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Abstract

Explainable AI methods facilitate the under-001
standing of model behaviour. However, small,002
imperceptible perturbations to inputs can vastly003
distort explanations. As these explanations are004
typically evaluated holistically, before model005
deployment, it is difficult to assess when a par-006
ticular explanation is trustworthy. In contrast,007
uncertainty is easily measured at inference time008
and in an unsupervised fashion. Some stud-009
ies have tried to create confidence estimators010
for explanations, but none have investigated an011
existing link between uncertainty and explana-012
tion quality. We artificially simulate epistemic013
uncertainty in text input by introducing noise014
at inference time. In this large-scale empiri-015
cal study, we insert different levels of noise016
in a myriad of ways and measure the effect017
on PLM output and uncertainty metrics. We018
find that uncertainty and explanation coherence019
have a task-dependant correlation which can020
be moderately positive and potentially stems021
from noise exposed during the training process;022
this suggests that these models may be better023
at identifying salient tokens when uncertain,024
which can be used for human-AI collaboration.025
While this quality can be at odds with robust-026
ness to noise, Integrated Gradients typically027
shows good robustness and a relatively strong028
correlation to uncertainty given perturbed data.029
This suggests that uncertainty is not only an030
indicator of output reliability, but could also be031
a potential indicator of explanation coherence.032

1 Introduction033

Though large language models like ChatGPT have034

become increasingly popular for personal and in-035

dustrial use, these black-box models have been036

prone to perpetuate discrimination and output hal-037

lucinations (Augenstein et al., 2023; Bang et al.,038

2023; Weidinger et al., 2021). To use these mod-039

els safely, it is important to instil a level of trust040

in their output. Some methods of instilling trust041

in a model output include uncertainty estimation042

and eXplainable AI (XAI). Uncertainty is a reflec- 043

tion of a model’s confidence in its output, given, 044

for example, ambiguous or noisy data. While un- 045

certainty can be estimated at inference time in an 046

unsupervised manner, XAI is typically holistically 047

evaluated for a model and task (Chen et al., 2022; 048

Hedström et al., 2023). However, XAI techniques 049

give unstable explanations given small changes in 050

input data (Adebayo et al., 2018; Alvarez-Melis 051

and Jaakkola, 2018; Lakkaraju and Bastani, 2020). 052

While these studies have been critiqued for insert- 053

ing unnatural noise into the input data, even rel- 054

atively realistic perturbations to images can dis- 055

rupt most gradient-based saliency map techniques 056

(Amorim et al., 2023). 057

Therefore, it is difficult to know when we can 058

trust a specific explanation. Ideally, we would 059

like to use XAI to understand why a model suc- 060

ceeds and fails to identify points of failure in a 061

model pipeline– these failures could arise from 062

mistakes in the model training or ambiguity within 063

the data. It is vital to understand when explanations 064

are trustworthy, as the inclusion of XAI can cause 065

an over-reliance on models (Bauer et al., 2023; 066

van der Waa et al., 2021), give users the false im- 067

pression of global task understanding (Chromik 068

et al., 2021), and lead to overall poorer performance 069

than if no human-AI collaboration (Schmidt et al., 070

2020). Therefore, we would like to assess if the 071

uncertainty of a model’s output can give any indi- 072

cation of an explanation’s quality. We expect noise 073

at inference time, especially for text data: Words 074

can be accidentally ablated, mispelled or otherwise 075

mutated. Different authors have distinct linguistic 076

styles. New words emerge or change in meaning. 077

Thanks to this noise, many SOTA language mod- 078

els suffer out-of-distribution issues and, thus, fail 079

in real-world applications (Alipanahi et al., 2022; 080

Ribeiro et al., 2020). As large language models rely 081

on drawing from large amounts of data (often stem- 082

ming from sources with variable writing styles and 083
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Noise type Example text

(unperturbed) “an artful intelligent film that stays within the confines of a well-established genre”

MASK “an [MASK] [MASK] film that stays within the confines of a [MASK] genre”
UNK “an [UNK] [UNK] film that stays within the confines of a [UNK] genre”
charinsert “an artfuVl intDelligent film that stays within the confines of a well-Mestablished genre”
charswap “an artfjl intellhgent film that stays within the confines of a Pell-established genre”
butterfingers “an artdul intelligegt film that stays within the confines of a well-esfablished genre”
l33t “an @r7fu1 1n7311193n7 film that stays within the confines of a w311-357@611543d genre”
synonym "an disingenous sound film that stays within the confines of a good-established genre"

Table 1: All 7 types of perturbation visualized on a datapoint at 25% human-hierarchy perturbation

