
Under review as a conference paper at ICLR 2019

Finding Mixed Nash Equilibria of
Generative Adversarial Networks

Anonymous authors
Paper under double-blind review

Abstract

We reconsider the training objective of Generative Adversarial Networks
(GANs) from the mixed Nash Equilibria (NE) perspective. Inspired by the
classical prox methods, we develop a novel algorithmic framework for GANs
via an infinite-dimensional two-player game and prove rigorous convergence
rates to the mixed NE. We then propose a principled procedure to reduce
our novel prox methods to simple sampling routines, leading to practically
efficient algorithms. Finally, we provide experimental evidence that our
approach outperforms methods that seek pure strategy equilibria, such as
SGD, Adam, and RMSProp, both in speed and quality.

1 Introduction

The Generative Adversarial Network (GAN) (Goodfellow et al., 2014) has become one of the
most powerful paradigms in learning real-world distributions, especially for image-related
data. It has been successfully applied to a host of applications such as image translation
(Isola et al., 2017; Kim et al., 2017; Zhu et al., 2017), super-resolution imaging (Wang et al.,
2015), pose editing (Pumarola et al., 2018b), and facial animation (Pumarola et al., 2018a).

Despite of the many accomplishments, the major hurdle blocking the full impact of GAN
is its notoriously difficult training phase. In the language of game theory, GAN seeks for a
pure strategy equilibrium, which is well-known to be ill-posed in many scenarios (Dasgupta
& Maskin, 1986). Indeed, it is known that a pure strategy equilibrium might not exist (Arora
et al., 2017), might be degenerate (Sønderby et al., 2017), or cannot be reliably reached by
existing algorithms (Mescheder et al., 2017).

Empirically, it has also been observed that common algorithms, such as SGD or Adam
(Kingma & Ba, 2015), lead to unstable training. While much efforts have been devoted into
understanding the training dynamics of GANs (Balduzzi et al., 2018; Gemp & Mahadevan,
2018; Gidel et al., 2018a;b; Liang & Stokes, 2018), a provably convergent algorithm for
general GANs, even under reasonably strong assumptions, is still lacking.

In this paper, we address the above problems with the following contributions:

1. We propose to study the mixed Nash Equilibrium (NE) of GANs: Instead of search-
ing for an optimal pure strategy which might not even exist, we optimize over the
set of probability distributions over pure strategies of the networks. The existence of
a solution to such problems was long established amongst the earliest game theory
work (Glicksberg, 1952), leading to well-posed optimization problems.

2. We demonstrate that the prox methods of (Nemirovsky & Yudin, 1983; Nemirovski,
2004), which are fundamental building blocks for solving two-player games with
finitely many strategies, can be extended to continuously many strategies, and hence
applicable to training GANs. We provide an elementary proof for their convergence
rates to learning the mixed NE.

3. We construct a principled procedure to reduce our novel prox methods to certain
sampling tasks that were empirically proven easy by recent work (Chaudhari et al.,
2017; 2018; Dziugaite & Roy, 2018). We further establish heuristic guidelines to
greatly scale down the memory and computational costs, resulting in simple algo-
rithms whose per-iteration complexity is almost as cheap as SGD.
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4. We experimentally show that our algorithms consistently achieve better or com-
parable performance than popular baselines such as SGD, Adam, and RMSProp
(Tieleman & Hinton, 2012).

Related Work: While the literature on training GANs is vast, to our knowledge, there
exist only few papers on the mixed NE perspective. The notion of mixed NE is already
present in (Goodfellow et al., 2014), but is stated only as an existential result. The authors
of (Arora et al., 2017) advocate the mixed strategies, but do not provide a provably conver-
gent algorithm. (Oliehoek et al., 2018) also considers mixed NE, but only with finitely many
parameters. The work (Grnarova et al., 2018) proposes a provably convergent algorithm for
finding the mixed NE of GANs under the unrealistic assumption that the discriminator is a
single-layered neural network. In contrast, our results are applicable to arbitrary architec-
tures, including popular ones (Arjovsky et al., 2017; Gulrajani et al., 2017).

Due to its fundamental role in game theory, many prox methods have been applied to study
the training of GANs (Daskalakis et al., 2018; Gidel et al., 2018a; Mertikopoulos et al.,
2018). However, these works focus on the classical pure strategy equilibria and are hence
distinct from our problem formulation. In particular, they give rise to drastically different
algorithms from ours and do not provide convergence rates for GANs.

In terms of analysis techniques, our framework is closely related to (Balandat et al., 2016),
but with several important distinctions. First, the analysis of (Balandat et al., 2016) is
based on dual averaging (Nesterov, 2009), while we consider Mirror Descent and also the
more sophisticated Mirror-Prox (see Section 3). Second, unlike our work, (Balandat et al.,
2016) do not provide any convergence rate for learning mixed NE of two-player games.
Finally, (Balandat et al., 2016) is only of theoretical interest with no practical algorithm.

Notation: Throughout the paper, we use z to denote a generic variable and Z ⊆ Rd its
domain. We denote the set of all Borel probability measures on Z by M(Z), and the set
of all functions on Z by F(Z).1 We write dµ = ρdz to mean that the density function
of µ ∈ M(Z) with respect to the Lebesgue measure is ρ. All integrals without specifying
the measure are understood to be with respect to Lebesgue. For any objective of the
form minxmaxy F (x,y), we say that (xT ,yT ) is an O

(
T−1/2

)
-NE if maxx,y{F (xT ,y) −

F (x,yT )} = O
(
T−1/2

)
. Similarly we can define O

(
T−1

)
-NE. The symbol ‖·‖L∞ denotes the

L∞-norm of functions, and ‖·‖TV denotes the total variation norm of probability measures.

2 Problem Formulation

We review standard results in game theory in Section 2.1, whose proof can be found in
(Bubeck, 2013a;b;c). Section 2.2 relates training of GANs to the two-player game in Sec-
tion 2.1, thereby suggesting to generalize the prox methods to infinite dimension.

2.1 Preliminary: Prox Methods for Finite Games

Consider the classical formulation of a two-player game with finitely many strategies:

min
p∈∆m

max
q∈∆n

〈q,a〉 − 〈q, Ap〉 , (1)

where A is a payoff matrix, a is a vector, and ∆d :=
{
z ∈ Rd |

∑d
i=1 zi = 1

}
is the proba-

bility simplex, representing the mixed strategies (i.e., probability distributions) over d pure
strategies. A pair (pNE, qNE) achieving the min-max value in (1) is called a mixed NE.

Assume that the matrix A is too expensive to evaluate whereas the (stochastic) gradients of
(1) are easy to obtain. Under such settings, a celebrated algorithm, the so-called entropic

Mirror Descent (entropic MD), learns an O
(
T−1/2

)
-NE: Let φ(z) :=

∑d
i=1 zi log zi be the

entropy function and φ?(y) := log
∑d
i=1 e

yi = supz∈∆d
{〈z,y〉 − φ(z)} be its Fenchel dual.

1Strictly speaking, our derivation requires mild regularity (see Appendix A.1) assumptions on
the probability measure and function classes, which are met by most practical applications.
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For a learning rate η and an arbitrary vector b ∈ Rd, define the MD iterates as

z′ = MDη (z, b) ≡ z′ = ∇φ? (∇φ(z)− ηb) ≡ z′i =
zie
−ηbi∑d

i=1 zie
−ηbi

, ∀1 ≤ i ≤ d. (2)

The equivalence of the last two formulas in (2) can be readily checked.

Denote by p̄T := 1
T

∑T
t=1 pt and q̄T := 1

T

∑T
t=1 qt the ergodic average of two sequences

{pt}Tt=1 and {qt}Tt=1. Then, with a properly chosen step-size η, we have{
pt+1 = MDη

(
pt,−A>qt

)
qt+1 = MDη (qt,−a+Apt)

⇒ (p̄T , q̄T ) is an O
(
T−

1/2
)

-NE.

Moreover, a slightly more complicated algorithm, called the entropic Mirror-Prox (en-
tropy MP) (Nemirovski, 2004), achieves faster rate than the entropic MD:{
pt = MDη

(
p̃t,−A>q̃t

)
, p̃t+1 = MDη

(
p̃t,−A>qt

)
qt = MDη (q̃t,−a+Ap̃t) , q̃t+1 = MDη (q̃t,−a+Apt)

⇒ (p̄T , q̄T ) is an O
(
T−1

)
-NE.

If, instead of deterministic gradients, one uses unbiased stochastic gradients for entropic MD
and MP, then both algorithms achieve O

(
T−1/2

)
-NE in expectation.

2.2 Mixed Strategy Formulation for Generative Adversarial Networks

For illustration, let us focus on the Wasserstein GAN (Arjovsky et al., 2017), and we perform
a common bilinearization trick that dates back at least to the early game theory literature
(Glicksberg, 1952), and is also well-known in optimal transport theory (Villani, 2003).

