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ABSTRACT

Many machine learning systems are implemented as pipelines. A pipeline is es-
sentially a chain/network of information processing units. As information flows
in and out and gradients vice versa, ideally, a pipeline can be trained end-to-end
via backpropagation provided with the right supervision and loss function. How-
ever, this is often impossible in practice, because either the loss function itself
may be non-differentiable, or there may exist some non-differentiable units. One
popular way to superficially resolve this issue is to separate a pipeline into a set
of differentiable sub-pipelines and train them with isolated loss functions. Yet,
from a decision-theoretical point of view, this is equivalent to making myopic de-
cisions using ad hoc heuristics along the pipeline while ignoring the real utility,
which prevents the pipeline from behaving optimally. In this paper, we show that
by converting a pipeline into a stochastic counterpart, it can then be trained end-
to-end in the presence of non-differentiable parts. Thus, the resulting pipeline is
optimal under certain conditions with respect to any criterion attached to it. In
experiments, we apply the proposed approach - reinforced pipeline optimization
- to Faster R-CNN, a state-of-the-art object detection pipeline, and obtain em-
pirically near-optimal object detectors consistent with its base design in terms of
mean average precision.

1 INTRODUCTION

In the context of machine learning, many systems are implemented as pipelines consisting of mul-
tiple stages, where each stage is essentially an information processing unit. Arranged along a chain
or over a network, the output of previous stages constructs the input to the subsequent stages that are
directly connected. With the success of deep learning, many stages within pipelines are nowadays
implemented as neural networks, which are trainable via backpropagation (Werbos, 1988). Treating
the whole pipeline as a large computation graph, just like what we do for a regular neural network,
it would be desirable to train it end-to-end via backpropagation provided with the right supervision
and loss function, since end-to-end training usually ensures optimality.

However, this is often impossible in practice, because a pipeline often contains some non-
differentiable parts. Either the loss function itself may be non-differentiable, or there may exist some
non-differentiable computation nodes. Take Faster R-CNN (Ren et al., 2015), a state-of-the-art ob-
ject detection pipeline shown in Figure 1, as an example. It consists of a region proposal network
(RPN) and a region convolutional neural network (R-CNN) sharing a single backbone network (Gir-
shick, 2015). There are many non-differentiable parts within Faster R-CNN. The final evaluation
criterion, i.e. mean average precision (mAP), is non-differentiable; the hard-coded region-of-interest
(RoI) pooling and non-maximum suppression (NMS) operations are also non-differentiable with re-
spect to the bounding box scores and coordinates. Such non-differentiabilities present significant
challenges for training Faster R-CNN end-to-end. This is why the original implementation in (Ren
et al., 2015) adopts a 4-step training strategy to approximate end-to-end learning.

The existence of non-differentiable parts prevents the whole pipeline from being trained end-to-end
or optimized directly with respect to the final evaluation criterion. Prior approaches to training such
pipelines rely on: 1) separate it into a set of isolated sub-pipelines where each sub-pipeline involves
only differentiable parts; and 2) cherry-pick one appropriate differentiable loss function for each
sub-pipeline to jointly mimic the final criterion. However, due to the interruption of the original in-
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Figure 1: Faster R-CNN pipeline represented as a computation graph in testing time. Dotted lines
indicate non-differentiabilities — either the edge itself is non-differentiable or the gradient passing
on the edge is intentionally ignored. In testing time, network parameters θi are kept frozen. Noting
that -mAP is the real criterion measuring the performance of this pipeline.

Figure 2: Traditional Faster R-CNN pipeline represented as a computation graph in training time
compromised to non-differentiabilities. Nodes in orange color indicate learning models. Lacking the
ability of optimizing the real criterion -mAP, isolated RPN and R-CNN losses are being optimized
instead.

formation flow and the introduction of additional loss-function branches, the output distributions of
previous sub-pipelines cannot be aligned with the subsequent sub-pipelines. Moreover, this causes
inconsistency between training and testing, since different criteria are being used. As in the origi-
nal implementation of Faster R-CNN, RPN and R-CNN are basically trained within their own loops
with separate loss functions unaware of the other, although, after training, they have to work together
awkwardly. Figure 2 shows the diagram of Faster R-CNN pipeline in training time following this
training strategy. From a decision-theoretical point of view, training a pipeline in this way is equiv-
alent to making myopic decisions using ad hoc heuristics for each sub-pipeline while completely
ignoring the real utility — which is easily the opposite of doing the right thing (Russell & Wefald,
1991). As a result, no optimality can be ensured in any form for the pipeline either in training or
testing time.