formatting, like social media), we must understand084

how this “noise” in the data affects a model’s per-085

formance, confidence, and explainability. As text086

perturbations can introduce some ambiguity into087

the data that is not present at training time, it should088

affect a model’s reported uncertainty alongside its089

explanation. Given the variety of language models090

available, it is also vital to compare how this differs091

across different models and XAI methods.092

In this paper, we conduct a large-scale empirical093

investigation into the effect of noise on Pre-trained094

Language Models (PLMs), via a controlled experi-095

ment where we artificially inject varying degrees096

and types of noise (see Table 1) and measure the097

impact on model explanations and uncertainty. In098

this manner, we also investigate the relationship be-099

tween explanation coherence and model certainty.100

Here, we provide the following contributions:101

• We evaluate the relationship between uncer-102

tainty and explanation coherence given per-103

turbed and unperturbed data.;104

• We assess on a large-scale how the degree of105

artificial noise at inference time affects model106

performance, confidence and explanation co-107

herence across a variety of transformer-based108

language models, degrees of perturbation, and109

methods of perturbation;110

• We compare four popular XAI methods in111

their robustness to noise across noise types112

and models at different levels of perturbation.113

We find that uncertainty metrics often show a114

low, positive correlation to explanation coherence;115

however, the correlation between epistemic un-116

certainty and explanation coherence can become117

negative with noise insertion, if there is no noise118

present during training. Given perturbed data, this119

relationship often becomes weakest with Smooth-120

Grad and strongest with Guided Backpropogation121

and Integrated Gradients; Integrated Gradients and122

SmoothGrad show the greatest robustness to noise, 123

suggesting that saliency maps can be robust while 124

maintaining a relationship with uncertainty. 125

2 Related Work 126

2.1 Measures of trustworthiness 127

There are many ways to assess a model’s trustwor- 128

thiness for a task or inference. The confidence in 129

an output can be quantified via its uncertainty, and 130

the reasonability of an output can be assessed via 131

XAI. Furthermore, the overall quality of an XAI 132

method can be evaluated, either via the similarity 133

to human annotations or via other metrics like ro- 134

bustness to noise or conciseness (Hedström et al., 135

2023; Chen et al., 2022; Atanasova et al., 2020). 136

There is some controversy within these measures: 137

Models that output explanations with high similar- 138

ity to human-annotations may result in unfaithful 139

explanations, as models may not actually rely on 140

this information to compute their output (Jin et al., 141

2023). Moreover, these explanations can also be 142

unstable and prone to large changes in output given 143

small changes in input data (Adebayo et al., 2018; 144

Alvarez-Melis and Jaakkola, 2018; Lakkaraju and 145

Bastani, 2020; Hedström et al., 2023; Chen et al., 146

2022). However, as these studies assess for explana- 147

tion changes given imperceptible changes in (often 148

image) data, we lack understanding as to how these 149

explanations change on large-scale perturbations. 150

2.2 Noise on PLM Performance 151

Several other studies have looked specifically at the 152

effect of noise on the performance and confidence 153

of BERT-related models. Surprisingly, many of 154

these found contrasting effects of noise on machine 155

and human ability to perform natural language un- 156

derstanding tasks. Perturbations that would not 157

affect a human’s ability to understand text signifi- 158

cantly perturb BERT performance (Jin et al., 2019; 159

Wang et al., 2022), yet perturbations that worsen 160
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human performance do not affect model perfor-161

mance (Feng et al., 2018; Gupta et al., 2021; Sinha162

et al., 2021). The impact of different kinds of noise163

differs across model types (Moradi and Samwald,164

2021), and the more “learnable” a kind of noise165

is for a model, the less performance decays given166

augmented data (Zhang et al., 2022). However, as167

these studies focus on BERT-related models, there168

is limited focus on other model families, like GPT,169

and they typically do not evaluate explanations.170

2.3 Uncertainty Measures171

The ‘learnability’ of a trait or type of noise can be172

likened to epistemic uncertainty, which is a mea-173

sure of uncertainty in a model’s parameters. This174

is believed to be malleable given more training175

time and data (Gal and Ghahramani, 2015). In176

contrast, aleatoric uncertainty stems from noise177

inherent in the data generation process (Kendall178

and Gal, 2016). Many studies conflate the two179

forms of uncertainty by only looking at the soft-180

max of the output logits as a measure of confidence181

(hereon named predictive uncertainty). However,182

these measures can be prone to over-confidence.183

For example, when provided highly perturbed data,184

model confidence increases, even with the addition185

of calibration methods (Feng et al., 2018; Gupta186

et al., 2021). As these studies use the conflated187

measure of predictive uncertainty, it is difficult to188

ascertain the cause of this confidence increase.189

2.4 Uncertainty and XAI190

Other works in the intersection of uncertainty and191

XAI try to quantify the uncertainty of a given ex-192

planation, by developing new models (Bykov et al.,193

2020) or looking at ensemble explanations (Chai,194

2018; Slack et al., 2020; Marx et al., 2023), or195

they attempt to explain the causes of a model’s un-196

certainty (Brown and Talbert, 2022; Watson et al.,197

2023). In Marx et al. (2023), they find that the size198

of the dataset is inversely proportional to the un-199

certainty of the explanations, which suggests that,200

with increased training data, XAI techniques tend201

to converge and that epistemic uncertainty may af-202

fect XAI explanations. However, these methods203

do not look at existing links between XAI and un-204

certainty and look mainly at image and synthetic205

datasets.206

In summary, most studies investigating noise on207

model output look only at small levels of pertur-208

bation and focus on a small subset of language209

models (if any). Furthermore, they conflate differ-210

Dataset Task Size
SemEval 2013
Task 2

Sentiment
Classification

Training: 4133
Annotated Test: 1659

SST-2 +
Hummingbird

Sentiment
Classification

Training: 67349
Annotated Test: 62

HateXplain Hatespeech
Detection

Training: 15383
Annotated Test: 1142

Table 2: Our training and test datasets. We restrict
our test datapoints to those including human-annotated
explanations (‘Annotated Test’).

ent aspects of uncertainty or create new measures. 211

In our paper, we investigate the effect of differ- 212

ent scales of perturbations on a range of popular 213

language models, including GPT2. In addition, to 214

avoid conflating sources of uncertainty, we specifi- 215

cally examine the interaction between XAI and a 216

common measure of epistemic uncertainty to assess 217

the relationship between the two model outputs. 218

3 Methods 219

3.1 Datasets 220

We identify relevant tasks and datasets for this in- 221

vestigation by limiting ourselves to publicly avail- 222

able datasets in the English language. We select 223

simple, popular text classification tasks (sentiment 224

classification, hatespeech detection) with text that 225

has been annotated for importance at word-level 226

granularity by multiple (2+) annotators. We sum- 227

marize the datasets in Table 2. Within sentiment 228

classification, we choose two datasets: Humming- 229

bird (Hayati et al., 2021) and the Semeval-2013 230

Task 2 dataset (Nakov et al., 2013). Hummingbird 231

is a re-annotated subset of several datasets, includ- 232

ing the SST-2 dataset (Socher et al., 2013). We 233

restrict the Hummingbird Sentiment test dataset 234

to only datapoints originating from the SST-2 val- 235

idation set, and train on the SST-2 train dataset. 236

We remove neutral datapoints from SemEval-2013 237

dataset and HateXplain (Mathew et al., 2020), to 238

avoid issues with the sufficiency of highlighted text 239

as explanations (Wiegreffe and Marasović, 2021). 240

3.2 Models 241

We test the performance of four different 242

open-source large pre-trained language models: 243

BERTbase (Devlin et al., 2018), RoBERTabase (Liu 244

et al., 2019), ELECTRA (Clark et al., 2020) and 245

GPT-2medium (Radford et al., 2019), chosen due to 246

their variety in pretraining and their popularity. We 247

describe their finetuning in Appendix A. 248
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Figure 1: The effect of increasing text perturbation on mean model performance, confidence, and explanation
coherence across three different hierarchies: (1) Random perturbation; (2) Human-based perturbation, following
human annotation and POS tags; and (3) Gradient-based perturbation, following ranking of Hotflip gradients.

