The dataset is compiled from
Twitter, and we suspect that numeric characters
may be used to hide potentially offensive terms.
While there is no class difference regarding the
number of words containing letters and numbers
(0: 0.695 %, 1: 0.975 %, 2: 0.912 %), at manual
inspection, we find examples of 133t-like speak in
Classes 0 and 2 (e.g. hOe) that we do not find in
the neutral class (e.g. WW2). The existence of

these examples in the training data may have made
the noise more easily learned by the models as an
indicator of a class, owing to the high “learnability”
of this perturbation (Zhang et al., 2022). So, when
noise is learned to be an indicator of class, uncer-
tainty may show a positive correlation with output
quality and explanation coherence. However, we
also see a weaker, positive relationship with the
Twitter-based SemEval dataset, and we do not see
an increased correlation to 133t noise in Figure 4;
therefore, models trained with noise-augmented
data (or large amounts of social media data, like
large language models) may show this positive re-
lationship. This suggests that when these models
have greater uncertainty, they may still be more pre-
cise at identifying salient tokens amid noise. Other
studies also suggest performance improvements af-
ter training models with noisy data (Anonymous,
2023). We show in Appendix C.4 that, at very high
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Figure 4: The correlation of various saliency maps to the original saliency map and noise patterns at high and low
levels of perturbation. The axes denote the different types of noise. The color denotes the saliency map.
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Figure 5: Model-level differences of the correlation to the unperturbed saliency map at low levels of perturbation.
We separately show the effect on BERT, RoBERTa, ELECTRA, and GPT2.

perturbation levels, the strength of this relationship
weakens (due to lack of meaningful tokens), but
may still remain weakly positive for simple tasks.

SmoothGrad shows the greatest all-around ro-
bustness to noise but a weak correlation to uncer-
tainty after perturbation. Similarly, Guided back-
propagation shows low robustness, but a relatively
strong correlation to uncertainty given noisy data.
In contrast, Integrated Gradients shows relatively
strong correlations to uncertainty but also high
robustness for most models at low levels of per-
turbation. At high levels of perturbation, it and
InputXGrad show increased robustness to ‘realis-
tic’ perturbations (synonym and butterfinger),
which minimally impact model performance (see
Figure 2). Therefore, saliency maps can still be
robust while correlating to model uncertainty, and
patterns in a saliency map’s robustness may also
relate to model performance.

We recommend that future XAl evaluation and
human-XAlI collaboration studies consider uncer-
tainty metrics as an additional measure of XAl qual-
ity. The relationship between uncertainty and ex-
planation coherence for a model and dataset should
be assessed pre-deployment, and an XAI method

with adequate robustness and correlation to uncer-
tainty for the model should be chosen. Not only
could this help indicate explanation quality at infer-
ence time, it may also suggest if noise-augmented
training data is needed or if active learning can use
strategic word-level human annotations to improve
explanation coherence (Nguyen et al., 2019).

6 Conclusion

We provide an empirical investigation across lan-
guage models, noise perturbations, and saliency
maps to investigate a relationship between un-
certainty and explanation coherence. Following
an array of perturbation techniques, we show
that noise injection simultaneously affects model
performance, uncertainty, and explanation coher-
ence. However, models fine-tuned on noisier data
typically show a moderately positive correlation
between explanation coherence and uncertainty,
which suggests that these models may be better
at identifying salient tokens when uncertain. We
also suggest Integrated Gradients for future work
in Human-XALI collaboration, due to its robustness
to noise and relatively strong correlation to uncer-
tainty given perturbed data.



Limitations

We do not investigate aleatoric uncertainty in this
study, as our main experimental setup was to simu-
late epistemic uncertainty by introducing noise not
present in the training data. However, we do assess
across different datasets sources, with differing lev-
els of latent noise and aleatoric uncertainty, and find
highly correlated results for a shared task. However,
future work should consider further disambiguat-
ing aleatoric uncertainty in their comparisons. In
addition, given our investigation into epistemic un-
certainty, it could also be interesting to assess how
the observed robustness changes in models fine-
tuned with noise-augmented training data. Future
studies could also consider simulating uncertainty
in other methods, perhaps at other points of the
pipeline.