In this paper, according to the theory of stochastic computation graph (SCG) (Schulman et al.,
2015), we show that by applying a so-called stochastication trick on an originally non-differentiable
pipeline, we obtain a stochastic but differentiable counterpart which can then be trained completely
end-to-end via backpropagation. The conversion from the original pipeline to the stochastic coun-
terpart does not change the underlying information flow, or introduce any additional branches, thus
the input- and output- distributions are always kept aligned along the pipeline. Furthermore, the gap
between training and testing is closed since the same criterion is being used in both times.

We show that under certain conditions the stochastic pipeline and the original pipeline share the
same set of optimal parameters. Since the final criterion is the only objective being optimized
here, the learned pipeline is optimal over the training data. If the testing data is sampled from
the same distribution as the training data — which is usually true in most benchmark dataset, the
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Figure 3: Reinforced Faster R-CNN pipeline represented as a SCG in training time, where π0 and
π1 are the augmented stochastic nodes. This pipeline optimizes directly on the real criterion -mAP,
and behaves the same way in both training and testing time, except that in testing time sampling is
actually not needed, and parameters are kept frozen.

learned pipeline is also optimal over the testing data asymptotically. In experiments, we apply
the proposed approach - reinforced pipeline optimization (RPO) - to Faster R-CNN, and obtain
empirically near-optimal Faster R-CNN pipelines consistent with base models with respect to mAP.
Figure 3 summarizes the main approach proposed in this paper.

The rest of this paper is organized as follows. In Section 2, we introduce the theory of stochastic
computation graph, and present the basic method for doing backpropagation over SCGs. In Section
3, we formally define a machine learning pipeline, introduce the so-called stochastication trick, and
present our main algorithm for end-to-end pipeline optimization. In Section 4, we show the main
experimental results on optimizing a Faster R-CNN pipeline. In Section 5, we discuss some related
work. And finally, in Section 6, we conclude with future work.

2 BACKGROUND

In this section, we define stochastic computation graph, and present the method of gradient estima-
tion over stochastic computation graphs.

2.1 STOCHASTIC COMPUTATION GRAPH

Following the work of Schulman et al. (2015), we define stochastic computation graph as follows.

Definition 1 (Stochastic Computation Graph) A stochastic computation graph (SCG) is a di-
rected acyclic graph (DAG) G = (V, E), where V = (I,D,S) is the set of nodes consisting of
input nodes I, deterministic nodes D, and stochastic nodes S, and E is the set of directed edges
between nodes. In particular, input nodes are set externally, including input data, ground truth data
and trainable parameters which are denoted specifically by Θ; deterministic nodes are functions of
their parents, including cost nodes which are scalar-valued functions denoted specifically by C; and,
stochastic nodes which are distributed conditionally on their parents.

Given a SCG, it is assumed that all the cost nodes are deterministic. If a stochastic function is needed
for a cost node, it can alternatively be constructed by attaching an identity function to a normal
stochastic node. A node could either be a primitive computation, or a sophisticated composition of
computations. In this paper, we view SCG in an abstract way, so a node is a set of computations with
specific functionality at the high level. This abstraction is not needed to establish our main result,
and the way to do abstraction over a SCG is beyond the scope of this paper.

Generally, there are two types of edges: differentiable and non-differentiable. An edge (v, w)
is differentiable if w is deterministic and the Jacobian matrix ∂w

∂v exists, or w is stochastic and
∂
∂v Pr(w | PARENTSw) exists, where PARENTSw is the set of parents of node w. Note that,
if the partial derivative over an edge is intentionally ignored, then this edge is considered non-
differentiable. For example, the derivatives with respect to the input and ground truth data are
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usually ignored in practice. Two relations of influence are defined for a SCG. For any node v
and w in the graph, if there exists a sequence of nodes n1, n2, . . . , nK , with K ≥ 1, such that
(v, n1), (n1, n2), . . . , (nK , w) are all edges in the graph, it is called that “v influences w”, denoted
by v ≺ w. If all the intermediate nodes nk (not including v and w) are deterministic, it is called that
“v deterministically influences w”, denoted by v ≺D w.