3.3 Perturbations249

At test time, we introduce varying levels, hierar-250

chies, and types of perturbations to simulate epis-251

temic uncertainty. A singular type of perturbation252

is applied to space-delimited words following dif-253

ferent hierarchies for increasing levels, or propor-254

tions, of the text (0%, 5%, 10%, 25%, 50%, 70%,255

80%, 90%, 95%).256

We use three hierarchies for preferential per-257

turbation: random-importance, human-importance,258

and gradient-importance. Random-importance is259

determined randomly, though the pattern of per-260

turbed words is preserved across increasing levels261

of perturbation. Human-importance is determined262

by the word-level annotations of the dataset. Non-263

annotated words are then ranked via their part-of-264

speech tag. We assess the efficacy of this strate-265

gic POS perturbation approach in Appendix C.1.266

Gradient-importance is calculated specific to each267

model as it is ranked by words with the greatest268

average change according to the Hotflip candidates269

table (Ebrahimi et al., 2018). When combining270

tokens to create full words, we take the mean of271

token gradients to create the final gradient. This272

was determined after taking a subsample of the dat-273

apoints and choosing the aggregation method that274

gave the lowest mean ranking to NLTK stopwords.275

We introduce seven different noise types to the276

datapoints (see Table 1), selected from previous277

work in text perturbation: At a fine-grained level,278

we introduce a random character into a random sec-279

tion of the word (charinsert), randomly replace280

a character in a word (charswap) or replace a ran-281

dom character with a character nearby on a qwerty282

keyboard (butterfingers). These insertions have283

been implemented in other studies on adversarial284

perturbation in text (Zhang et al., 2022; Moradi 285

and Samwald, 2021). At the word level, we re- 286

place words with tokens, such as MASK, as has been 287

done in perturbation-based studies (Madsen et al., 288

2021). We also compare MASK replacement with 289

UNK tokens, to assess if Masked Language Mod- 290

elling in pre-training tasks helps models better han- 291

dle MASK-related perturbations. We also convert the 292

entire word to l33t speak (l33t) (Eger et al., 2019; 293

Zhang et al., 2022), and swap the word with a se- 294

mantically related word (synonym) using publicly 295

available corpora (Pavlick et al., 2015; Fellbaum, 296

1998; Loper and Bird, 2002), manually-made dic- 297

tionaries (e.g. for public Twitter IDs) or randomly 298

generated replacements (e.g. for URLs). Not all 299

words have valid synonyms; therefore, we are only 300

able to perturb about 16.2% of words in the Hum- 301

mingbird dataset and 18.4% of the SemEval dataset. 302

These mainly consist of rare or slang words, and 303

non-parseable hashtags or misspellings in the case 304

of the SemEval dataset. Our precise rules for syn- 305

onym replacement can be found in Appendix B. 306

3.4 Explanation techniques 307

We focus on local gradient-based explanations as 308

they have been shown to perform best across a 309

range of metrics, models, and tasks (Atanasova 310

et al., 2020). These explanation measures use back- 311

propagation to compute a saliency map over input 312

features for a specific datapoint to audit a model’s 313

decision. The simplest implementation uses the gra- 314

dient of the input as the saliency score (Simonyan 315

et al., 2013); however, the output can be very noisy 316

(Smilkov et al., 2017). Therefore, we rely on 317

modified versions of the technique: SmoothGrad 318

(SG) returns the average saliency map obtained by 319
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Figure 2: The effect of increasing text perturbation on mean model performance, confidence and explanation
coherence across the different types of perturbation.

perturbing the original input with Gaussian noise320

(Smilkov et al., 2017). Guided Backpropogation321

(GBP) uses a different computation of gradients (by322

ignoring all negative values) to visually improve its323

saliency maps (Springenberg et al., 2014). InputX-324

Gradients (IXG) considers both the importance of325

the feature and the strength of the expressed dimen-326

sion (Shrikumar et al., 2016). IntegratedGradi-327

ents (IG) accumulates the gradients between an in-328

put of interest and a neutral baseline (Sundararajan329

et al., 2017). We use the Captum implementations330

of these saliency maps (Kokhlikyan et al., 2019).331

3.5 Evaluation design332

For comparisons to the human annotations and333

across models, we combine all gradients back to334

word level (i.e. space-delimited). We use accuracy335

as a reflection of model output quality. To mea-336

sure model confidence, we use several measures of337

uncertainty: We calculate predictive uncertainty338

(PRU), which is traditionally reported in the litera-339

ture, via the entropy of the softmax logits (to re-340

duce overconfidence (Pearce et al., 2021)). We341

approximate epistemic uncertainty (EPU) via the342

entropy of model predictions after 100 inferences343

with dropout left on (Kendall and Gal, 2016). As344

a measure of explanation coherence, we take the345

Mean Average Precision (MAP) of model gradients346

with respect to the human-level annotations.347

As a Kolmogorov–Smirnov test of the MAPs348

and both measures of entropy violate the assump-349

tion of normality (p < 10−5), we use Spearman’s350

Rank Correlation1 to assess shared trends across351

models and datasets. We calculate the correlation352

coefficient between the MAP of the gradients to the353

1We use the implemententation in SciPy v1.11.4

human annotations and both measures of entropy 354

at a data-point level. We only include datapoints 355

that are correctly predicted, to ensure the relevance 356

of the annotated explanations. We divide our inves- 357

tigation between perturbed and un-perturbed data, 358

and across model, attribution method, and dataset, 359

to assess the generalisability of findings. 360

Finally, to evaluate the change in explanation 361

coherence with noise, we calculate the Pearson cor- 362

relation of the new saliency maps with the original 363

saliency maps and the perturbation pattern. 364

4 Results 365

4.1 Noise on uncertainty and explanations 366

4.1.1 The effect of perturbation prioritization 367

We present the aggregated effect of different hi- 368

erarchies of perturbation as described in §3.3 in 369

Figure 1. All perturbations impair model perfor- 370

mance, uncertainty, and explanation coherence, but 371

human-prioritised perturbation has the greatest im- 372

pact up to very high levels of perturbation. While 373

random and gradient-based perturbation generally 374

have similar impact on task performance, uncer- 375

tainty and explanation coherence, gradient-based 376

perturbation strategies have a stronger impact on 377

these metrics at low levels of perturbation. In- 378

terestingly, the decrease in explanation coherence 379

is markedly smaller given increasing perturbation 380

than that for task performance and uncertainty. 381

4.1.2 The effect of perturbation type 382

We show the aggregated effect of the investigated 383

noise types listed in Table 1 in Figure 2. Though 384

all perturbation types adversely impact task perfor- 385

mance and human agreement, this effect is smaller 386

for synonym and butterfinger. In contrast, token 387
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replacements have the greatest detrimental effect.388