The training objective of Wasserstein GAN is

min
θ∈Θ

max
w∈W

EX∼Preal
[fw(X)]− EX∼Pθ

[fw(X)], (3)

where Θ is the set of parameters for the generator and W the set of parameters for the
discriminator f , typically both taken to be neural nets. As mentioned in the introduction,
such an optimization problem can be ill-posed, which is also supported by empirical evidence.

The high-level idea of our approach is, instead of solving (3) directly, we focus on the mixed
strategy formulation of (3). In other words, we consider the set of all probability distributions
over Θ andW, and we search for the optimal distribution that solves the following program:

min
ν∈M(Θ)

max
µ∈M(W)

Ew∼µEX∼Preal
[fw(X)]− Ew∼µEθ∼νEX∼Pθ

[fw(X)]. (4)

Define the function g :W → R by g(w) := EX∼Preal
[fw(X)] and the operator G :M(Θ)→

F(W) as (Gν)(w) := Eθ∼ν,X∼Pθ
[fw(X)]. Denoting 〈µ, h〉 := Eµh2 for any probability

measure µ and function h, we may rewrite (4) as

min
ν∈M(Θ)

max
µ∈M(W)

〈µ, g〉 − 〈µ,Gν〉 . (5)

Furthermore, the Fréchet derivative (the analogue of gradient in infinite dimension) of (5)
with respect to µ is simply g − Gν, and the derivative of (5) with respect to ν is −G†µ,
where G† :M(W)→ F(Θ) is the adjoint operator of G defined via the relation

∀µ ∈M(W), ν ∈M(Θ), 〈µ,Gν〉 =
〈
ν,G†µ

〉
. (6)

One can easily check that (G†µ)(θ) := EX∼Pθ,w∼µ[fw(X)] achieves the equality in (6).

To summarize, the mixed strategy formulation of Wasserstein GAN is (5), whose derivatives
can be expressed in terms of g and G. We now make the crucial observation that (5) is
the infinite-dimensional analogue of (1): The distributions over finite strategies are replaced
with probability measures over a continuous parameter set, the vector a is replaced with
a function g, the matrix A is replaced with a linear operator3 G, and the gradients are
replaced with Fréchet derivatives. Based on Section 2.1, it is then natural to ask:

2It should be noted that 〈µ, h〉 is NOT an inner product, and rather is the dual pairing in Banach
spaces (Halmos, 2013).

3The linearity of G trivially follows from the linearity of expectation.
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Can the entropic Mirror Descent and Mirror-Prox be extended to infinite
dimension to solve (5)? Can we retain the convergence rates?

We provide an affirmative answer to both questions in the next section.

Remark. The derivation in Section 2.2 can be applied to any GAN objective.

3 Infinite-Dimensional Prox Methods
This section builds a rigorous infinite-dimensional formalism in parallel to the finite-
dimensional prox methods and proves their convergence rates. While simple in retrospect,
to our knowledge, these results are new.

3.1 Preparation: The Mirror Descent Iterates

We first recall the notion of (Fréchet) derivative in infinite-dimensional spaces. A (nonlinear)
functional Φ : M(Z) → R is said to possess a derivative at µ ∈ M(Z) if there exists a
function dΦ(µ) ∈ F(Z) such that, for all µ′ ∈M(Z), we have

Φ(µ+ εµ′) = Φ(µ) + ε 〈µ′,dΦ(µ)〉+ o(ε).

Similarly, a (nonlinear) functional Φ? : F(Z)→ R is said to possess a derivative at h ∈ F(Z)
if there exists a measure dΦ?(h) ∈M(Z) such that, for all h′ ∈ F(Z), we have

Φ?(h+ εh′) = Φ?(h) + ε 〈dΦ?(h), h′〉+ o(ε).

The most important functionals in this paper are the (negative) Shannon entropy

µ ∈M(Z), Φ(µ) :=

∫
dµ log

dµ

dz

and its Fenchel dual

h ∈ F(Z), Φ?(h) := log

∫
ehdz.

The first result of our paper is to show that, in direct analogy to (2), the infinite-dimensional
MD iterates can be expressed as:

Theorem 1 (Infinite-Dimensional Mirror Descent, informal). For a learning rate η and an
arbitrary function h, we can equivalently define

µ+ = MDη (µ, h) ≡ µ+ = dΦ? (dΦ(µ)− ηh) ≡ dµ+ =
e−ηhdµ∫
e−ηhdµ

. (7)

Moreover, most the essential ingredients in the analysis of finite-dimensional prox methods
can be generalized to infinite dimension.

See Theorem 4 of Appendix A for precise statements and a long list of“essential ingredients
of prox methods” generalizable to infinite dimension.

3.2 Infinite-Dimensional Prox Methods and Convergence Rates
Armed with results in Section 3.1, we now introduce two “conceptual” algorithms for solving
the mixed NE of Wasserstein GANs: The infinite-dimensional entropic MD in Algorithm
1 and MP in Algorithm 2. These algorithms iterate over probability measures and cannot
be directly used in practice, but they possess rigorous convergence rates, and hence motivate
the reduction procedure in Section 4 to come.

Algorithm 1: Infinite-Dimensional Entropic MD

Input: Initial distributions µ1, ν1, learning rate η
for t = 1, 2, . . . , T − 1 do

νt+1 = MDη

(
νt,−G†µt

)
, µt+1 = MDη (µt,−g +Gνt);

return ν̄T = 1
T

∑T
t=1 νt and µ̄T = 1

T

∑T
t=1 µt.
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Algorithm 2: Infinite-Dimensional Entropic MP

Input: Initial distributions µ̃1, ν̃1, learning rate η
for t = 1, 2, . . . , T do

νt = MDη

(
ν̃t,−G†µ̃t

)
, µt = MDη (µ̃t,−g +Gν̃t);

ν̃t+1 = MDη

(
ν̃t,−G†µt

)
, µ̃t+1 = MDη (µ̃t,−g +Gνt);

return ν̄T = 1
T

∑T
t=1 νt and µ̄T = 1

T

∑T
t=1 µt.

Theorem 2 (Convergence Rates). Let Φ(µ) =
∫

dµ log dµ
dz . Let M be a constant such that

max
[
‖−g +Gν‖L∞ ,

∥∥G†µ∥∥L∞] ≤ M , and L be such that ‖G(ν − ν′)‖L∞ ≤ L ‖ν − ν′‖TV

and
∥∥G†(µ− µ′)∥∥L∞ ≤ L ‖µ− µ′‖TV. Let D(·, ·) be the relative entropy, and denote by

D0 := D(µNE, µ1) +D(νNE, ν1) the initial distance to the mixed NE. Then

1. Assume that we have access to the deterministic derivatives
{
−G†µt

}T
t=1

and

{g −Gν}Tt=1. Then Algorithm 1 achieves O
(
T−1/2

)
-NE with η = 2

M

√
D0

T , and

Algorithm 2 achieves O
(
T−1

)
-NE with η = 4

L .

2. Assume that we have access to stochastic derivatives
{
−Ĝ†µt

}T
t=1

and
{
ĝ − Ĝν

}T
t=1

such that max
[
E
∥∥∥−ĝ + Ĝν

∥∥∥
L∞

,E
∥∥∥Ĝ†µ∥∥∥

L∞

]
≤ M ′, and the variance is up-

per bounded by σ2. Assume also that the bias of stochastic derivatives sat-

isfies max
[∥∥∥E[−ĝ + Ĝν] + g −Gν

∥∥∥
L∞

,
∥∥∥E[Ĝ†µ]−G†µ

∥∥∥
L∞

]
≤ τ . Then Algo-

rithm 1 with stochastic derivatives achieves O
(
T−1/2

)
-NE in expectation with

η =
√

D0

T(4τ+M′/4)
, and Algorithm 2 with stochastic derivatives achieves(

O
(
T−1/2

)
+O(τ)

)
-NE in expectation with η = min

[
4√
3L
,
√

2D0

3Tσ2

]
.

The proof can be found in Appendix B and C.

Remark. If, as in previous work (Arora et al., 2017), we assume the output of the discrim-
inator to be bounded by U , then we have M,M ′ ≤ 2U and L ≤ U in Theorem 2. The
constant error term for stochastic MP is standard; see, e.g., (Juditsky et al., 2011).

4 From Theory to Practice

Section 4.1 reduces Algorithm 1 and Algorithm 2 to a sampling routine (Welling &
Teh, 2011) that has widely been used in machine learning. Section 4.2 proposes to further
simplify the algorithms by summarizing a batch of samples by their mean.

For simplicity, we will only derive the algorithm for entropic MD; the case for entropic MP is
similar but requires more computation. To ease the notation, we assume η = 1 throughout
this section as η does not play an important role in the derivation below.

4.1 Implementable Entropic MD: From Probability Measure to Samples

Consider Algorithm 1. The reduction consists of three steps.