Following the relation of deterministic influence, the set of dependencies of node v is defined as
the set of parameter and stochastic nodes that deterministically influence it, i.e. DEPSv := {u ∈
Θ ∪ S | u ≺D v}. Input nodes other than parameters, such as input and ground truth data, are
not considered as dependencies for other nodes, since they are usually considered as constants in
one run of the graph and there is no need to compute derivatives with respect to them. If node v is
deterministic, the value of v is a function of DEPSv , we can write v(DEPSv), which also applies
to cost nodes; if node v is stochastic, the probability density/mass function of v is a function of
DEPSv , we can write Pr(v | DEPSv), in which case we use v̂ to denote a sampled value of v. In
the next section, it will be shown that this dependency relation suffices to estimate the derivatives of
all cost nodes with respect to all trainable parameters, if a so-called differentiable requirement holds.

2.2 GRADIENT ESTIMATION ON STOCHASTIC COMPUTATION GRAPH

Given a SCG G and a training dataset D, an optimization problem can be defined as finding the best
set of parameter nodes Θ such that the expected sum of all cost nodes is minimized, more formally:

minimize
Θ

J(Θ) = E

[∑
c∈C

c(DEPSc)

]
. (1)

This optimization problem can be solved via standard stochastic gradient descent (SGD) if the gradi-
ent∇J(Θ) exists, in which case the whole graph is considered to be differentiable. It can be shown
that this gradient exists, if the following differentiable requirement is met:

Condition 1 (Differentiable Requirement) Given a SCG G = (V, E), it is considered differen-
tiable, if for any parameter node θ ∈ Θ, all edges (v, w) ∈ E , satisfying θ ≺D v and θ ≺D w,
are differentiable: either w is deterministic and Jacobian matrix ∂w

∂v exists; or w is stochastic and
∂
∂v Pr(w | PARENTSw) exists.

It is worth noting that this differentiable requirement does not require that all edges in the graph
are differentiable. If the path from a parameter node θ to deterministic node v is blocked by some
stochastic nodes, then v does not have to be differentiable with respect to its parents; if the path from
a parameter node θ to a stochastic node v is blocked by other stochastic nodes, then the probability
density/mass function of v conditioned on its parents does not have to be differentiable — in fact, it
does not have to be known 1.

If a SCG is differentiable, then the partial derivative of J(Θ) with respect to any parameter node
θ ∈ Θ can be unbiasedly estimated as:

∂

∂θ
J(Θ) = E

 ∑
θ≺Dv,v∈S

(
∂

∂θ
log Pr(v | DEPSv)

)
Q̂v +

∑
θ≺Dc,c∈C

∂

∂θ
c(DEPSc)

 , (2)

where Q̂v =
∑
c∈C,v≺c ĉ is the sum of all sampled “downstream” costs influenced by stochas-

tic node v. The two parts in Equation 2 are the derivatives originated from stochastic paths
and deterministic paths respectively. If we let L(Θ) =

∑
θ≺Dv,v∈S log Pr(v | DEPSv)Q̂v +∑

θ≺Dc,c∈C c(DEPSc) — a deterministic differentiable loss function, it can be seen that ∂
∂θJ(Θ) =

E
[
∂
∂θL(Θ)

]
. In other words, we can apply a standard automatic differentiation procedure to L us-

ing sampled Q̂v values to obtain an unbiased estimator of ∂
∂θJ(Θ). In this sense, L is called the

surrogate loss function, and the corresponding surrogate optimization problem is defined as:

minimize
Θ

L(Θ) =
∑

θ≺Dv,v∈S

log Pr(v | DEPSv)Q̂v +
∑

θ≺Dc,c∈C

c(DEPSc). (3)

1This is why reinforcement learning, as a specialization of SCG, can be solved model-free.
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Solving the surrogate optimization problem defined in Equation 3 using standard SGD via back-
propagation gives us an optimal set of parameters, which is also optimal for the original optimiza-
tion problem defined in Equation 1. The surrogate loss function L(Θ), however, often has a high
variance due to the sampled Q̂v values, which may cause instability during training. To alleviate this
issue, it is a common practice to subtract some “baseline” values b from Q̂v to reduce the variance
without affecting the derivatives. As shown in (Greensmith et al., 2004; Schulman et al., 2015),
taking b = E[Q̂v] is generally a good option.