Surprisingly, while most perturbations augment un-389

certainty as they increase in scale, we do not see390

this with l33t perturbation and epistemic uncer-391

tainty. This is investigated further in Appendix C.2392

and find it owes to dataset-level differences. We fur-393

ther show-case model-level differences in Figure 3394

and in Appendix C.3, where we find that BERT and395

RoBERTa show the greatest increase in uncertainty396

given MASK tokens and decrease in uncertainty with397

increasing l33t speak. This is surprising, given398

that, while previous studies using l33t perturbation399

(Zhang et al., 2022; Eger et al., 2019) do not report400

confidence measures, Zhang et al. (2022) note that401

this perturbation was one of the most “learnable”402

perturbations for the models, which we expect to403

correlate with epistemic uncertainty.404

4.2 The relationship between uncertainty and405

explanation coherence406

We assess the correlation between uncertainty and407

explanation coherence across all datasets, saliency408

maps, and models in Table 3. Before perturbation,409

we surprisingly find a tendency for low to moder-410

ate positive correlation between uncertainty and ex-411

planation quality for the SemEval and HateXplain412

datasets. While SST-2 shows a weak correlation be-413

tween the metrics before perturbation, this becomes414

moderately negative after perturbation. Typically,415

attribution methods that show a stronger correlation416

to uncertainty levels before perturbation continue417

to show a relatively stronger correlation given per-418

turbed data. We see similar patterns in correlation419

between all attribution methods; however, Smooth-420

Grad (SG) typically shows much weaker correlation421

after perturbation, whereas Guided Backpropaga-422

tion (GBP) and Integrated Gradients (IG) show the423

strongest.424

4.3 The change in explanation with increasing425

noise426

In Figure 4, we visualize the robustness of saliency427

maps across low and high levels of perturbation.428

At low levels of perturbation (10%), IG shows the429

greatest correlation to the original saliency map430

regardless of the type of noise introduced to the431

datapoint. At higher levels, SG has the greatest432

general robustness to noise. Interestingly, at high433

levels of perturbation, while SG is equally robust to434

all types of perturbation, IG and IXG show greater435

robustness to synonym and charswaps.436

We also investigate model-level differences at437

low levels of perturbation in Figure 5 and find that 438

Integrated Gradients shows the greatest robustness 439

for the models BERT, RoBERTa, and ELECTRA. 440

However, SmoothGrad has the greatest robustness 441

for GPT2. Figure 4 also shows the correlation to 442

noise across saliency map and perturbation types. 443

None of the saliency maps show any strong corre- 444

lation to noise. Therefore, despite lower saliency 445

being attributed to previously salient tokens given 446

increasing noise, models do not seem to attribute 447

saliency to the input noise instead. 448

In summary, while perturbation decreases model 449

performance and explanation coherence, it has a 450

task-dependent effect on uncertainty. We also see 451

dataset-level differences in correlations between ex- 452

planation coherence and uncertainty, which is often 453

moderately positive; the strength of this association 454

given perturbed data differs also between saliency 455

maps, where SmoothGrad is typically weakest. 456

Furthermore, Integrated Gradients is most robust 457

against all types of noise at low levels of perturba- 458

tion for most models. SmoothGrad shows greater 459

robustness for GPT2 and for all models at high 460

levels of perturbation. 461

5 Discussion 462

While noise consistently deteriorates model perfor- 463

mance and explanation coherence, the impact of 464

increasing noise on model confidence varies across 465

model and task. Unlike previous studies, we do not 466

typically see an increase in confidence after pertur- 467

bation (Feng et al., 2018; Gupta et al., 2021), but 468

rather a decrease. However, both studies perturb 469

at the word and sentence structure-level, unlike 470

our study. Interestingly, we see the greatest differ- 471

ence between perturbation patterns at low levels of 472

perturbation. Overall, human-based perturbations 473

have the strongest effect on task performance and 474

uncertainty measures. Gradient-based perturbation 475

is only more effective than random perturbation 476

at low levels of perturbations. This suggests that 477

these human annotations are faithful indicators of 478

salient tokens, as their perturbation degrades model 479

performance more than gradient-based approaches. 480

Across all models, realistic perturbations, such 481

as charswap or synonym have the smallest impact 482

on task performance and explanation coherence, 483

yet masking has the greatest impact. Furthermore, 484

MASK has the greatest effect on both measures of 485

confidence. This is surprising, given that both 486

BERT and RoBERTa have masked-language mod- 487
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Figure 3: The differential effect of increasing levels of text perturbation on predictive (left) and epistemic uncertainty
(right) across 7 different kinds of noise between our four investigated models.

Before Perturbation Including Perturbed Text

Predictive uncertainty Epistemic uncertainty Predictive uncertainty Epistemic uncertainty

model dataset GBP IXG IG SG GBP IXG IG SG GBP IXG IG SG GBP IXG IG SG

BERT
SST-2 0.076 0.068 -0.128 -0.155 -0.052 -0.060 0.041 0.039 -0.104 -0.099 -0.069 -0.069 -0.240 -0.228 -0.248 -0.219

SemEval 0.237 0.248 0.238 0.249 0.235 0.247 0.234 0.247 0.149 0.165 0.150 0.165 0.151 0.166 0.148 0.164
HateXplain 0.268 0.270 0.265 0.262 0.211 0.229 0.263 0.267 0.293 0.178 0.297 0.181 0.243 0.139 0.259 0.148

ELECTRA
SST-2 0.040 0.002 -0.050 -0.089 -0.127 -0.065 -0.050 -0.058 -0.096 -0.096 -0.043 -0.050 -0.383 -0.380 -0.164 -0.175

SemEval 0.200 0.232 0.199 0.232 0.201 0.233 0.199 0.231 0.162 0.169 0.162 0.169 0.163 0.171 0.162 0.170
HateXplain 0.565 0.458 0.573 0.464 0.539 0.430 0.568 0.462 0.444 0.240 0.452 0.247 0.425 0.221 0.448 0.244