Step 1: Reformulating Entropic Mirror Descent Iterates

The definition of the MD iterate (7) relates the updated probability measure µt+1 to the
current probability measure µt, but it tells us nothing about the density function of µt+1,
from which we want to sample. Our first step is to express (7) in a more tractable form.
By recursively applying (7) and using Theorem 4.10 in Appendix A, we have, for some
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constants C1, ..., CT−1,

dΦ(µT ) = dΦ(µT−1)− (−g +GνT−1) + CT−1

= dΦ(µT−2)− (−g +GνT−2)− (−g +GνT−1) + CT−1 + Ct−2

= · · · = dΦ(µ1)−

(
−(T − 1)g +G

T−1∑
s=1

νs

)
+

T−1∑
s=1

Cs.

For simplicity, assume that µ1 is uniform so that dΦ(µ1) is a constant function. Then,
by (13) and that dΦ? (dΦ(µT )) = dµT , we see that the density function of µT is simply

dµT =
exp{(T−1)g−G

∑T−1
s=1 νs}dw∫

exp{(T−1)g−G
∑T−1
s=1 νs}dw

. Similarly, we have dνT =
exp{G†∑T−1

s=1 µs}dθ∫
exp{G†∑T−1

s=1 µs}dθ
.

Step 2: Empirical Approximation for Stochastic Derivatives

The derivatives of (5) involve the function g and operator G. Recall that g requires taking
expectation over the real data distribution, which we do not have access to. A common
approach is to replace the true expectation with its empirical average:

g(w) = EX∼Preal
[fw(X)] ' 1

n

n∑
i=1

fw(Xreal
i ) , ĝ(w)

where Xi’s are real data and n is the batch size. Clearly, ĝ is an unbiased estimator of g.

On the other hand, Gνt and G†µt involve expectation over νt and µt, respectively, and also
over the fake data distribution Pθ. Therefore, if we are able to draw samples from µt and
νt, then we can again approximate the expectation via the empirical average:

θ(1),θ(2), ...,θ(n′) ∼ νt,
{
X

(j)
i

}n
i=1
∼ Pθ(j) , Ĝνt(w) ' 1

nn′

n∑
i=1

n′∑
j=1

fw

(
X

(j)
i

)

w(1),w(2), ...,w(n′) ∼ µt, {Xi}ni=1 ∼ Pθ, Ĝ†µt(θ) ' 1

nn′

n∑
i=1

n′∑
j=1

fw(j) (Xi) .

Now, assuming that we have obtained unbiased stochastic derivatives −
∑t
s=1 Ĝ

†µs and∑t
s=1

(
−ĝ + Ĝνs

)
, how do we actually draw samples from µt+1 and νt+1? Provided we can

answer this question, then we can start with two easy-to-sample distributions (µ1, ν1), and
then we will be able to draw samples from (µ2, ν2). These samples in turn will allow us
to draw samples from (µ3, ν3), and so on. Therefore, it only remains to answer the above
question. This leads us to:

Step 3: Sampling by Stochastic Gradient Langevin Dynamics

For any probability distribution with density function e−hdz, the Stochastic Gradient
Langevin Dynamics (SGLD) (Welling & Teh, 2011) iterates as

zk+1 = zk − γ∇̂h(zk) +
√

2γεξk, (8)

where γ is the step-size, ∇̂h is an unbiased estimator of ∇h, ε is the thermal noise, and
ξk ∼ N (0, I) is a standard normal vector, independently drawn across different iterations.

Suppose we start at (µ1, ν1). Plugging h← −Ĝ†µ1 and h← −ĝ + Ĝν1 into (8), we obtain,

for {Xi}ni=1 ∼ Pθk , {w(j)}n′j=1 ∼ µ1, standard normal ξk, ξ
′
k, and Xreal

i ∼ Preal, {θ(j)}n′j=1 ∼
ν1, {X(j)

i } ∼ Pθ(j) , the following update rules:

θk+1 = θk + γ∇θ

 1

nn′

n∑
i=1

n′∑
j=1

fw(j) (Xi)

+
√

2γεξk

wk+1 = wk + γ∇w

 1

n

n∑
i=1

fwk(Xreal
i )− 1

nn′

n∑
i=1

n′∑
j=1

fwk

(
X

(j)
i

)+
√

2γεξ′k.

6



Under review as a conference paper at ICLR 2019

The theory of (Welling & Teh, 2011) states that, for large enough k, the iterates of SGLD
above (approximately) generate samples according to the probability measures (µ2, ν2). We
can then apply this process recursively to obtain samples from (µ3, ν3), (µ4, ν4), ...(µT , νT ).
Finally, since the entropic MD and MP output the averaged measure (µ̄T , ν̄T ), it suffices to
pick a random index t̂ ∈ {1, 2, ..., T} and then output samples from (µt̂, νt̂).

Putting Step 1-3 together, we obtain Algorithm 4 and 5 in Appendix D.

Remark. In principle, any first-order sampling method is valid above. In the experimental
section, we also use a RMSProp-preconditioned version of the SGLD (Li et al., 2016).

4.2 Summarizing Samples by Averaging: A Simple yet Effective Heuristic
Although Algorithm 4 and 5 are implementable, they are quite complicated and resource-
intensive, as the total computational complexity is O(T 2). This high complexity comes from
the fact that, when computing the stochastic derivatives, we need to store all the historical
samples and evaluate new gradients at these samples.

An intuitive approach to alleviate the above issue is to try to summarize each distribution
by only one parameter. To this end, the mean of the distribution is the most natural
candidate, as it not only stablizes the algorithm, but also is often easier to acquire than the
actual samples. For instance, computing the mean of distributions of the form e−hdz, where
h is a loss function defined by deep neural networks, has been empirically proven successful in
(Chaudhari et al., 2017; 2018; Dziugaite & Roy, 2018) via SGLD. In this paper, we adopt the
same approach as in (Chaudhari et al., 2017) where we use exponential damping (the β term
in Algorithm 3) to increase stability. Algorithm 3, dubbed the Mirror-GAN, shows how
to encompass this idea into entropic MD; the pseudocode for the similar Mirror-Prox-GAN
can be found in Algorithm 6 of Appendix D.

Algorithm 3: Mirror-GAN: Approximate Mirror Decent for GANs

Input: w̄1, θ̄1 ← random initialization, {γt}Tt=1, {εt}Tt=1, {Kt}T−1
t=1 , β (see Appendix D

for meaning of the hyperparameters), standard normal noise ξk, ξ
′
k.

for t = 1, 2, . . . , T − 1 do

w̄t,w
(1)
t ← wt;

θ̄t,θ
(1)
t ← θt;

for k = 1, 2, . . . ,Kt do
Generate A = {X1, . . . , Xn} ∼ P

θ
(k)
t

;

θ
(k+1)
t = θ

(k)
t + γt

n∇θ
∑
Xi∈A fwt(Xi) +

√
2γtεtξk;

Generate B = {Xreal
1 , . . . , Xreal

n } ∼ Preal;
Generate B′ = {X ′1, . . . , X ′n} ∼ Pθt ;

w
(k+1)
t = w

(k)
t +

γt
n
∇w

∑
Xreal
i ∈B

f
w

(k)
t

(Xreal
i )− γt

n
∇w

∑
X′i∈B′

f
w

(k)
t

(X ′i) +
√

2γtεtξ
′
k;

w̄t ← (1− β)w̄t + βw
(k+1)
t ;

θ̄t ← (1− β)θ̄t + βθ
(k+1)
t ;

wt+1 ← (1− β)wt + βw̄t;

θt+1 ← (1− β)θt + βθ̄t;

return wT ,θT .

5 Experimental Evidence

The purpose of our experiments is twofold. First, we use established baselines to demonstrate
that Mirror- and Mirror-Prox-GAN consistently achieve better or comparable performance
than common algorithms. Second, we report that our algorithms are stable and always
improve as the training process goes on. This is in contrast to unstable training algorithms,
such as Adam, which often collapse to noise as the iteration count grows. (Cha, 2017).
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We use visual quality of the generated images to evaluate different algorithms. We avoid
reporting numerical metrics, as recent studies (Barratt & Sharma, 2018; Borji, 2018; Lucic
et al., 2018) suggest that these metrics might be flawed. Setting of the hyperparameters
and more auxiliary results can be found in Appendix E.

5.1 Synthetic Data

We repeat the synthetic setup as in (Gulrajani et al., 2017). The tasks include learning
the distribution of 8 Gaussian mixtures, 25 Gaussian mixtures, and the Swiss Roll. For
both the generator and discriminator, we use two MLPs with three hidden layers of 512
neurons. We choose SGD and Adam as baselines, and we compare them to Mirror- and
Mirror-Prox-GAN. All algorithms are run up to 105 iterations4. The results of 25 Gaussian
mixtures are shown in Figure 1; An enlarged figure of 25 Gaussian Mixtures and other cases
can be found in Appendix E.1.
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(c) Mirror-GAN

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

(d) Mirror-Prox-GAN

Figure 1: Fitting 25 Gaussian mixtures up to 105 iterations. Blue dots represent the true
distribution and red ones are from the trained generator.