3 REINFORCED PIPELINE OPTIMIZATION

In this paper, we assume a pipeline can be represented as a SCG, which is in turn a DAG by def-
inition. A pipeline is differentiable if and only if the underlying SCG is differentiable, in which
case it is automatically end-to-end trainable. In this section, we focus on pipelines that are not
originally differentiable. For example, Figure 1 shows a Faster R-CNN pipeline in testing time,
which is not differentiable due to the non-differentiable -mAP criterion and non-differentiable NMS
and RoI pooling computations. We show that by applying a so-called stochastication trick on a
non-differentiable pipeline, we obtain a stochastic but differentiable counterpart, which can then be
trained end-to-end.

Definition 2 (Stochastication) Given a non-differentiable pipeline represented as a stochastic com-
putation graph P = (V, E), let ε ⊆ E be the set of non-differentiable edges that are not resulting
from gradients being intentionally ignored. For an edge (v, w) ∈ ε, if v is deterministic, and there
exists at least one parameter node θ ∈ Θ, such that θ ≺D v, we modify the pipeline by: 1) removing
edge (v, w) from E , and 2) adding edges (v, k) and (k,w) into E , where k is a stochastic node with
differentiable probability density/mass function Pr(k | v) such that E[k] = v. Repeat this operation
until no edges can be removed from or added to the pipeline. Return the new pipeline.

For a non-differentiable pipeline P = (V, E), let P ′ = (V ′, E ′) be the resulting pipeline after
applying the stochastication trick on P . Let ε ∈ E be the set of edges belonging to P that are not
originally differentiable. Let ε′ ∈ E ′ be the set of newly added edges belonging to P ′. For any
parameter node θ ∈ V ′, for any edge (v, w) ∈ E ′, satisfying θ ≺D v and θ ≺D w, if (v, w) /∈ ε′,
we must have (v, w) ∈ E and (v, w) /∈ ε, implying that (v, w) is differentiable at the first place; on
the other hand, if (v, w) ∈ ε′, then w must be the newly added stochastic node under the condition
that θ ≺D v and θ ≺D w, and (v, w) must be differentiable because Pr(w | v) is differentiable
by construction. In summary, the differentiable requirement is met for pipeline P ′, thus P ′ can be
trained end-to-end via backpropagation in terms of the surrogate optimization problem defined in
Equation 3, which solves the original optimization problem defined in Equation 1. Figure 3 gives the
converted pipeline for end-to-end training on Faster R-CNN. The only structural difference between
Figure 3 and Figure 1 is the two newly added stochastic nodes π0 and π1 — which closes the gap
between training and testing while being able to optimize on the real criterion -mAP.

In training of P ′ as solving the surrogate optimization problem, once the training is converged, it
is induced that we have an optimal pipeline with a set of optimal parameters Θ∗ over the training
dataset (globally or locally optimal depending only on the training process not the pipeline itself).
We now show that the original pipeline P equipped with the same set of learned parameters Θ∗ is
also optimal over the same training dataset under certain conditions.

Recall that, in the converted pipeline P ′ = (V ′, E ′), the objective function is defined as J ′(Θ) =
E
[∑

c∈C c(DEPSc)
]
. Let κ = V ′ − V be the set of newly added stochastic nodes, and κc =

{k ∈ κ | k ≺D c} be the set of stochastic nodes within κ influencing cost node c. We can de-
compose J ′ into two parts: J ′(Θ) = E

[∑
c∈C,κc 6=∅ c(DEPSc)

]
+ E

[∑
c∈C,κc=∅ c(DEPSc)

]
.

The second part is not affected by the newly added stochastic nodes. For the first part, we have
E
[∑

c∈C,κc 6=∅ c(DEPSc)
]

= E
[∑

c∈C,κc 6=∅ c(κc,DEPSc − κc)
]
. Noting that for each node k ∈

κc, we have E[k] = v where v is the preceding deterministic node of k, we can then write k̂ = v+zk
such that k̂ is a sampled value of k, and zk is a zero-mean random noise term. It follows that
c(κc,DEPSc−κc) = c(PARENTSκc ,DEPSc−κc)+zc where PARENTSκc = {v1, v2, . . . , vK}
is the set of preceding deterministic nodes of κc, and zc is the amortized noise term depending on
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1 RPO(P : pipeline, D : training dataset, N : number of iterations)
2 Let P ′ ← Stochastication(P)
3 for i← 1 to N do
4 Sample random mini-batch from D
5 Run P ′ once without sampling:
6 - Collect baseline values bk for newly added stochastic node k ∈ κ
7 - Collect sum of differentiable costs (if any) s =