RoBERTa
SST-2 0.088 0.048 0.030 -0.000 -0.367 -0.330 -0.174 -0.200 -0.124 -0.101 -0.084 -0.069 -0.357 -0.324 -0.267 -0.246

SemEval 0.213 0.234 0.212 0.234 0.215 0.235 0.213 0.235 0.149 0.155 0.148 0.154 0.149 0.155 0.147 0.153
HateXplain 0.529 0.434 0.517 0.424 0.502 0.407 0.503 0.408 0.396 0.218 0.390 0.213 0.371 0.195 0.379 0.201

GPT2
SST-2 0.078 -0.033 0.124 -0.014 -0.150 -0.237 -0.036 -0.088 -0.092 -0.068 -0.013 -0.004 -0.232 -0.241 -0.094 -0.068

SemEval 0.220 0.181 0.218 0.182 0.221 0.184 0.219 0.181 0.127 0.120 0.127 0.121 0.128 0.122 0.127 0.120
HateXplain 0.393 0.278 0.386 0.278 0.380 0.270 0.399 0.284 0.300 0.106 0.298 0.105 0.291 0.097 0.304 0.110

Table 3: The Spearman Rank Correlation between explanation coherence (MAP) and both measures of uncertainty
across model, dataset and saliency map. We bold the saliency map with the strongest correlation for each comparison.

eling pretraining (Devlin et al., 2018; Liu et al.,488

2019), and calls into question the use of MASK489

tokens for faithfulness measures (Madsen et al.,490

2023).491

In the case of hatespeech detection, UNK and492

l33t surprisingly reduce data and model uncer-493

tainty (see Figure 7); this could explain the positive494

correlation between uncertainty and explanation495

coherence for HateXplain, as highly perturbed ex-496

amples will show lower uncertainty as explanation497

coherence decreases. The dataset is compiled from498

Twitter, and we suspect that numeric characters499

may be used to hide potentially offensive terms.500

While there is no class difference regarding the501

number of words containing letters and numbers502

(0: 0.695 %, 1: 0.975 %, 2: 0.912 %), at manual503

inspection, we find examples of l33t-like speak in504

Classes 0 and 2 (e.g. h0e) that we do not find in505

the neutral class (e.g. WW2). The existence of506

these examples in the training data may have made 507

the noise more easily learned by the models as an 508

indicator of a class, owing to the high “learnability” 509

of this perturbation (Zhang et al., 2022). So, when 510

noise is learned to be an indicator of class, uncer- 511

tainty may show a positive correlation with output 512

quality and explanation coherence. However, we 513

also see a weaker, positive relationship with the 514

Twitter-based SemEval dataset, and we do not see 515

an increased correlation to l33t noise in Figure 4; 516

therefore, models trained with noise-augmented 517

data (or large amounts of social media data, like 518

large language models) may show this positive re- 519

lationship. This suggests that when these models 520

have greater uncertainty, they may still be more pre- 521

cise at identifying salient tokens amid noise. Other 522

studies also suggest performance improvements af- 523

ter training models with noisy data (Anonymous, 524

2023). We show in Appendix C.4 that, at very high 525
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Figure 4: The correlation of various saliency maps to the original saliency map and noise patterns at high and low
levels of perturbation. The axes denote the different types of noise. The color denotes the saliency map.

Figure 5: Model-level differences of the correlation to the unperturbed saliency map at low levels of perturbation.
We separately show the effect on BERT, RoBERTa, ELECTRA, and GPT2.

perturbation levels, the strength of this relationship526

weakens (due to lack of meaningful tokens), but527

may still remain weakly positive for simple tasks.528

SmoothGrad shows the greatest all-around ro-529

bustness to noise but a weak correlation to uncer-530

tainty after perturbation. Similarly, Guided back-531

propagation shows low robustness, but a relatively532

strong correlation to uncertainty given noisy data.533

In contrast, Integrated Gradients shows relatively534

strong correlations to uncertainty but also high535

robustness for most models at low levels of per-536

turbation. At high levels of perturbation, it and537

InputXGrad show increased robustness to ‘realis-538

tic’ perturbations (synonym and butterfinger),539

which minimally impact model performance (see540

Figure 2). Therefore, saliency maps can still be541

robust while correlating to model uncertainty, and542

patterns in a saliency map’s robustness may also543

relate to model performance.544

We recommend that future XAI evaluation and545

human-XAI collaboration studies consider uncer-546

tainty metrics as an additional measure of XAI qual-547

ity. The relationship between uncertainty and ex-548

planation coherence for a model and dataset should549

be assessed pre-deployment, and an XAI method550

with adequate robustness and correlation to uncer- 551

tainty for the model should be chosen. Not only 552

could this help indicate explanation quality at infer- 553

ence time, it may also suggest if noise-augmented 554

training data is needed or if active learning can use 555

strategic word-level human annotations to improve 556

explanation coherence (Nguyen et al., 2019). 557

6 Conclusion 558

We provide an empirical investigation across lan- 559

guage models, noise perturbations, and saliency 560

maps to investigate a relationship between un- 561

certainty and explanation coherence. Following 562

an array of perturbation techniques, we show 563

that noise injection simultaneously affects model 564

performance, uncertainty, and explanation coher- 565

ence. However, models fine-tuned on noisier data 566

typically show a moderately positive correlation 567

between explanation coherence and uncertainty, 568

which suggests that these models may be better 569

at identifying salient tokens when uncertain. We 570

also suggest Integrated Gradients for future work 571

in Human-XAI collaboration, due to its robustness 572

to noise and relatively strong correlation to uncer- 573

tainty given perturbed data. 574
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Limitations575