As Figure 1 shows, SGD performs poorly in this task, while the other algorithms yield
reasonable results. However, compared to Adam, Mirror- and Mirror-Prox-GAN fit the true
distribution better in two aspects. First, the modes found by Mirror- and Mirror-Prox-
GAN are more accurate than the ones by Adam, which are perceivably biased. Second,
Mirror- and Mirror-Prox-GAN perform much better in capturing the variance (how spread
the blue dots are), while Adam tends to collapse to modes. These observations are consistent
throughout the synthetic experiments; see Appendix E.1.

5.2 Real Data

For real images, we use the LSUN bedroom dataset (Yu et al., 2015). We have also conducted
a similar study with MNIST; more results can be found in Appendix E.2.

We use the same architecture (DCGAN) as in (Radford et al., 2015) with batch normaliza-
tion. As the networks become deeper in this case, the gradient magnitudes differ significantly
across different layers. As a result, non-adaptive methods such as SGD or SGLD do not
perform well in this scenario. To alleviate such issues, we replace SGLD by the RMSProp-
preconditioned SGLD (Li et al., 2016) for our sampling routines. For baselines, we consider
two adaptive gradient methods: RMSprop and Adam. We also include two contemporary
algorithms, the Simultaneous and Alternated Extra-Adam, from the concurrent ICLR sub-
mission (Gidel et al., 2018a).

Figure 2 shows the results at the 105th iteration. The RMSProp, Alternated Extra-Adam
and Mirror-GAN produce images with reasonable quality, while Adam and simultaneous
Extra-Adam output noise. The visual quality of Alternated Extra-Adam and Mirror-GAN
are comparable, and are better than RMSProp, as RMSProp sometimes generates blurry
images (the (3, 3)- and (1, 5)-th entry of Figure 8.(b)).

It is worth mentioning that Adam can learn the true distribution at intermediate iterations,
but later on suffers from mode collapse and finally degenerates to noise; see Appendix E.2.2.

4One iteration here means using one mini-batch of data. It does not correspond to the T in our
algorithms, as there might be multiple SGLD iterations within each time step t.
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(a) RMSProp (b) Adam (c) Mirror-GAN

(d) Simultaneous Extra-Adam (e) Alternated Extra-Adam

Figure 2: Dataset LSUN bedroom, 105 iterations.

6 Conclusions

Our goal of systematically understanding and expanding on the game theoretic perspective
of mixed NE along with stochastic Langevin dynamics for training GANs is a promising
research vein. While simple in retrospect, we provide guidelines in developing approximate
infinite-dimensional prox methods that mimic closely the provable optimization framework
to learn the mixed NE of GANs. Our proposed Mirror- and Mirror-Prox-GAN algorithm
feature cheap per-iteration complexity while rapidly converging to solutions of good quality.
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Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. arXiv preprint
arXiv:1701.07875, 2017.

Sanjeev Arora, Rong Ge, Yingyu Liang, Tengyu Ma, and Yi Zhang. Generalization and
equilibrium in generative adversarial nets (gans). In International Conference on Machine
Learning, pp. 224–232, 2017.

Maximilian Balandat, Walid Krichene, Claire Tomlin, and Alexandre Bayen. Minimizing
regret on reflexive banach spaces and nash equilibria in continuous zero-sum games. In
Advances in Neural Information Processing Systems, pp. 154–162, 2016.

David Balduzzi, Sebastien Racaniere, James Martens, Jakob Foerster, Karl Tuyls, and Thore
Graepel. The mechanics of n-player differentiable games. In Jennifer Dy and Andreas
Krause (eds.), Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pp. 354–363, Stockholmsmässan,
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A A Framework for Infinite-Dimensional Mirror Descent

A.1 A note on the regularity

It is known that the (negative) Shannon entropy is not Fréchet differentiable in general.
However, below we show that the Fréchet derive can be well-defined if we restrict the prob-
ability measures to within the set

M(Z) :={all probability measures on Z that admit densities w.r.t. the Lebesgue measure,

and the density is continuous and positive almost everywhere on Z}.

We will also restrict the set of functions to be bounded and integrable:

F(Z) :=

{
all bounded continuous functions f on Z such that

∫
e−f <∞

}
.

It is important to notice that µ ∈ M(Z) and h ∈ F(Z) implies µ′ = MDη (µ, h) ∈ M(Z);
this readily follows from the formula (7).

A.2 Properties of Entropic Mirror Map

The total variation of a (possibly non-probability) measure µ ∈M(Z) is defined as (Halmos,
2013)

‖µ‖TV = sup
‖h‖L∞≤1

∫
hdµ = sup

‖h‖L∞≤1

〈µ, h〉 .

Recall the standard topology induced by ‖·‖TV and ‖·‖L∞ for measures and functions (Hal-
mos, 2013), respectively. Whenever we speak about continuity or differentiability below, it
is understood to be w.r.t. to the standard topology. Notice also that the G operator defined
in (5) is bounded if the discriminator fw is bounded, and hence continous (Halmos, 2013).

We depart from the fundamental Gibbs Variational Principle, which dates back to the ear-
liest work of statistical mechanics (Gibbs, 1902). For two probability measures µ, µ′, denote
their relative entropy by (the reason for this notation will become clear in (14))

DΦ(µ, µ′) :=

∫
Z

dµ log
dµ

dµ′
.

By the definition of M(Z), it is clear that the relative entropy is well-defined for any
µ, µ′ ∈M(Z).

Theorem 3 (Gibbs Variation Principle). Let h ∈ F(Z) and µ′ ∈ M(Z) be a reference
measure. Then

log

∫
Z
ehdµ′ = sup

µ∈M(Z)

〈µ, h〉 −DΦ(µ, µ′), (9)

and equality is achieved by dµ? = ehdµ′∫
Z e

hdµ′
.

Part of the following theorem is folklore in the mathematics and learning community. How-
ever, to the best of our knowledge, the relation to the entropic MD has not been systemat-
ically studied before, as we now do.

Theorem 4. For a probability measure dµ = ρdz, let Φ(µ) =
∫
ρ log ρdz be the negative

Shannon entropy, and let Φ?(h) = log
∫
Z e

hdz. Then

1. Φ? is the Fenchel conjugate of Φ:

Φ?(h) = sup
µ∈M(Z)

〈µ, h〉 − Φ(µ); (10)

Φ(µ) = sup
h∈F(Z)

〈µ, h〉 − Φ?(h). (11)
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2. The derivatives admit the expression

dΦ(µ) = 1 + log ρ = arg max
h∈F(Z)

〈µ, h〉 − Φ?(h); (12)

dΦ?(h) =
ehdz∫
Z e

hdz
= arg max

µ∈M(Z)

〈µ, h〉 − Φ(µ). (13)

3. The Bregman divergence of Φ is the relative entropy:

DΦ(µ, µ′) = Φ(µ)− Φ(µ′)− 〈µ− µ′,dΦ(µ′)〉 =

∫
Z

dµ log
dµ

dµ′
. (14)

4. Φ is 4-strongly convex with respect to the total variation norm: For all λ ∈ (0, 1),

Φ(λµ+ (1− λ)µ′) ≤ λΦ(µ) + (1− λ)Φ(µ′)− 1

2
· 4λ(1− λ)‖µ− µ′‖2TV. (15)

5. The following duality relation holds: For any constant C, we have

∀µ, µ′ ∈M(Z), DΦ(µ, µ′) = DΦ? (dΦ(µ′),dΦ(µ)) = DΦ? (dΦ(µ′) + C, dΦ(µ)) .
(16)

6. Φ? is 1
4 -smooth with respect to ‖ · ‖L∞ :

∀h, h′ ∈ F(Z), ‖dΦ?(h)− dΦ?(h′)‖TV ≤
1

4
‖h− h′‖L∞ . (17)

7. Alternative to (17), we have the equivalent characterization of Φ?:

∀h, h′ ∈ F(Z), Φ?(h) ≤ Φ?(h′) + 〈dΦ?(h′), h− h′〉+
1

2
· 1

4
‖h− h′‖2L∞ . (18)

8. Similar to (16), we have

∀h, h′, DΦ?(h, h′) = DΦ(dΦ?(h′),dΦ?(h)). (19)

9. The following three-point identity holds for all µ, µ′, µ′′ ∈M(Z):

〈µ′′ − µ,dΦ(µ′)− dΦ(µ)〉 = DΦ(µ, µ′) +DΦ(µ′′, µ)−DΦ(µ′′, µ′). (20)

10. Let the Mirror Descent iterate be defined as in (7). Then the following statements
are equivalent:

(a) µ+ = MDη (µ, h).

(b) There exists a constant C such that dΦ(µ+) = dΦ(µ)− ηh+ C.

In particular, for any µ′, µ′′ ∈M(Z) we have

Let 〈µ′ − µ′′, ηh〉 = 〈µ′ − µ′′,dΦ(µ)− dΦ(µ+)〉 . (21)

Proof.

1. Equation (10) is simply the Gibbs variational principle (9) with dµ← dz.

By (10), we know that

∀h ∈ F(Z), Φ(µ) ≥ 〈µ, h〉 − log

∫
Z
ehdz. (22)

But for dµ = ρdz, the function h := 1 + log ρ saturates the equality in (22).
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2. We prove a more general result on the Bregman divergence DΦ in (23) below.