∑
c∈C,∃θ∈Θ:θ≺Dc c

8 Run P ′ once with sampling:
9 - Collect log probabilities {log Pr(k | DEPSk)} for k ∈ κ

10 - Collect sums of influenced costs {Q̂k} for k ∈ κ
11 Construct a surrogate loss L = s+

∑
k∈κ log Pr(k | DEPSk)

(
Q̂k − bk

)
12 Compute gradient ∇ΘL via backpropagation
13 Update parameters Θ with∇ΘL

14 return pipeline P with learned parameters Θ

Figure 4: Reinforced pipeline optimization (RPO) with baseline. Note that the original pipeline may
have some additional differentiable costs (line 7), which are optimized simultaneously (line 11). The
original pipeline is assumed to only have deterministic nodes. If it in fact has some stochastic nodes,
only slight modifications are needed for extension.

v1, v2, . . . , vK and zk1 , zk2 , . . . , zkK . Then under the condition that E[zc] is a constant, we have
E
[∑

c∈C,κc 6=∅ c(DEPSc)
]

=
∑
c∈C,κc 6=∅ c(PARENTSκc

,DEPSc − κc) +
∑
c∈C,κc 6=∅ E[zc].

In other words, the first part can be emerged into the second part. More precisely, J ′(Θ) =∑
c∈C,κc 6=∅ c(PARENTSκc

,DEPSc − κc) + E
[∑

c∈C,κc=∅ c(DEPSc)
]

+
∑
c∈C,κc 6=∅ E[zc] =

J(Θ) + C, where C is a constant. Therefore, under a so-called constant drift condition, we have
J ′(Θ) = J(Θ) + C for any set of parameters Θ. It is then clear that, if Θ∗ is optimal for J ′ over a
training dataset, it is also optimal for J over the same training dataset.

Condition 2 (Constant Drift Requirement) Let κ = V ′ − V be the set of newly added stochastic
nodes. Let κc = {k ∈ κ | k ≺D c} be the set of stochastic nodes within κ influencing cost node
c. Let c(κc,DEPSc − κc) = c(PARENTSκc

,DEPSc − κc) + zc, where zc is the amortized noise
term. If the noise term zc has a constant mean, the converted stochastic pipeline and the original
pipeline share the same set of optimal parameters over the same training dataset.

In the case when all cost nodes c, influenced by stochastication, are linear with respect to the newly
added stochastic nodes, it is easy to show that the constant drift condition is met naturally (in which
case the noise term has a zero mean). Generally, it is difficult to obtain a closed-form expression for
nonlinear cost functions of several random variables to check whether the constant drift condition
is met. However, if the random variables are jointly Gaussian with nonzero cross-correlation, then
it is possible to compute useful expectations when the nonlinear functions are memoryless (Shynk,
2012), which is beyond the scope of this paper.

In order to reduce variance in training of P ′, it suffices to simply use the expected value of Q̂k for
each stochastic node k ∈ κ. Having E[k] = v, where v is the preceding deterministic node of k, it
follows that the baseline values can be collected by running the pipeline P ′ once without sampling
(which is equivalent to running the original pipeline P). Figure 4 outlines the main algorithm.
We call this algorithm reinforced pipeline optimization (RPO), since it is very similar to policy
gradient (Sutton et al., 2000) in the context of reinforcement learning (RL), except that RL relies
on a Markovian model which has to be a linear stochastic computation graph in the dimension of
time (Sutton et al., 1998), but RPO is generally applicable to any stochastic computation graph that
can be represented as a DAG. RPO in Figure 4 adopts an implementation with baseline. If needed it
is rather straightforward to discard baseline from it. In experiments, we test RPO with and without
baseline for ablation study.
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It can be interpreted that RPO solves an optimization problem defined over a stochastic computation
graph via stochastic gradient descent using standard backpropagation, which happens to find the best
set of parameters for the original pipeline under the condition of constant drift. If the underlying
pipeline can be represented as a linear graph (i.e. a chain of nodes), it becomes a Markov decision
process (MDP) where the information flow passing through the pipeline is the sequence of states,
trainable models are parts of the policy, alternations made to states are actions, the performance
criterion is the reward function being optimized, and other non-trainable parts are parts of the en-
vironment. Under this MDP formulation, RPO reduces to standard policy gradient. The optimal
policy of the resulting MDP corresponds to the optimal stochastic pipeline possible.