Though we do compare many popular language
model types, we could have also chosen to inves-
tigate even more. Models with visual encoding,
for example PIXEL (Rust et al., 2023), may han-
dle different types of noise differently; visual per-
turbations, like 133t speak, may show a lesser ef-
fect on PIXEL model performance and confidence,
whereas more semantic changes, like synonym re-
placement, may have a larger effect. However,
given the format of our study, the saliency maps
would be difficult to compare across all model
types. Furthermore, we only investigate 3 datasets
and 4 language models, which, while more exten-
sive than similar studies, still does not include all
popular NLP tasks or extremely large language
models (XLMs), like LLAMA (Touvron et al.,
2023).
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A Hyperparameters

The pre-trained models are connected to a classi-
fication head and fine-tuned on the datasets listed
in Table 2 using either previously reported optimal
hyperparameters or with hyperparameters we iden-
tified by exploring the search space with raytuning
(Liaw et al., 2018). We use pre-trained tokeniz-
ers specific to each model. For BERT, we rely on
BERTyuse, which is 110 million parameters. We
use RoBFE RT apgse, which is 125 million param-
eters. ELECTRA is 110 million parameters. We
rely on GPT — 2p,¢dium, Which is 345 million pa-
rameters. BERT, RoBERTa, and ELECTRA are
trained and assessed on Titan RTX GPUs; GPT2 is
trained and assessed on A100 GPUs.

A1l SST-2

Our BERT model uses the hyperparameters re-
ported by the best-performing BERT-base model on
the SST-2 task, which achieves 92.3% accuracy on
the evaluation set’. While we cannot find hyperpa-
rameters reaching the performance described in the
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original ROBERTa-base (94.8%) article (Liu et al.,
2019), we choose the hyperparameters specified by
this model card 3, which achieves an accuracy of
94.5% on the evaluation set. Our ELECTRA model
uses the best-performing hyperparameters listed
in the original article (Clark et al., 2020), which
achieves an accuracy of 96.0% on the evaluation
set. Our GPT2 model uses the hyperparameters
listed in the original article (Radford et al., 2019).

A.2 SemEval and HateXplain

Model hyperparameters are identified using a hy-
perparameter search space with a learning rate be-
tween le — 6 and le — 4, epochs between 1 and 10,
and a batch size of (4, 8, 16, 32).

Our final hyperparameters are shown in the ta-
bles below:

BERT, SemEval
Learning Rate le-5
Batch Size 16
Epochs 3
Random Seed 37
Adam € le-8
adam (1 0.9
adam (32 0.999
LLRD None
Decay Type Linear
Warmup Fraction 0
Attention Dropout 0.1
Dropout 0.1
Weight Decay 0.0

RoBERTa, SemEval
Learning Rate le-5
Batch Size 16
Epochs 3
Random Seed 37
Adam € le-8
adam (1 0.9
adam (52 0.999
LLRD None
Decay Type Linear
Warmup Fraction 0
Attention Dropout 0.1
Dropout 0.1
Weight Decay 0.0

*https://huggingface.co/Bhumika/RoBERTa-base-

finetuned-sst2
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ELECTRA, SemEval

Learning Rate 3e-6
Batch Size 8
Epochs 5
Random Seed 24
Adam € le-8
adam S1 0.9
adam (2 0.999
LLRD None
Decay Type Linear
Warmup Fraction 0
Attention Dropout 0.1
Dropout 0.1
Weight Decay 0.0
GPT2, SemEval
Learning Rate 8e-5
Batch Size 32
Epochs 7
Random Seed 42
Adam € 1
adam [1 0.9
adam (52 0.999
LLRD None
Decay Type Cosine
Warmup Fraction  0.01
Attention Dropout 0.1
Dropout 0.1
Weight Decay 0.1

B Synonym Replacement

Across all synonym replacements, we preserve the
case of the original word (e.g. HAPPY! becomes
GLAD!). In addition, we use NLTK POS tagger to
tag each word to a part of speech for more precise
synonym mapping. If NLTK is unable to find a part
of speech, or it must be dropped when merging
multiple tokens (e.g. if one token is not a punc-
tuation mark or a possession-indicator), then we
ignore part of speech.