We do not investigate aleatoric uncertainty in this576

study, as our main experimental setup was to simu-577

late epistemic uncertainty by introducing noise not578

present in the training data. However, we do assess579

across different datasets sources, with differing lev-580

els of latent noise and aleatoric uncertainty, and find581

highly correlated results for a shared task. However,582

future work should consider further disambiguat-583

ing aleatoric uncertainty in their comparisons. In584

addition, given our investigation into epistemic un-585

certainty, it could also be interesting to assess how586

the observed robustness changes in models fine-587

tuned with noise-augmented training data. Future588

studies could also consider simulating uncertainty589

in other methods, perhaps at other points of the590

pipeline.591

Though we do compare many popular language592

model types, we could have also chosen to inves-593

tigate even more. Models with visual encoding,594

for example PIXEL (Rust et al., 2023), may han-595

dle different types of noise differently; visual per-596

turbations, like l33t speak, may show a lesser ef-597

fect on PIXEL model performance and confidence,598

whereas more semantic changes, like synonym re-599

placement, may have a larger effect. However,600

given the format of our study, the saliency maps601

would be difficult to compare across all model602

types. Furthermore, we only investigate 3 datasets603

and 4 language models, which, while more exten-604

sive than similar studies, still does not include all605

popular NLP tasks or extremely large language606

models (XLMs), like LLAMA (Touvron et al.,607

2023).608
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original RoBERTa-base (94.8%) article (Liu et al.,886

2019), we choose the hyperparameters specified by887

this model card 3, which achieves an accuracy of888

94.5% on the evaluation set. Our ELECTRA model889

uses the best-performing hyperparameters listed890

in the original article (Clark et al., 2020), which891

achieves an accuracy of 96.0% on the evaluation892

set. Our GPT2 model uses the hyperparameters893

listed in the original article (Radford et al., 2019).894

A.2 SemEval and HateXplain895

Model hyperparameters are identified using a hy-896

perparameter search space with a learning rate be-897

tween 1e− 6 and 1e− 4, epochs between 1 and 10,898

and a batch size of (4, 8, 16, 32).899

Our final hyperparameters are shown in the ta-900

bles below:901

BERT, SemEval
Learning Rate 1e-5
Batch Size 16
Epochs 3
Random Seed 37
Adam ϵ 1e-8
adam β1 0.9
adam β2 0.999
LLRD None
Decay Type Linear
Warmup Fraction 0
Attention Dropout 0.1
Dropout 0.1
Weight Decay 0.0

RoBERTa, SemEval
Learning Rate 1e-5
Batch Size 16
Epochs 3
Random Seed 37
Adam ϵ 1e-8
adam β1 0.9
adam β2 0.999
LLRD None
Decay Type Linear
Warmup Fraction 0
Attention Dropout 0.1
Dropout 0.1
Weight Decay 0.0

3https://huggingface.co/Bhumika/RoBERTa-base-
finetuned-sst2

ELECTRA, SemEval
Learning Rate 3e-6
Batch Size 8
Epochs 5
Random Seed 24
Adam ϵ 1e-8
adam β1 0.9
adam β2 0.999
LLRD None
Decay Type Linear
Warmup Fraction 0
Attention Dropout 0.1
Dropout 0.1
Weight Decay 0.0

GPT2, SemEval
Learning Rate 8e-5
Batch Size 32
Epochs 7
Random Seed 42
Adam ϵ 1
adam β1 0.9
adam β2 0.999
LLRD None
Decay Type Cosine
Warmup Fraction 0.01
Attention Dropout 0.1
Dropout 0.1
Weight Decay 0.1

B Synonym Replacement 902

Across all synonym replacements, we preserve the 903

case of the original word (e.g. HAPPY! becomes 904

GLAD!). In addition, we use NLTK POS tagger to 905

tag each word to a part of speech for more precise 906

synonym mapping. If NLTK is unable to find a part 907

of speech, or it must be dropped when merging 908

multiple tokens (e.g. if one token is not a punc- 909

tuation mark or a possession-indicator), then we 910

ignore part of speech. 911

We followed the following hierarchical rules for 912

synonym replacement: 913

1. Tokens beginning with http://t.co/ 914

or https://t.co/ are replaced with a similar 915

randomly-generated URL string following a similar 916

regex pattern 917

2. Tokens beginning with a #, we remove the #, 918

find a synonym, and then re-add the #. 919

3. Tokens beginning with a are replaced with 920

another random Twitter ID found in the test set. 921

4. Determinants are re- 922
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BERT, HateXplain
Learning Rate 2e-5
Batch Size 32
Epochs 5
Random Seed 2
Adam ϵ 1e-8
adam β1 0.9
adam β2 0.999
LLRD None
Decay Type Linear
Warmup Fraction 0
Attention Dropout 0.1
Dropout 0.1
Weight Decay 0.0

RoBERTa, HateXplain
Learning Rate 6e-6
Batch Size 32
Epochs 5
Random Seed 2
Adam ϵ 1e-8
adam β1 0.9
adam β2 0.999
LLRD None
Decay Type Linear
Warmup Fraction 0
Attention Dropout 0.1
Dropout 0.1
Weight Decay 0.0

placed another random determinant923

(['a', 'an', 'the', 'this', 'that']).924

Similarly question determinants are re-925

placed with other question determinants.926

(['that', 'what', 'whatever', 'which', 'whichever'])927

5. Proper nouns are replaced with a randomly928

generated first name or last name. If the original929

name ends with a "’s", this is removed and then930

re-added to the synonym.931

6. If the word is a quote932

[ "'", "''", "`", "``", '"'], bracket933

["(", ")", "{", "}", "[", "]", '/'],934

punctuation mark [ '.', '!', '?', ','], or935

sentence break ['-', '--', ',', ':', ';'], it936

is replaced by another quote, bracket, punctuation937

mark or sentence break.938

7. If the word is an arabic number (e.g. 7), it is939

replaced by its english equivalent (e.g. seven).940

8. If a word has a synonym in WordNet or a941

word with an Equivalence relation in PPDB 2.0,942

we randomly select a synonym from the set. If a943

ELECTRA, HateXplain
Learning Rate 2e-5
Batch Size 8
Epochs 2
Random Seed 6
Adam ϵ 1e-8
adam β1 0.9
adam β2 0.999
LLRD None
Decay Type Linear
Warmup Fraction 0
Attention Dropout 0.1
Dropout 0.1
Weight Decay 0.0