One concern on the proposed algorithm is that it might learn slowly if trained from scratch since
it relies solely on the final criterion (such as -mAP for a Faster R-CNN pipeline) which is usually
sparse and cannot provide relatively strong signals for the learning process. In practice, we can
always supply additional cost/reward signals to guide the learning process, using techniques such
as reward shaping (Ng et al., 1999). In this sense, isolated loss functions developed for traditional
non-optimal pipeline training can be reused here for accelerating end-to-end training in the early
stage of training without affecting the optimality result we established. In the case the criterion
function has some internal structure, we can also apply a so-called reward decomposition method on
it to explicitly exploit the structure in order to obtain decomposed problems that are easier to learn
(Dietterich, 2000; Russell & Zimdars, 2003; Marthi, 2007). In our default experiment setting, we
adopt pretrained models before applying end-to-end reinforced training.

4 EMPIRICAL EVALUATION

We conduct our main experiments on Faster R-CNN which is a state-of-the-art object detection
pipeline (Ren et al., 2015). We choose Faster R-CNN for several reasons. As shown in Figure
1, Faster R-CNN has a clear two-stage structure, namely the region proposal network (RPN) and
the region convolutional neural network (R-CNN). These two stages are not linearly combined, as
they share the same base feature generated from one backbone network (which prevents it from
being simply modeled as an MDP). The final criterion measuring its real performance, i.e. the
mAP value, is well-known to be non-differentiable. In addition, Faster R-CNN contains many other
non-differentiable computations, such as RoI pooling and NMS. Furthermore, object detection is a
non-trivial one-to-many problem, in the sense that, given a single image input (fixed size or not),
there are potentially many output entities without knowing the exact number in advance. Therefore,
end-to-end optimizing an object detection pipeline, such as Faster R-CNN, is a challenging problem
for pipeline optimization.

We now describe in detail how we convert a Faster R-CNN pipeline into a stochastic counterpart
and train it end-to-end using the proposed RPO algorithm. In the first stage, the raw output of RPN
for each image within a mini-batch is a set of bounding boxes BRPN = {b} where a bounding box
b is represented as b = (pb, ob). Here, pb is a softmax score giving the probability of bounding box
b being an object, and ob = (tx, ty, tw, th) is the bounding box offset with respect to an anchor
box a, defined as tx = x−xa

wa
, ty = y−ya

ha
, tw = log( wwa

), and th = log( hha
), where x and xa are

the x-coordinates for the predicted box and anchor box respectively (likewise for y-coordinate y,
width w and height h). Following Ren et al. (2015), we ignore all cross-boundary bounding boxes.
After applying stochastication, during sampling, we firstly construct a Bernoulli distribution for each
bounding box score with pb as the mean, denoted by B(p | pb), from which we sample a 0-1 score
p̂b ∼ B(p | pb). We then construct a multivariate Gaussian distribution for each bounding box offset
with ob = (tx, ty, tw, th) as the mean and a constant matrix Σ = σ2I as the covariance, denoted by
N (o | ob,Σ). Here, I is an identity matrix and σ is a hyper parameter which needs to be set before
training. For each bounding box offset, we then sample a new offset nearby ôb ∼ N (o | ob,Σ). By
sampling p̂b and ôb, we obtain a new bounding box b̂ = (p̂b, ôb). The overall log probability for b̂
is computed as log Pr(b̂ | b) = logB(p̂b | pb) + p̂b logN (ôb | ob,Σ), implying that if a bounding
box is sampled as background (i.e. p̂b = 0) then its offset-part log probability is ignored. We
then accumulate and average log probabilities for all bounding boxes within the same image, which
reads 1

|BRPN|
∑
b∈BRPN

log Pr(b̂ | b). The set of newly sampled bounding boxes is then passed to
following stages of the pipeline. This step is depicted as node π0 in Figure 3.
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Backbone Network ResNet-18 ResNet-34 ResNet-101 VGG-16

Pre-trained 50.57% 61.24% 74.89% 66.69%

RPO w/ baseline 52.25± 0.07% 61.94± 0.12% 75.05± 0.10% 67.44± 0.11%

RPO w/o baseline 52.25± 0.05% 61.84± 0.05% 75.04± 0.07% 67.43± 0.10%

Table 1: Empirical results shown as mAP values on PASCAL VOC 2007 validation set after training
on training set. The mAP Values are obtained before and after applying RPO with and without
baseline over various backbone networks.