We followed the following hierarchical rules for
synonym replacement:

1.  Tokens beginning with http://t.co/
or https://t.co/ are replaced with a similar
randomly-generated URL string following a similar
regex pattern

2. Tokens beginning with a #, we remove the #,
find a synonym, and then re-add the #.

3. Tokens beginning with a are replaced with
another random Twitter ID found in the test set.

4. Determinants are re-



BERT, HateXplain ELECTRA, HateXplain

Learning Rate 2e-5 Learning Rate 2e-5
Batch Size 32 Batch Size 8
Epochs 5 Epochs 2
Random Seed 2 Random Seed 6
Adam € le-8 Adam € le-8
adam (1 0.9 adam S1 0.9
adam (32 0.999 adam (52 0.999
LLRD None LLRD None
Decay Type Linear Decay Type Linear
Warmup Fraction 0 Warmup Fraction 0
Attention Dropout 0.1 Attention Dropout 0.1
Dropout 0.1 Dropout 0.1
Weight Decay 0.0 Weight Decay 0.0

RoBERTa, HateXplain GPT2, HateXplain
Learning Rate 6e-6 Learning Rate 5e-5
Batch Size 32 Batch Size 32
Epochs 5 Epochs 6
Random Seed 2 Random Seed 42
Adam € le-8 Adam € le-8
adam (1 0.9 adam S1 0.9
adam (32 0.999 adam (2 0.999
LLRD None LLRD None
Decay Type Linear Decay Type Cosine
Warmup Fraction 0 Warmup Fraction  0.01
Attention Dropout 0.1 Attention Dropout 0.1
Dropout 0.1 Dropout 0.1
Weight Decay 0.0 Weight Decay 0.1

placed another random determinant

synonym is longer than one word, the words are
hyphenated (This is done to simplify matching of
saliency maps between perturbations).

(C'a', 'an', 'the', 'this', 'that']).
Similarly question determinants are re-

placed with other question determinants. )
(['that', 'what', 'whatever', 'which' 'whichev%'rlfﬁe word starts or ends with a quote, bracket,

punctuation mark or line break, we remove the char-
acter, find a synonym and then re-add the character
in question.

5. Proper nouns are replaced with a randomly
generated first name or last name. If the original
name ends with a "’s", this is removed and then

re-added to the synonym. 10. If there are hyphens, periods or ’//’ spaced

throughout the word, we use the punctuation mark

6. If the word 1is a quote
[ m'n  miemomswowsswoni] o bracke to parse the word and find a replacement word for
[r(", "yn, mgr, omyn,owpe owqn vy, ome of the word subsections.
punctuation mark [ '.', '!', '?', ','], or 11. If a word has a forward or reverse entail-
sentence break ['-', '-=', ',', ':', ';'],it ment in PPDB 2.0, we randomly choose one as a
is replaced by another quote, bracket, punctuation replacement. (e.g. berry for fruit or fruit for berry).
mark or sentence break. 12. If no synonym has been found with using

7. If the word is an arabic number (e.g. 7),itis  POS tags, I will expand my search in WordNet and
replaced by its english equivalent (e.g. seven). PPDB 2.0 without the POS tag.