Let dµ = ρdz,dµ′ = ρ′dz, and dµ′′ = ρ′′dz ∈ M(Z). Let ε > 0 be small enough
such that (ρ+ ερ′′)dz is absolutely continuous with respect to dµ′; note that this is
possible because µ, µ′, and µ′′ ∈M(Z). We compute

DΦ(ρ+ ερ′′, ρ′) =

∫
Z

(ρ+ ερ′′) log
ρ+ ερ′′

ρ′

=

∫
Z
ρ log

ρ

ρ′
+

∫
Z
ρ log

(
1 + ε

ρ′′

ρ

)
+ ε

∫
Z
ρ′′ log

ρ

ρ′
+ ε

∫
Z
ρ′′ log

(
1 + ε

ρ′′

ρ

)
(i)
=

∫
Z
ρ log

ρ

ρ′
+ ε

∫
Z
ρ′′ + ε

∫
Z
ρ′′ log

ρ

ρ′
+ ε2

∫
Z

ρ′′2

ρ
+ o(ε)

= DΦ(ρ, ρ′) + ε

∫
Z
ρ′′
(

1 + log
ρ

ρ′

)
+ o(ε),

where (i) uses log(1 + t) = t+ o(t) as t→ 0. In short, for all µ′, µ′′ ∈M(Z),

dµDΦ(µ, µ′)(µ′′) =

〈
µ′′, 1 + log

ρ

ρ′

〉
(23)

which means dµDΦ(µ, µ′) = 1 + log ρ
ρ′ . The formula (12) is the special case when

dµ′ ← dz.

We now turn to (13). For every h ∈ F(Z), we need to show that the following holds
for every h′ ∈ F(Z):

Φ?(h+ εh′)−Φ?(h) = log

∫
Z
eh+εh′dz− log

∫
Z
ehdz = ε

∫
Z
h′

eh∫
Z e

h
dz+o(ε). (24)

Define an auxiliary function

T (ε) := log

∫
Z

eh∫
Z e

h
eεh
′
dz.

Notice that T (0) = 0 and T is smooth as a function of ε. Thus, by the Intermediate
Value Theorem,

Φ?(h+ εh′)− Φ?(h) = T (ε)− T (0)

= (ε− 0) · d

dε
T (·)

∣∣∣∣
ε′

for some ε′ ∈ [0, ε]. A direct computation shows

d

dε
T (·)

∣∣∣∣
ε′

=

∫
Z
h′

eh+ε′h′∫
Z e

h+ε′h′
dz.

Hence it suffices to prove eh+ε
′h′∫

Z e
h+ε′h′ = eh∫

Z e
h + o(1) in ε. To this end, let C =

sup |h′| <∞. Then

eh∫
Z e

h
e−2ε′C ≤ eh+ε′h′∫

Z e
h+ε′h′

≤ eh∫
Z e

h
e2ε′C .

It remains to use et = 1 + t+ o(t) and ε′ ≤ ε.

3. Let dµ = ρdz and dµ′ = ρ′dz. We compute

DΦ(µ, µ′) = Φ(µ)− Φ(µ′)− 〈µ− µ′,dΦ(µ′)〉

=

∫
Z
ρ log ρdz −

∫
Z
ρ′ log ρ′dz − 〈µ− µ′, 1 + log ρ′〉 by (12)

=

∫
Z
ρ log

ρ

ρ′
dz

=

∫
Z

dµ log
dµ

dµ′
.
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4. Define µλ = λµ + (1 − λ)µ′. By (14) and the classical Pinsker’s inequality (Gray,
2011), we have

Φ(µ) ≥ Φ(µλ) + 〈(1− λ)(µ− µ′),dΦ(µλ)〉+ 2‖(1− λ)(µ− µ′)‖2TV, (25)

Φ(µ′) ≥ Φ(µλ) + 〈λ(µ′ − µ),dΦ(µλ)〉+ 2‖λ(µ− µ′)‖2TV. (26)

Equation (15) follows by multiplying with λ and 1 − λ respectively and summing
the two inequalities up.

5. Let µ = ρdz and µ′ = ρ′dz. Then, by the definition of Bregman divergence and
(12), (13),

DΦ?(dΦ(µ′),dΦ(µ)) = Φ?(dΦ(µ′))− Φ?(dΦ(µ))−
〈
e1+log ρdz∫
Z e

1+log ρ
, 1 + log ρ′ − 1− log ρ

〉
= log

∫
Z
e1+log ρ′ − log

∫
Z
e1+log ρ +

∫
Z
ρ log

ρ

ρ′

=

∫
Z
ρ log

ρ

ρ′
= DΦ(µ, µ′)

since
∫
Z ρdz =

∫
Z ρ
′dz = 1. This proves the first equality.

For the second equality, we write

DΦ?(dΦ(µ′) + C,dΦ(µ)) = Φ?(dΦ(µ′) + C)− Φ?(dΦ(µ))−
〈
e1+log ρdz∫
Z e

1+log ρ
, 1 + log ρ′ + C − 1− log ρ

〉
= log

∫
Z
e1+log ρ′+C − log

∫
Z
e1+log ρ +

∫
Z
ρ log

ρ

ρ′
− C

=

∫
Z
ρ log

ρ

ρ′

= DΦ(µ, µ′) = DΦ?(dΦ(µ′),dΦ(µ))

where we have used the first equality in the last step.

6. Let µh = dΦ?(h), µh′ = dΦ?(h′), and µλ = λµh + (1 − λ)µh′ for some λ ∈ (0, 1).
By Pinsker’s inequality and (14), we have

Φ(µλ) ≥ Φ(µh) + 〈µλ − µh,dΦ(µh)〉+ 2‖µλ − µh‖2TV, (27)

Φ(µλ) ≥ Φ(µh′) + 〈µλ − µh′ ,dΦ(µh′)〉+ 2‖µλ − µh′‖2TV. (28)

Now, notice that

〈µλ − µh,dΦ(µh)〉 = 〈µλ − µh,dΦ(dΦ?(h))〉

=

〈
µλ − µh,dΦ

(
ehdz∫
Z e

h

)〉
by (13)

=

〈
µλ − µh, 1 + h− log

∫
Z
eh
〉

by (12)

= 〈µλ − µh, h〉
and, similarly, we have 〈µλ − µh′ ,dΦ(µh′)〉 = 〈µλ − µh′ , h′〉. Multiplying (27) by λ
and (28) by 1− λ, summing the two up, and using the above equalities, we get

Φ(µλ)−
(
λΦ(µh) + (1− λ)Φ(µh′)

)
+ λ(1− λ) 〈µh − µh′ , h− h′〉 ≥ 2λ(1− λ) ‖µh − µh′‖2TV .

By (15), we know that

Φ(µλ)−
(
λΦ(µh) + (1− λ)F (µh′)

)
≤ −2λ(1− λ) ‖µh − µh′‖2TV .

Moreover, by definition of the total variation norm, it is clear that

〈µh − µh′ , h− h′〉 ≤ ‖µh − µh′‖TV ‖h− h
′‖L∞ . (29)

Combing the last three inequalities gives (17).
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7. Let K be a positive integer and k ∈ {0, 1, 2, . . . ,K}. Set λk = k
K and h′′ = h− h′.

Then

Φ?(h)− Φ?(h′) = Φ?(h′ + λKh
′′)− Φ?(h′ + λ0h

′′)

=

K−1∑
k=0

(
Φ?(h′ + λk+1h

′′)− Φ?(h′ + λkh
′′)
)
. (30)

By convexity of Φ?, we have

Φ?(h′ + λk+1h
′′)− Φ?(h′ + λkh

′′) ≤ 〈dΦ?(h′ + λk+1h
′′), (λk+1 − λk)h′′〉

=
1

K
〈dΦ?(h′ + λk+1h

′′), h′′〉 . (31)

By (29) and (17), we may further upper bound (31) as

Φ?(h′ + λk+1h
′′)− Φ?(h′ + λkh

′′) ≤ 1

K

(
〈dΦ?(h′), h′′〉+ 〈dΦ?(h′ + λk+1h

′′)− dΦ?(h′), h′′〉
)

≤ 1

K

(
〈dΦ?(h′), h′′〉+ ‖dΦ?(h′ + λk+1h

′′)− dΦ?(h′)‖TV ‖h
′′‖L∞

)
≤ 1

K

(
〈dΦ?(h′), h′′〉+

λk+1

4
‖h′′‖2L∞

)
. (32)

Summing up (32) over k, we get, in view of (30),

Φ?(h)− Φ?(h′) ≤ 〈dΦ?(h′), h′′〉+
1

4
‖h′′‖2L∞

K−1∑
k=0

λk+1

= 〈dΦ?(h′), h′′〉+
1

4
· K + 1

2K
‖h′′‖2L∞ . (33)

Since K is arbitrary, we may take K →∞ in (33), which is (18).

8. Straightforward calculation shows

DΦ?(h, h′) = log

∫
Z
eh − log

∫
Z
eh
′
−
∫
Z

eh
′∫
eh′

(h− h′) .