GPT2, HateXplain
Learning Rate 5e-5
Batch Size 32
Epochs 6
Random Seed 42
Adam ϵ 1e-8
adam β1 0.9
adam β2 0.999
LLRD None
Decay Type Cosine
Warmup Fraction 0.01
Attention Dropout 0.1
Dropout 0.1
Weight Decay 0.1

synonym is longer than one word, the words are 944

hyphenated (This is done to simplify matching of 945

saliency maps between perturbations). 946

9. If the word starts or ends with a quote, bracket, 947

punctuation mark or line break, we remove the char- 948

acter, find a synonym and then re-add the character 949

in question. 950

10. If there are hyphens, periods or ’//’ spaced 951

throughout the word, we use the punctuation mark 952

to parse the word and find a replacement word for 953

one of the word subsections. 954

11. If a word has a forward or reverse entail- 955

ment in PPDB 2.0, we randomly choose one as a 956

replacement. (e.g. berry for fruit or fruit for berry). 957

12. If no synonym has been found with using 958

POS tags, I will expand my search in WordNet and 959

PPDB 2.0 without the POS tag. 960

13. If the word ends with the popular suffixes 961

’-ish’, ’-ness’, or ’-less’, we remove the suffix, find 962

a synonym, and then re-add the suffix in question. 963
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C Extra investigations964

C.1 Human-Random vs Human-Strategic965

To assess the efficacy of our human-strategic ap-966

proach (and if POS tag-level perturbations affect967

model performance), we compare human-random968

and human-strategic perturbation in Figure 6, and969

denote the average location of a change in strat-970

egy with a dotted line. Results: We can see that971

POS-prioritized perturbation does adversely affect972

model performance and uncertainty. However, we973

find that after all adjectives, adverbs, verbs, and974

nouns have been perturbed, further perturbation975

does not show any increasing impact on model976

performance or uncertainty until the text is nearly977

completely perturbed. Interestingly, we find that978

POS-based perturbation does somewhat improve979

saliency map quality, it is on a very small scale980

(maximum difference is .003).981

C.2 Task-level differences982

While we find that our results for accuracy and983

explanation coherence are fairly well correlated984

across models (see Table 4) and datasets (see Table985

5), both included uncertainty measures (see §3.5)986

given increasing noise shows only a correlation987

between the datasets SemEval and SST-2 and the988

models BERT and ELECTRA. In addition, the hu-989

man agreement of InputXGrad and GuidedBP does990

not show a strong correlation across all models.991

We further show the task-level differences in992

uncertainty in Figure 7. Results: Special token993

replacements (with mask or unknown tokens) have994

the greatest effect on model accuracy; however, this995

is not translated to the uncertainty and explanation996

coherence measures. While special token replace-997

ments and L33t speech cause the greatest increase998

in uncertainty for sentiment classification tasks, the999

introduction of unknown tokens and l33t speak ac-1000

tually reduce model uncertainty in the hatespeech1001

detection task.1002

C.3 Model-level differences1003

We showcase model-level differences in reported1004

uncertainty in Figure 3 and in Tables 6 and 7. Re-1005

sults: Generally, we see increasing uncertainty1006

with increasing levels of perturbation for all models1007

and noise types. GPT2 outputs much greater predic-1008

tive and epistemic uncertainty relative to the other1009

base models. GPT2 and RoBERTa show lightly de-1010

creasing uncertainty with UNK token and MASK1011

token replacement. ELECTRA’s uncertainty is less1012

impacted by random character insertion, relative 1013

to BERT and RoBERTa, and BERT and RoBERTa 1014

show the greatest decrease in uncertainty with in- 1015

creasing l33t speak in a dataset. Overall, we find 1016

that RoBERTa gives fairly high confidence at high 1017

perturbation, despite low performance (50.4% at 1018

95% perturbation), yet, in contrast, ELECTRA, 1019

BERT, and GPT-2 are more honest regarding un- 1020

certainty. 1021

We look at model-level differences in noise cor- 1022

relation at low-levels of perturbation in Figure 8. 1023

Results: While we see equal lack of correlation to 1024

all types of noise for InputXGrad and GuidedBP 1025

saliency maps, SmoothGrad shows different be- 1026

haviour according to model type. For most models, 1027

SmoothGrad shows a slight negative correlation to 1028

l33t speak and unknown tokens; however, Smooth- 1029

Grad does not show this particular aversion to un- 1030

known tokens with RoBERTa and it does not show 1031

a particular aversion to l33t speak with GPT2. 1032

C.4 Uncertainty and explanation coherence at 1033

high levels of perturbation 1034

We investigate the correlation between explana- 1035

tion coherence and our two uncertainty measures 1036

at very high levels of perturbation (90% and 95%) 1037

in Table 8, to assess if the previously observed 1038

relationship breaks down after salient tokens are 1039

removed. In this comparison, we also include in- 1040

correctly guessed datapoints. Results: In SST-2, 1041

which has no noise in its training data, we continue 1042

to observe a moderately negative relationship be- 1043

tween uncertainty and explanation coherence. Se- 1044

mEval, which is an easier task than HateXplain, 1045

seems to conserve a very weak positive relation- 1046

ship between uncertainty and explanation coher- 1047

ence across models and attribution methods. How- 1048

ever, for HateXplain, this correlation disappears 1049

(ca. 0.0), which suggests that the model can no 1050

longer identify salient tokens. 1051
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Figure 6: We compare the effect of two different methods of human-based perturbation on model accuracy,
confidence and explanation coherence. Human-Random randomly perturbs tokens after all annotated tokens are
perturbed. Human-Strategic preferentially perturbs tokens based on their POS. Vertical lines denote the average
location of strategy shift for the Human-Strategic perturbation hierarchy.

Figure 7: We show the differential effect of increasing levels of text perturbation on predictive uncertainty (left
two graphs) and epistemic uncertainty (right two) across 8 different kinds of noise between the tasks of Hatespeech
Detection (left) and Sentiment Classification (right), next to an unperturbed dataset

Figure 8: We show model-level differences of the correlation to noise at low levels of perturbation. We separately
show the effect on BERT, RoBERTa, ELECTRA, and GPT2.
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dataset dataset accuracy PRU EPU GBP MAP IXG MAP IG MAP SG MAP
HateXplain SemEval 0.799 * -0.215 -0.550 0.923 * 0.792 * 0.870 * 0.951 *
HateXplain SST-2 0.825 * -0.269 -0.500 0.870 * 0.505 0.952 * 0.970 *

SemEval SST-2 0.976 * 0.986 * 0.964 * 0.908 * 0.581 0.800 * 0.939 *

Table 4: The Spearman’s Rank Correlation of accuracy, confidence and explanation coherence metrics between
datasets across increasing noise of different types of perturbation. A star is drawn next to values with a p < .0001.
Dataset differences are further investigated in Figures 7

model model accuracy PRU EPU GBP MAP IXG MAP IG MAP SG MAP
BERT ELECTRA 0.958 * 0.750 * 0.914 * 0.797 * 0.413 * 0.856 * 0.689 *
BERT RoBERTa 0.910 * 0.416 * 0.464 * 0.479 * 0.147 0.901 * 0.790 *
BERT GPT2 0.941 * -0.007 0.081 0.589 * 0.065 0.865 * 0.753 *