8. If a word has a synonym in WordNet or a 13. If the word ends with the popular suffixes
word with an Equivalence relation in PPDB 2.0, ’-ish’, *-ness’, or ’-less’, we remove the suffix, find

we randomly select a synonym from the set. If a  a synonym, and then re-add the suffix in question.
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C Extra investigations

C.1 Human-Random vs Human-Strategic

To assess the efficacy of our human-strategic ap-
proach (and if POS tag-level perturbations affect
model performance), we compare human-random
and human-strategic perturbation in Figure 6, and
denote the average location of a change in strat-
egy with a dotted line. Results: We can see that
POS-prioritized perturbation does adversely affect
model performance and uncertainty. However, we
find that after all adjectives, adverbs, verbs, and
nouns have been perturbed, further perturbation
does not show any increasing impact on model
performance or uncertainty until the text is nearly
completely perturbed. Interestingly, we find that
POS-based perturbation does somewhat improve
saliency map quality, it is on a very small scale
(maximum difference is .003).

C.2 Task-level differences

While we find that our results for accuracy and
explanation coherence are fairly well correlated
across models (see Table 4) and datasets (see Table
5), both included uncertainty measures (see §3.5)
given increasing noise shows only a correlation
between the datasets SemEval and SST-2 and the
models BERT and ELECTRA. In addition, the hu-
man agreement of InputXGrad and GuidedBP does
not show a strong correlation across all models.

We further show the task-level differences in
uncertainty in Figure 7. Results: Special token
replacements (with mask or unknown tokens) have
the greatest effect on model accuracy; however, this
is not translated to the uncertainty and explanation
coherence measures. While special token replace-
ments and L33t speech cause the greatest increase
in uncertainty for sentiment classification tasks, the
introduction of unknown tokens and 133t speak ac-
tually reduce model uncertainty in the hatespeech
detection task.

C3

We showcase model-level differences in reported
uncertainty in Figure 3 and in Tables 6 and 7. Re-
sults: Generally, we see increasing uncertainty
with increasing levels of perturbation for all models
and noise types. GPT?2 outputs much greater predic-
tive and epistemic uncertainty relative to the other
base models. GPT2 and RoBERTa show lightly de-
creasing uncertainty with UNK token and MASK
token replacement. ELECTRA’s uncertainty is less

Model-level differences
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impacted by random character insertion, relative
to BERT and RoBERTa, and BERT and RoBERTa
show the greatest decrease in uncertainty with in-
creasing 133t speak in a dataset. Overall, we find
that RoOBERTa gives fairly high confidence at high
perturbation, despite low performance (50.4% at
95% perturbation), yet, in contrast, ELECTRA,
BERT, and GPT-2 are more honest regarding un-
certainty.

We look at model-level differences in noise cor-
relation at low-levels of perturbation in Figure 8.
Results: While we see equal lack of correlation to
all types of noise for InputXGrad and GuidedBP
saliency maps, SmoothGrad shows different be-
haviour according to model type. For most models,
SmoothGrad shows a slight negative correlation to
133t speak and unknown tokens; however, Smooth-
Grad does not show this particular aversion to un-
known tokens with RoBERTa and it does not show
a particular aversion to 133t speak with GPT2.

C.4 Uncertainty and explanation coherence at
high levels of perturbation

We investigate the correlation between explana-
tion coherence and our two uncertainty measures
at very high levels of perturbation (90% and 95%)
in Table 8, to assess if the previously observed
relationship breaks down after salient tokens are
removed. In this comparison, we also include in-
correctly guessed datapoints. Results: In SST-2,
which has no noise in its training data, we continue
to observe a moderately negative relationship be-
tween uncertainty and explanation coherence. Se-
mEval, which is an easier task than HateXplain,
seems to conserve a very weak positive relation-
ship between uncertainty and explanation coher-
ence across models and attribution methods. How-
ever, for HateXplain, this correlation disappears
(ca. 0.0), which suggests that the model can no
longer identify salient tokens.