On the other hand, by definition of the Bregman divergence and (12), (13), we have

DΦ(dΦ?(h′),dΦ?(h)) =

∫
Z

eh
′∫

Z e
h′
h′ − log

∫
Z
eh
′
−
∫
Z

eh∫
Z e

h
h+ log

∫
Z
eh

−
∫
Z

(
1 + h− log

∫
Z
eh
)(

eh
′∫

Z e
h′
− eh∫
Z e

h

)

=

∫
Z

eh
′∫
eh′

(h′ − h)− log

∫
Z
eh
′
+ log

∫
Z
eh

= Φ?(h)− Φ?(h′)− 〈dΦ?(h′), h− h′〉
= DΦ?(h, h′).

9. By definition of the Bregman divergence, we have

DΦ(µ, µ′) = Φ(µ)− Φ(µ′)− 〈µ− µ′,dΦ(µ′)〉 ,
DΦ(µ′′, µ) = Φ(µ′′)− Φ(µ)− 〈µ′′ − µ,dΦ(µ)〉 ,
DΦ(µ′′, µ′) = Φ(µ′′)− Φ(µ′)− 〈µ′′ − µ′,dΦ(µ′)〉 .

Equation (20) then follows by straightforward calculations.

10. First, let µ+ = MDη (µ, h). Then if µ+ = ρ+dz and µ = ρdz, then (7) implies

ρ+ =
ρe−ηh∫
Z ρe

−ηh .

17
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By (12), we therefore have

dΦ(µ+) = 1 + log ρ+

= 1 + log ρ− ηh− log

∫
Z
ρe−ηh

whence (21) holds with C = − log
∫
Z ρe

−ηh.

Conversely, assume that dΦ(µ+) = dΦ(µ)− ηh+C for some constant C, and apply
dΦ? to both sides. The left-hand side becomes

dΦ?
(

dΦ(µ+)
)

= dΦ?(1 + log ρ+)

=
ρ+dz∫
ρ+dz

= ρ+dz = dµ+,

where as the formula (13) implies that

dΦ? (dΦ(µ)− ηh+ C) =
e1+log ρ−ηh+C∫
Z e

1+log ρ−ηh+C
dz

=
ρe−ηhdz∫
Z ρe

−ηh

=
e−ηhdµ∫
Z e
−ηhdµ

.

Combining the two equalities gives dµ+ = e−ηhdµ∫
Z e
−ηhdµ

which exactly means µ+ =

MDη (µ, h).

B Proof of Convergence Rates for Infinite-Dimensional
Mirror Descent

B.1 Mirror Descent, Deterministic Derivatives

By the definition of the algorithm, (21), and the three-point identity (20), we have, for any
µ ∈M(W),

〈µt − µ,−g +Gνt〉 =
1

η
〈µt − µ,dΦ(µt)− dΦ(µt+1)〉

=
1

η

(
DΦ(µ, µt)−DΦ(µ, µt+1) +DΦ(µt, µt+1)

)
. (34)

By item 10 of Theorem 4, there exists a constant Ct such that

dΦ(µt+1) = dΦ(µt)− η (−g +Gνt) + Ct. (35)

Using (16), we see that

DΦ(µt, µt+1) = DΦ?(dΦ(µt+1),dΦ(µt))

= DΦ?

(
dΦ(µt+1)− Ct,dΦ(µt)

)
≤ 1

8
‖dΦ(µt+1)− Ct − dΦ(µt)‖2L∞ by (18)

=
η2

8
‖−g +Gνt‖2L∞ by (35)

≤ η2M2

8
.
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Consequently, we have

T∑
t=1

〈µt − µ,−g +Gνt〉 =

T∑
t=1

1

η

(
DΦ(µ, µt)−DΦ(µ, µt+1) +DΦ(µt, µt+1)

)
≤ DΦ(µ, µ1)

η
+
ηM2T

8
. (36)

Exactly the same argument applied to νt’s yields, for any ν ∈M(Θ),

T∑
t=1

〈
νt − ν,−G†µt

〉
≤ DΦ(ν, ν1)

η
+
ηM2T

8
. (37)

Summing up (36) and (37), substituting µ← µNE, ν ← νNE and dividing by T , we get

1

T

T∑
t=1

(
〈µt − µNE,−g +Gνt〉+

〈
νt − νNE,−G†µt)

〉 )
≤ D0

ηT
+
ηM2

4
. (38)

The left-hand side of (38) can be simplified to

1

T

T∑
t=1

(
〈µt − µNE,−g +Gνt〉+

〈
νt − νNE,−G†µt

〉 )
=

1

T

T∑
t=1

(
〈µNE − µt, g〉 − 〈µNE, Gνt〉+ 〈µt, GνNE〉

)
= 〈µNE, g −Gν̄T 〉 − 〈µ̄T , g −GνNE〉 .

(39)

By definition of the Nash Equilibrium, we have

〈µ̄T , g −GνNE〉 ≤ 〈µNE, g −GνNE〉 ≤ 〈µNE, g −Gν̄T 〉 , (40)

〈µ̄T , g −GνNE〉 ≤ 〈µ̄T , g −Gν̄T 〉 ≤ 〈µNE, g −Gν̄T 〉 ,

which implies

|〈µ̄T , g −Gν̄T 〉 − 〈µNE, g −GνNE〉| ≤ 〈µNE, g −Gν̄T 〉 − 〈µ̄T , g −GνNE〉 . (41)

Combining (51)-(54), we conclude that

η =
2

M

√
D0

T
⇒ |〈µ̄T , g −Gν̄T 〉 − 〈µNE, g −GνNE〉| ≤M

√
D0

T
.

B.2 Mirror Descent, Stochastic Derivatives

We first write〈
µt − µ, η(−ĝ + Ĝνt)

〉
= 〈µt − µ, η(−g +Gνt)〉+

〈
µt − µ, η

[
− ĝ + Ĝνt + g −Gνt

]〉
.

Taking conditional expectation and using the bias estimate of stochastic derivatives, we
conclude that

E
〈
µt − µ, η(−ĝ + Ĝνt)

〉
≤ 〈µt − µ, η(−g +Gνt)〉+ ‖µt − µ‖TV · ητ

≤ 〈µt − µ, η(−g +Gνt)〉+ 2ητ .

Therefore, using exactly the same argument leading to (36), we may obtain

E
T∑
t=1

〈
µt − µ,−ĝ + Ĝνt

〉
≤ EDΦ(µ, µ1)

η
+
ηM ′2T

8
+ 2ηTτ.

The rest is the same as with deterministic derivatives.

19



Under review as a conference paper at ICLR 2019

C Proof of Convergence Rates for Infinite-Dimensional
Mirror-Prox

We first need a technical lemma, which is Lemma 6.2 of (Juditsky & Nemirovski, 2011)
tailored to our infinite-dimensional setting. We give a slightly different proof.

Lemma 5. Given any µ ∈ M(Z) and h, h′ ∈ F(Z), let µ = MDη (µ̃, h) and µ̃+ =
MDη (µ̃, h′). Let Φ be α-strongly convex (recall that α = 4 when Φ is the entropy). Then,
for any µ? ∈M(Z), we have

〈µ− µ?, ηh′〉 ≤ DΦ(µ?, µ̃)−DΦ(µ?, µ̃+) +
η2

2α
‖h− h′‖2L∞ −

α

2
‖µ− µ̃‖2TV . (42)

Proof. Recall from (15) that entropy is α-strongly convex with respect to ‖·‖TV. We first
write

〈µ− µ?, ηh′〉 = 〈µ̃+ − µ?, ηh′〉+ 〈µ− µ̃+, ηh〉+ 〈µ− µ̃+, η(h′ − h)〉 . (43)

For the first term, (20) and (21) implies

〈µ̃+ − µ?, ηh′〉 = 〈µ̃+ − µ?,dΦ(µ̃)− dΦ(µ̃+)〉
= −DΦ(µ̃+, µ̃)−DΦ(µ?, µ̃+) +DΦ(µ?, µ̃). (44)

Similarly, the second term of the right-hand side of (43) can be written as

〈µ− µ̃+, ηh〉 = −DΦ(µ, µ̃)−DΦ(µ̃+, µ) +DΦ(µ̃+, µ̃). (45)

Hölder’s inequality for the third term gives

〈µ− µ̃+, η(h′ − h)〉 ≤ ‖µ− µ̃+‖TV ‖η(h′ − h)‖L∞

≤ α

2
‖µ− µ̃+‖2TV +

1

2α
‖η(h′ − h)‖2L∞ . (46)

Finally, recall that Φ is α-strongly convex, and hence we have

−DΦ(µ̃+, µ) ≤ −α
2
‖µ− µ̃+‖2TV , −DΦ(µ, µ̃) ≤ −α

2
‖µ− µ̃‖2TV . (47)

The lemma follows by combining inequalities (44)-(47) in (43).

C.1 Mirror-Prox, Deterministic Derivatives

Let α = 4, µ̄T := 1
T

∑T
t=1 µt, and ν̄T := 1

T

∑T
t=1 νt.