Similarly, in the second stage, the raw output of R-CNN for each image is a set of bounding
boxes BRCNN = {b}. But here b is represented as b = (pb, rb), where pb is a vector of soft-
max probabilities with pb[c] being the probability of bounding box b belonging to class c, and
rb is a vector of rectangles with rb[c] = (x0, y0, x1, y1) being the predicted rectangle condi-
tioned that b belongs to class c. During sampling, we firstly construct a categorical distribution
for each bounding box with pb as the mean, denoted by C(p | pb), from which we sample a
one-hot distribution p̂b ∼ C(p | pb). We then construct a vector of multivariate Gaussian dis-
tributions for each bounding box with rb[c] as the means, denoted by N (r | rb[c],Σ) where
Σ = σ2I , from which we sample a set of new rectangles nearby r̂b[c] ∼ N (r | rb[c],Σ). At
this point, we obtain a new bounding box b̂ = (p̂b, r̂b). Let the vector of log probabilities over all
classes be log Pr(r̂b | rb) = [logN (r̂b[c] | rb[c],Σ)]. The overall log probability is computed as
log Pr(b̂ | b) = log C(p̂b | pb) + (1− p̂b[0]) log Pr(r̂b | rb) [arg maxc p̂b[c]]. The second term indi-
cates that only the log probability corresponding to a sampled non-background class is considered.
We then accumulate and average log probabilities for all bounding boxes within the same image,
which reads 1

|BRCNN|
∑
b∈BRCNN

log Pr(b̂ | b). Finally, the set of newly sampled bounding boxes is
passed to the NMS operation before computing -mAP. This step is depicted as node π1 in Figure 3.

We implement our algorithm based on a publicly available Faster R-CNN repository 2. We evalu-
ate the proposed RPO algorithm on the widely-used PASCAL VOC 2007 benchmark (Everingham
et al., 2008), which contains about 5k trainval images and 5k test images over 20 object categories.
By default in our implementation, we firstly train Faster R-CNN with various backbone networks
following a normal way with a learning rate of 0.001 which is decreased every 15 epochs with a
factor of 0.1 until no further improvements can be achieved; we then apply RPO with and without
baseline on the pre-trained models for additional 15 epochs. Throughout reinforced training, we use
a standard SGD optimizer with a momentum of 0.9 and a learning rate of 0.0001, which is decayed
every 5 epochs with a factor of 0.9. The hyper parameter for the Gaussian distributions is set to be
σ = 1. Typically, a traditional Faster R-CNN pipeline may use different parameters for training and
testing. For example, in the original implementation, the authors set the number of proposal regions
to be 2,000 in training time, and 300 in testing time. In our implementation, we use exactly the same
parameters for both training and testing time. For instance, we set the number of proposal regions
to be 300 in both time. This can be seen as one advantage of our proposed method, since it further
closes the gap between training and testing.

In reinforced training of Faster R-CNN, the final -mAP value is considered as the only cost node.
The collected log probabilities multiplied by the downstream -mAP value are used to construct the
surrogate loss, to which we conduct an automatic differentiation procedure via backpropagation. In
the case baseline is used, the -mAP value corresponding to a non-sampling pipeline is considered as a
baseline, and will be subtracted from the -mAP value resulting from sampling for variance reduction.
We notice it is generally difficult to justify whether the constant drift condition is met in this setting,
since the mAP value involves many non-linear computations over many random variables. However,
empirically it is reasonable to assume that the learned parameters are near-optimal for the original
Faster R-CNN pipeline.

Table 1 summaries experimental results in terms of mAP values before and after applying RPO aver-
aged over 5 runs. Figure 5 reports more detailed results throughout training. Figure 6 presents some
detection results of Faster R-CNN with ResNet-18 before and after applying RPO. It can be seen

2https://github.com/jwyang/faster-rcnn.pytorch
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(a) Faster R-CNN with ResNet-18. (b) Faster R-CNN with ResNet-34.