Effect of strategic human-based perturbation on model output
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Figure 6: We compare the effect of two different methods of human-based perturbation on model accuracy,
confidence and explanation coherence. Human-Random randomly perturbs tokens after all annotated tokens are
perturbed. Human-Strategic preferentially perturbs tokens based on their POS. Vertical lines denote the average
location of strategy shift for the Human-Strategic perturbation hierarchy.
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Figure 7: We show the differential effect of increasing levels of text perturbation on predictive uncertainty (left
two graphs) and epistemic uncertainty (right two) across 8 different kinds of noise between the tasks of Hatespeech
Detection (left) and Sentiment Classification (right), next to an unperturbed dataset

Correlation to Noise Across Models at 10% Perturbation

BERT RoBERTa Electra GPT2-medium
butterfingers butterfingers butterfingers butterfingers

charinsert

133t synonym 133t synonym 133t synonym 133t synonym

GuidedBP InputXGrad IntegGrad SmoothGrad ]

Figure 8: We show model-level differences of the correlation to noise at low levels of perturbation. We separately
show the effect on BERT, RoBERTa, ELECTRA, and GPT2.
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dataset dataset  accuracy PRU EPU GBP MAP IXG MAP 1IG MAP SG MAP

HateXplain ~ SemEval 0.799 *  -0.215  -0.550 0.923 * 0.792 * 0.870 * 0.951 *
HateXplain SST-2 0.825*  -0.269  -0.500 0.870 * 0.505 0.952 * 0.970 *
SemEval SST-2 0976 * 0.986* 0.964 * 0.908 * 0.581 0.800 * 0.939 *

Table 4: The Spearman’s Rank Correlation of accuracy, confidence and explanation coherence metrics between
datasets across increasing noise of different types of perturbation. A star is drawn next to values with a p <.0001.
Dataset differences are further investigated in Figures 7

model model accuracy PRU EPU GBP MAP IXG MAP IGMAP SG MAP
BERT ELECTRA 0.958* 0.750* 0.914 * 0.797 * 0413 * 0.856 * 0.689 *
BERT  RoBERTa 0910* 0416* 0464 * 0.479 * 0.147 0.901 * 0.790 *
BERT GPT2 0.941*  -0.007 0.081 0.589 * 0.065 0.865 * 0.753 *
ELECTRA  RoBERTa 0.968 * 0.225 0.398 0.250 -0.180 0.832 * 0.407 *
ELECTRA GPT2 0.927*  -0.163 0.132 0.358 -0.180 0.668 * 0.717 *
RoBERTa GPT2 0.897*  -0.061 0.210 0.845 * 0.559 * 0.848 * 0.554 *

Table 5: The Spearman’s Rank Correlation of metrics between models across increasing noise of different noise
kinds. A star is drawn next to values with a p < .0001. Model differences are further visualized in Figure 3.