In Lemma 5, substituting µ? ← µNE, µ̃ ← µ̃t, h ← −g + Gν̃t (so that µ = µt) and
h′ ← −g +Gνt (so that µ̃+ = µ̃t+1), we get

〈µt − µNE, η(−g +Gνt)〉 ≤ DΦ(µNE, µ̃t)−DΦ(µNE, µ̃t+1)+
η2

2α
‖G(νt − ν̃t)‖2L∞−

α

2
‖µ̃t − µt‖2TV .

(48)
Similarly, we have〈
νt − νNE,−ηG†µt

〉
≤ DΦ(νNE, ν̃t)−DΦ(νNE, ν̃t+1)+

η2

2α

∥∥G†(µt − µ̃t)∥∥2

L∞−
α

2
‖ν̃t − νt‖2TV .

(49)

Since ‖G(νt − ν̃t)‖L∞ ≤ L · ‖νt − ν̃t‖TV and
∥∥G†(µt − µ̃t)∥∥L∞ ≤ L · ‖µt − µ̃t‖TV, summing

up (48) and (49) yields

〈µt − µNE, η(−g +Gνt)〉+
〈
νt − νNE,−ηG†µt)

〉
≤ DΦ(µNE, µ̃t)−DΦ(µNE, µ̃t+1) +DΦ(νNE, ν̃t)−DΦ(νNE, ν̃t+1)

+

(
η2L2

2α
− α

2

)(
‖µ̃t − µt‖2TV + ‖ν̃t − νt‖2TV

)
≤ DΦ(µNE, µ̃t)−DΦ(µNE, µ̃t+1) +DΦ(νNE, ν̃t)−DΦ(νNE, ν̃t+1)
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if η ≤ α
L = 4

L . Summing up the last inequality over t and using DΦ(·, ·) ≥ 0, we obtain

1

T

T∑
t=1

(
〈µt − µNE, η(−g +Gνt)〉+

〈
νt − νNE,−ηG†µt)

〉 )
≤ DΦ(µNE, µ̃1) +DΦ(νNE, ν̃1)

T
=
D0

T
.

(50)
The left-hand side of (50) can be simplified to

1

T

T∑
t=1

(
〈µt − µNE, η(−g +Gνt)〉+

〈
νt − νNE,−ηG†µt)

〉
) =

η

T

T∑
t=1

(
〈µNE − µt, g〉 − 〈µNE, Gνt〉+ 〈µt, GνNE〉

)
= η

(
〈µNE, g −Gν̄T 〉 − 〈µ̄T , g −GνNE〉

)
.

(51)

By definition of the (µNE, νNE), we have

〈µ̄T , g −GνNE〉 ≤ 〈µNE, g −GνNE〉 ≤ 〈µNE, g −Gν̄T 〉 , (52)

〈µ̄T , g −GνNE〉 ≤ 〈µ̄T , g −Gν̄T 〉 ≤ 〈µNE, g −Gν̄T 〉 ,

which implies

| 〈µ̄T , g −Gν̄T 〉 − 〈µNE, g −GνNE〉 | ≤ 〈µNE, g −Gν̄T 〉 − 〈µ̄T , g −GνNE〉 . (53)

Combining (50)-(53), we conclude

η ≤ 4

L
⇒ | 〈µ̄T , g −Gν̄T 〉 − 〈µNE, g −GνNE〉 | ≤

D0

Tη
.

C.2 Mirror-Prox, Stochastic Derivatives

Let α = 4, µ̄T := 1
T

∑T
t=1 µt, and ν̄T := 1

T

∑T
t=1 νt. Set the step-size to η =

min

[
α√
3L
,
√

αD0

6Tσ2

]
.

In Lemma 5, substituting µ? ← µNE, µ̃ ← µ̃t, h ← −ĝ + Ĝν̃t (so that µ = µt), and

h′ ← −ĝ + Ĝνt (so that µ̃+ = µ̃t+1), we get〈
µt − µNE, η(−ĝ + Ĝνt)

〉
≤ DΦ(µNE, µ̃t)−DΦ(µNE, µ̃t+1)+

η2

2α

∥∥∥Ĝνt − Ĝν̃t∥∥∥2

L∞
−α

2
‖µ̃t − µt‖2TV .

(54)

Note that

E
∥∥∥Ĝνt − Ĝν̃t∥∥∥2

L∞
≤ 3

(
E
∥∥∥Ĝνt −Gνt∥∥∥2

L∞
+ E ‖Gνt −Gν̃t‖2L∞ + E

∥∥∥Gν̃t − Ĝν̃t∥∥∥2

L∞

)
≤ 6σ2 + 3L2E ‖νt − ν̃t‖2TV .

Therefore, taking expectation conditioned on the history for both sides of (54) and using
the bias estimates of the stochastic derivatives, we get

〈µt − µNE, η(−g +Gνt)〉 ≤ EDΦ(µNE, µ̃t)− EDΦ(µNE, µ̃t+1) +
3η2σ2

α

+
3η2L2

2α
E ‖νt − ν̃t‖2TV −

α

2
E ‖µ̃t − µt‖2TV + 2ητ.

Similarly, we have〈
νt − νNE,−ηG†µt

〉
≤ EDΦ(νNE, ν̃t)− EDΦ(νNE, ν̃t+1) +

3η2σ2

α

+
3η2L2

2α
E ‖µt − µ̃t‖2TV −

α

2
E ‖ν̃t − νt‖2TV + 2ητ.
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Summing up the last two inequalities over t with η ≤ α√
3L

then yields

1

T

T∑
t=1

(
〈µt − µNE,−g +Gνt〉+

〈
νt − νNE,−G†µt)

〉 )
≤ D0

ηT
+

6ησ2

α
+ 4τ

≤ max

[
2

√
6σ2D0

αT
,

2
√

3LD0

αT

]
+ 4τ.

by definition of η. The rest is the same as with deterministic derivatives.

Algorithm 4: Approx Inf Mirror Decent

Input: W [1],Θ[1]← n′ samples from random initialization,

{γt}T−1
t=1 , {εt}

T−1
t=1 , {K}

T−1
t=1 , n, n

′, standard normal noise ξk, ξ
′
k.

for t = 1, 2, . . . , T − 1 do
C ← ∪ts=1W [s], D ← ∪ts=1Θ[s] ;

w
(1)
t ← UNIF(W [t]), θ

(1)
t ← UNIF(Θ[t]);

for k = 1, 2, . . . ,Kt, . . . ,Kt + n′ do
Generate A = {X1, . . . , Xn} ∼ P

θ
(k)
t

;

θ
(k+1)
t = θ

(k)
t + γt

nn′∇θ
∑
Xi∈A

∑
w∈C fw(Xi) +

√
2γtεtξk;

Generate B = {Xreal
1 , . . . , Xreal

n } ∼ Preal;
B′ ← {} ;
for each θ ∈ D do

Generate B̃ = {X ′1, . . . , X ′n} ∼ Pθ;

B′ ← B′ ∪ B̃;

w
(k+1)
t = w

(k)
t +

γtt

n
∇w

∑
Xreal
i ∈B

f
w

(k)
t

(Xreal
i )− γt

nn′
∇w

∑
X′i∈B′

f
w

(k)
t

(X ′i) +
√

2γtεtξ
′
k;

W [t+ 1]←
{
w

(K+1)
t , . . . ,w

(K+n′)
t

}
, Θ[t+ 1]←

{
θ

(K+1)
t , . . . ,θ

(K+n′)
t

}
;

idx← UNIF(1, 2, . . . , T );
return W [idx],Θ[idx].

D Omitted Pseudocodes in the Main Text

We use the following notation for the hyperparameters of our algorithms:

n : number of samples in the data batch.

n′ : number of samples for each probability measure.

γt : SGLD step-size at iteration t.

εt : thermal noise of SGLD at iteration t.

Kt : warmup steps for SGLD at iteration t.

β : exponential damping factor in the weighted average.

The approximate infinite-dimensional entropic MD and MP in Section 4.1 are depicted in
Algorithm 4 and 5, respectively. Algorithm 6 gives the heuristic version of the entropic
Mirror-Prox.