ELECTRA RoBERTa 0.968 * 0.225 0.398 0.250 -0.180 0.832 * 0.407 *
ELECTRA GPT2 0.927 * -0.163 0.132 0.358 -0.180 0.668 * 0.717 *
RoBERTa GPT2 0.897 * -0.061 0.210 0.845 * 0.559 * 0.848 * 0.554 *

Table 5: The Spearman’s Rank Correlation of metrics between models across increasing noise of different noise
kinds. A star is drawn next to values with a p < .0001. Model differences are further visualized in Figure 3.

lvl 5 10 25 50 70 80 90 95
Replace with UNK token

BERT 14 12 9 10 11 13 33 53
RoBERTa 16 23 26 18 7 2 1 6

ELECTRA 26 10 5 7 12 32 51 60
GPT2 57 58 59 60 62 63 64 61

Replace with MASK token
BERT 58 57 59 60 61 63 64 62

RoBERTa 14 20 21 15 13 12 10 11
ELECTRA 46 24 47 57 61 62 63 64

GPT2 16 22 35 32 26 23 21 24
Swap random character

BERT 20 22 29 32 36 44 34 31
RoBERTa 24 32 36 42 46 49 44 41

ELECTRA 16 29 35 27 23 13 15 22
GPT2 7 6 15 31 49 50 54 51

Replace with Synonym
BERT 16 21 25 30 39 37 41 35

RoBERTa 25 28 35 40 43 47 51 50
ELECTRA 28 33 44 48 49 50 52 54

GPT2 2 1 12 20 29 28 38 36
Butterfinger mispelling

BERT 18 23 27 43 49 50 48 45
RoBERTa 30 34 38 45 54 57 55 53

ELECTRA 25 36 37 42 41 34 39 38
GPT2 4 8 17 25 37 41 47 42

Random character insert
BERT 19 24 28 42 46 51 47 38

RoBERTa 27 31 37 48 56 59 61 58
ELECTRA 21 31 40 43 19 17 14 20

GPT2 3 5 14 27 34 40 48 45
Convert to l33t speak

BERT 7 8 6 5 4 2 1 3
RoBERTa 17 22 19 9 4 3 5 8

ELECTRA 8 3 1 2 4 6 9 11
GPT2 10 9 19 43 52 53 55 56

Table 6: Rank of aleatoric uncertainty across perturba-
tion type and model with increasing levels of perturba-
tion. High numbers indicate higher levels of uncertainty.

lvl 5 10 25 50 70 80 90 95
Replace with UNK token

BERT 13 10 12 9 11 14 23 28
RoBERTa 18 22 32 33 10 6 7 14

ELECTRA 12 9 11 10 14 30 47 49
GPT2 50 58 59 61 64 63 62 60

Replace with MASK token
BERT 53 51 57 60 61 63 64 62

RoBERTa 12 17 20 15 13 11 5 4
ELECTRA 36 27 51 59 61 62 64 63

GPT2 16 26 40 31 25 24 20 18
Swap random character

BERT 17 24 32 36 42 39 30 31
RoBERTa 24 29 36 41 45 47 42 43

ELECTRA 15 22 35 38 39 34 26 24
GPT2 7 8 15 28 39 45 55 54

Replace with Synonym
BERT 15 18 26 34 37 45 48 46

RoBERTa 23 25 35 40 46 49 54 50
ELECTRA 16 18 29 48 50 52 54 55

GPT2 1 5 14 23 29 30 36 37
Butterfinger mispelling

BERT 21 22 29 41 52 49 47 38
RoBERTa 28 34 38 48 53 57 59 51

ELECTRA 19 23 32 43 46 45 41 42
GPT2 6 10 17 27 35 46 52 47

Random character insert
BERT 20 25 33 44 50 43 40 35

RoBERTa 26 30 37 44 52 58 60 55
ELECTRA 17 21 33 44 40 31 25 28

GPT2 2 3 13 21 41 53 57 48
Convert to l33t speak

BERT 7 8 6 5 4 2 1 3
RoBERTa 16 21 19 8 2 1 3 9

ELECTRA 7 4 1 2 3 5 6 8
GPT2 4 9 22 34 42 38 43 33

Table 7: Rank of epistemic uncertainty across pertur-
bation type and model with increasing levels of per-
turbation. Larger numbers indicate higher numbers of
uncertainty.
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Predictive Uncertainty Epistemic Uncertainty

Model Dataset GBP IXG IG SG GBP IXG IG SG

BERT
SST-2 -0.016 0.020 -0.015 0.092 -0.162 -0.100 -0.089 -0.011

SemEval 0.088 0.103 0.088 0.103 0.089 0.104 0.087 0.103
HateXplain -0.049 -0.078 -0.049 -0.078 -0.040 -0.060 -0.041 -0.064

ELECTRA
SST-2 -0.122 -0.114 -0.048 -0.032 -0.308 -0.289 -0.160 -0.151

SemEval 0.103 0.096 0.103 0.096 0.105 0.097 0.104 0.097
HateXplain -0.054 -0.084 -0.061 -0.091 -0.033 -0.059 -0.060 -0.090

RoBERTa
SST-2 -0.169 -0.123 -0.153 -0.130 -0.315 -0.254 -0.244 -0.178

SemEval 0.106 0.106 0.106 0.106 0.108 0.106 0.104 0.104
HateXplain -0.021 -0.054 -0.023 -0.055 -0.009 -0.036 -0.020 -0.052

GPT2
SST-2 -0.075 -0.017 -0.070 -0.016 -0.159 -0.100 -0.096 -0.048

SemEval 0.064 0.083 0.065 0.083 0.065 0.085 0.065 0.084
HateXplain 0.134 0.090 0.140 0.094 0.126 0.097 0.134 0.092

Table 8: The Spearman Rank Correlation between explanation coherence (MAP) and both measures of uncertainty
across model, dataset and saliency map at high levels of perturbation (90% and 95%). All datapoints (correctly and
incorrected guessed) are included. We bold the saliency map with the strongest correlation for each comparison.

17