vl 5 10 25 50 70 80 90 95

Ivl 5 10 25 50 70 80 90 95

. Replace with UNK token
Replace with UNK token BERT 13 10 12 9 11 14 23 28
BERT 14 12 9 10 11 13 33 53 RoBERTa 18 22 32 33 10 6 7 14
RoBERTa 16 23 26 18 7 2 1 6
ELECTRA 12 9 11 10 14 30 47 49
ELECTRA 26 10 5 7 12 32 51 60 GPT2 50 58 59 61 64 63 62 60
GPT2 57 58 59 60 62 63 64 61 Replace with MASK token
Replace with MASK token BERT 53 51 57 60 61 63 64 62
BERT 58 57 59 60 61 63 64 62
RoBERTa 12 17 20 15 13 11 5 4
RoBERTa 14 20 21 15 13 12 10 11
ELECTRA 36 27 51 59 61 62 64 63
ELECTRA 46 24 47 57 61 62 63 64 GPT2 16 26 40 31 25 24 20 18
GPT2 16 22 35 32 26 23 21 24 Swap random character
Swap random character
BERT 20 22 29 32 36 44 34 31 BERT 1724 3236 42 39 30 3l
RoBERTa 24 29 36 41 45 47 42 43
RoBERTa 24 32 36 42 46 49 44 41
ELECTRA 15 22 35 38 39 34 26 24
ELECTRA 16 29 35 27 23 13 15 22 GPT2 7 8 15 28 39 45 55 54
GPT2 7 6 15 31 49 50 54 51 Replace with Synonym
Replace with Synonym
BERT 16 21 25 30 39 31 41 35 poghem 23 23 35 40 46 40 34 50
RoBERTa 25 28 35 40 43 47 51 50
ELECTRA 16 18 29 48 50 52 54 55
ELECTRA 28 33 44 48 49 50 52 54 GPT2 1 5 14 23 29 30 36 37
GPT2 2 1 Bult%er ﬁfl(;er 1§19ispe%l§i;ng 38 36 Butterfinger mispelling
BERT 18 23 27 43 49 50 48 45 BERT 212229 41 5249 47 38
RoBERTa 28 34 38 48 53 57 59 51
RoBERTa 30 34 38 45 54 57 55 53
ELECTRA 19 23 32 43 46 45 41 42
ELECTRA 25 36 37 42 41 34 39 38 GPT2 6 10 17 27 35 46 52 47
GPT2 4 8Ra11(7lom2csharjc7ter iéillsert47 42 Random character insert
BERT 20 25 33 44 50 43 40 35
BERT 19 24 28 42 46 51 47 38
RoBERTa 26 30 37 44 52 58 60 55
RoBERTa 27 31 37 48 56 59 61 58
ELECTRA 17 21 33 44 40 31 25 28
ELECTRA 21 31 40 43 19 17 14 20 GPT2 ) 3 13 21 41 53 57 48
GPT2 3 5 14 27 34 40 48 45 Convert to 133t speak
Convert to 133t speak BERT 7 8 6 5 4 5 1 3
BERT 7 8 6 5 4 2 1 3 RoBERTa 16 21 19 8 2 1 3 9
RoBERTa 17 22 19 9 4 3 5 8 ELECTRA 7 4 1 2 3 5 6 3
ELECTRA 8 3 1 2 4 6 9 11 GPT2 4 9 22 34 42 38 43 33
GPT2 10 9 19 43 52 53 55 56

Table 7: Rank of epistemic uncertainty across pertur-
bation type and model with increasing levels of per-
turbation. Larger numbers indicate higher numbers of
uncertainty.

Table 6: Rank of aleatoric uncertainty across perturba-
tion type and model with increasing levels of perturba-
tion. High numbers indicate higher levels of uncertainty.
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Predictive Uncertainty | Epistemic Uncertainty |
Model ~ Dataset | GBP IXG IG  SG| GBP IXG IG  SG |

SST-2 | -0.016  0.020 -0.015  0.092 | -0.162 -0.100 -0.089 -0.011
BERT SemEval | 0.088 0.103 0.088 0.103 | 0.089 0.104 0.087 0.103
HateXplain | -0.049 -0.078 -0.049 -0.078 | -0.040 -0.060 -0.041 -0.064

SST-2 | -0.122 -0.114 -0.048 -0.032 | -0.308 -0.289 -0.160 -0.151
ELECTRA SemEval | 0.103 0.096 0.103 0.096 | 0.105 0.097 0.104 0.097
HateXplain | -0.054 -0.084 -0.061 -0.091 | -0.033 -0.059 -0.060 -0.090

SST-2 | -0.169 -0.123 -0.153 -0.130 | -0.315 -0.254 -0.244 -0.178
RoBERTa SemEval | 0.106 0.106 0.106 0.106 | 0.108 0.106 0.104 0.104
HateXplain | -0.021 -0.054 -0.023 -0.055 | -0.009 -0.036 -0.020 -0.052

SST-2 | -0.075 -0.017 -0.070 -0.016 | -0.159 -0.100 -0.096 -0.048
GPT2 SemEval | 0.064 0.083 0.065 0.083 | 0.065 0.085 0.065 0.084
HateXplain | 0.134 0.090 0.140 0.094 | 0.126 0.097 0.134 0.092

Table 8: The Spearman Rank Correlation between explanation coherence (MAP) and both measures of uncertainty
across model, dataset and saliency map at high levels of perturbation (90% and 95%). All datapoints (correctly and
incorrected guessed) are included. We bold the saliency map with the strongest correlation for each comparison.
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