(c) Faster R-CNN with ResNet-101. (d) Faster R-CNN with VGG-16.

Figure 5: Experimental results shown as mAP values on PASCAL VOC 2007 validation set while
training on training set. The results are averaged over 5 runs of RPO with and without baseline on
Faster R-CNN with various backbone networks. The x- and y- axes are number of epochs and mAP
value respectively. The shaded area represents 95% confidence interval.

Figure 6: Selected detection results of Faster R-CNN with ResNet-18 before (top row) and after
(bottom row) applying RPO. Blue boxes are ground truths; green boxes are predictions. These test
images are from PASCAL VOC 2007 validation set. It can be seen that the results after reinforced
training make much more sense.

from these results that RPO consistently improves a pre-trained pipeline with performance boost
over ResNet-18, ResNet-34, ResNet-101 (He et al., 2016) and VGG-16 (Simonyan & Zisserman,
2014) backbone networks. The results also show that RPO improves a light model significantly,
but not for a heavy model (such as ResNet-101). This might be because that a heavy model has
relatively large capacity, such that it has leaned sufficient amount of knowledge and is already near-
optimal during pre-training. As a result, it cannot be easily improved further in reinforced training.
As ablation study, we test RPO with and without baseline. It can also be seen from the results that
there are only slight differences between these two versions of RPO, suggesting that the baseline
value we used may not be necessary for optimizing Faster R-CNN.

9
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5 RELATED WORK

Caicedo & Lazebnik (2015) and Mathe et al. (2016) propose novel methods that learn to localize
objects in scenes using an attention-action strategy, which is further extended to multiple objects in
(Kong et al., 2017). Their methods model visual object detection as a sequential search problem
(including stopping condition), and develop a reinforcement learning algorithm to approximately
solve this problem. Their sequential models learn to predict detection hypothesis one at a time, until
a stopping condition is generated, while in our method the joint policy, i.e. the two-stage networks,
is able to generate all possible detection hypotheses concurrently. Very recently, Xie et al. (2018)
develop a reinforcement learning algorithm to optimize a non-differentiable two-stage pipeline in
inference time. The idea is to train a policy network to iteratively refine the output of the first stage
in a way to make it more favorable to the second stage by optimizing some criteria. Their method
needs to introduce an additional policy network, while our method treats the trainable models in
the original pipeline as policies directly. Besides, their method runs over multiple iterations in
the inference time, while our method runs completely in the training time, and keeps the original
pipeline untouched in the inference time, which is much more efficient. Another recent related work
is (Pirinen & Sminchisescu, 2018), where the authors train a reinforcement learning agent to replace
the greedy RoI selection process with a sequential attention mechanism. Similar to (Xie et al.,
2018), they introduce a separate sequential network to represent the policy, while in our method
learning models are trained as policies directly. Rao et al. (2018) develop a policy gradient algorithm
for learning a globally optimal Faster R-CNN object detector. Their method can be seen as an
incomplete implementation of our method, in the sense that: 1) they sample a set of bounding boxes
according to the softmax scores, but not the coordinates; and 2) they sample in the second stage, but
not in the first stage. Besides, since bounding box coordinates are ignored in their sampling strategy,
their method still relies on the standard R-CNN regression loss for training bounding box regressor.
In contrast, our method optimizes a pipeline directly and solely on the final criterion that measures
its real performance.

6 CONCLUSION

In this paper, according to the theory of stochastic computation graph, we show that by converting an
originally non-differentiable pipeline into a stochastic counterpart, we can then train the converted
pipeline end-to-end and optimize it with any criterion attached to it. We develop a stochastica-
tion trick, and propose a novel algorithm for end-to-end pipeline optimization, namely reinforced
pipeline optimization (RPO). We further show that under a constant drift condition, the converted
stochastic pipeline and the original pipeline share the same set of optimal parameters over the same
training dataset. In experiments, we apply RPO to the optimization of challenging Faster R-CNN
pipelines, and obtain empirically near-optimal object detectors consistent with Faster R-CNN design
in terms of mean average precision. In future work, we would like to extend RPO to more general
pipelines that are not necessarily DAGs, for example dynamic pipelines where some computations
may be dependent on some other past computations in time.
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