E Details and More Results of Experiments

This section contains all the details regarding our experiments, as well as more results on
synthetic and real datasets.
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Algorithm 5: Approx Inf Mirror-Prox

Input: W̃ [1], Θ̃[1]← n′ samples from random initialization,
{γt}Tt=1, {εt}Tt=1, {Kt}Tt=1, n, n

′, standard normal noise ξk, ξ
′
k, ξ
′′
k , ξ
′′′
k .

for t = 1, 2, . . . , T do

C ← W̃ [t] ∪
(
∪t−1
s=1W [s]

)
, D ← Θ̃[t] ∪

(
∪t−1
s=1Θ[s]

)
;

w
(1)
t ← UNIF(W̃ [t]), θ

(1)
t ← UNIF(Θ̃[t]);

for k = 1, 2, . . . ,Kt, . . . ,Kt + n′ do
Generate A = {X1, . . . , Xn} ∼ P

θ
(k)
t

;

θ
(k+1)
t = θ

(k)
t + γt

nn′∇θ
∑
Xi∈A

∑
w∈C fw(Xi) +

√
2γtεtξk;

Generate B = {Xreal
1 , . . . , Xreal

n } ∼ Preal;
B′ ← {};
for each θ ∈ D do

Generate B̃ = {X ′1, . . . , X ′n} ∼ Pθ;

B′ ← B′ ∪ B̃;

w
(k+1)
t = w

(k)
t +

γtt

n
∇w

∑
Xreal
i ∈B

f
w

(k)
t

(Xreal
i )− γt

nn′
∇w

∑
X′i∈B′

f
w

(k)
t

(X ′i) +
√

2γtεtξ
′
k;

W [t]←
{
w

(K+1)
t , . . . ,w

(K+n′)
t

}
, Θ[t]←

{
θ

(K+1)
t , . . . ,θ

(K+n′)
t

}
;

C ′ ← ∪ts=1W [s], D′ ← ∪ts=1Θ[s] ;

w̃
(1)
t+1 ← UNIF(W̃ [t]), θ̃

(1)
t+1 ← UNIF(Θ̃[t]) ;

for k = 1, 2, . . . ,Kt, . . . ,Kt + n′ do
Generate A = {X1, . . . , Xn} ∼ P

θ̃
(k)
t

;

θ̃
(k+1)
t+1 = θ̃

(k)
t+1 + γt

nn′∇θ
∑
Xi∈A

∑
w∈C′ fw(Xi) +

√
2γtεtξ

′′
k ;

Generate B = {Xreal
1 , . . . , Xreal

n } ∼ Preal;
B′ ← {};
for each θ ∈ D′ do

Generate B̃ = {X ′1, . . . , X ′n} ∼ Pθ;

B′ ← B′ ∪ B̃;

w̃
(k+1)
t+1 = w̃

(k)
t+1 +

γtt

n
∇w

∑
Xreal
i ∈B

f
w̃

(k)
t+1

(Xreal
i )− γt

nn′
∇w

∑
X′i∈B′

f
w̃

(k)
t+1

(X ′i) +
√

2γtεtξ
′′′
k );

W̃ [t+ 1]←
{
w̃

(K+1)
t+1 , . . . , w̃

(K+n′)
t+1

}
, Θ̃[t+ 1]←

{
θ̃

(K+1)
t+1 , . . . , θ̃

(K+n′)
t+1

}
;

idx← UNIF(1, 2, . . . , T );
return W [idx],Θ[idx].

Network Architectures: For all experiments, we consider the gradient-penalized discrim-
inator (Gulrajani et al., 2017) as a soft constraint alternative to the original Wasserstein
GANs, as it is known to achieve much better performance. The gradient penalty parameter
is denoted by λ below.

For synthetic data, we use fully connected networks for both the generator and discriminator.
They consist of three layers, each of them containing 512 neurons, with ReLU as nonlinearity.

For MNIST, we use convolutional neural networks identical to (Gulrajani et al., 2017) as the
generator and discriminator.5 The generator uses a sigmoid function to map the output to
range [0, 1].

5Their code is available on https://github.com/igul222/improved_wgan_training.
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Algorithm 6: Mirror-Prox-GAN: Approximate Mirror-Prox for GANs

Input: w̃1, θ̃1 ← random initialization,
w0 ← w̃1,θ0 ← θ̃1, {γt}Tt=1, {εt}Tt=1, {Kt}Tt=1, β, standard normal noise
ξk, ξ

′
k, ξ
′′
k , ξ
′′′
k .

for t = 1, 2, . . . , T do

w̄t, w̄t+1, w̃
(1)
t , w̃

(1)
t+1 ← w̃t, θ̄t, θ̄t+1, θ̃

(1)
t , θ̃

(1)
t+1 ← θ̃t;

for k = 1, 2, . . . ,Kt do
Generate A = {X1, . . . , Xn} ∼ P

θ
(k)
t

;

θ
(k+1)
t = θ

(k)
t + γt

n∇θ
∑
Xi∈A fw̃t(Xi) +

√
2γtεtξk;

Generate B = {Xreal
1 , . . . , Xreal

n } ∼ Preal;
Generate B′ = {X ′1, . . . , X ′n} ∼ Pθ̃t ;

w
(k+1)
t = w

(k)
t +

γt
n
∇w

∑
Xreal
i ∈B

f
w

(k)
t

(Xreal
i )− γt

n
∇w

∑
X′i∈B′

f
w

(k)
t

(X ′i) +
√

2γtεtξ
′
k;

w̄t ← (1− β)w̄t + βw
(k+1)
t ;

θ̄t ← (1− β)θ̄t + βθ
(k+1)
t ;

wt ← (1− β)wt−1 + βw̄t;

θt ← (1− β)θt−1 + βθ̄t;

for k = 1, 2, . . . ,Kt do
Generate A = {X1, . . . , Xn} ∼ P

θ̃
(k)
t+1

;

θ̃
(k+1)
t+1 = θ̃

(k)
t+1 + γt

n∇θ
∑
Xi∈A fwt(Xi) +

√
2γtεtξ

′′
k ;

Generate B = {Xreal
1 , . . . , Xreal

n } ∼ Preal;
Generate B′ = {X ′1, . . . , X ′n} ∼ Pθt ;

w
(k+1)
t+1 = w

(k)
t+1 +

γt
n
∇w

∑
Xreal
i ∈B

f
w

(k)
t+1

(Xreal
i )− γt

n
∇w

∑
X′i∈B′

f
w

(k)
t+1

(X ′i) +
√

2γtεtξ
′′′
k ;

w̄t+1 ← (1− β)w̄t+1 + βw
(k+1)
t+1 ;

θ̄t+1 ← (1− β)θ̄t+1 + βθ
(k+1)
t+1 ;

w̃t+1 ← (1− β)w̃t + βw̄t+1;

θ̃t+1 ← (1− β)θ̃t + βθ̄t+1;

return wT ,θT .

For LSUN bedroom, we use DCGAN (Radford et al., 2015), except that the number of the
channels in each layer is half of the original model, and the last sigmoid function of the
discriminator is removed. The output of the generator is mapped to [0, 1] by hyperbolic
tangent and a linear transformation. The architecture contains batch normalization layer
to ensure the stability of the training. For our Mirror- and Mirror-Prox-GAN, the Gaussian
noise from SGLD is not added to parameters in batch normalization layers, as the batch
normalization creates strong dependence among entries of the weight matrix and was not
covered by our theory.

Hyperparameter setting: The hyperparameter setting is summarized in Table 1. For
baselines (SGD, RMSProp, Adam), we use the settings identical to (Gulrajani et al., 2017).
For our proposed Mirror- and Mirror-Prox-GAN, we set the damping factor β to be 0.9. For
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Algorithm SGD RMSProp Adam Entropic MD/MP

Dataset S M L S M L S M L

Step-size γ 10−2 10−4 10−4 10−2 10−4

Gradient penalty λ 0.1 10 0.1 10 0.1 10

Noise ε 10−2 10−3 10−6

Batch Size n 1024 50 64 1024 50 64 1024 50 64

Table 1: Hyperparameter setting. “S”, “M”, “L” stands for synthetic data, MNIST and LSUN
bedroom, respectively. MD for LSUN bedroom uses a RMSProp preconditioner, so the step-
size is the same as one in RMSProp.
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(d) Mirror-Prox-GAN

Figure 3: Fitting 8 Gaussian mixtures up to 105 iterations.

Kt, γt and εt, we use the simple exponential scheduling:

Kt = b(1 + 10−5)tc.
γt = γ × (1− 10−5)t, γ in Table 1.

εt = ε× (1− 5× 10−5)t, ε in Table 1.

The idea is that the initial iterations are very noisy, and hence it makes sense to take less
SGLD steps. As the iteration counts grow, the algorithms learn more meaningful parameters,
and we should increase the number of SGLD steps as well as decreasing the step-size γt and
thermal noise εt to make the sampling more accurate. This is akin to the warmup steps in
the sampling literature.

E.1 Synthetic Data

Figure 3, 4, and 5 show results on learning 8 Gaussian mixtures, 25 Gaussian mixtures, and
the Swiss Roll. As in the case for 25 Gaussian mixtures, we find that Mirror- and Mirror-
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Figure 4: Fitting the ‘Swiss Roll’ up to 105 iterations.

Prox-GAN can better capture the variance of the true distribution, as well as finding the
unbiased modes.

In Figure 6, we plot the data generated after 104, 2×104, 5×104, 8×104, and 105 iterations
by different algorithms fro 25 Gaussian mixtures. It is clear that Mirror- and Mirror-Prox-
GAN find the modes of the distribution faster. In practice, it was observed that the noise
introduced by SGLD quickly drives the iterates to non-trivial parameter regions, whereas
SGD tends to get stuck at very bad local minima. Adam, as an adaptive algorithm, is capable
of escaping bad local minima, however at a rate slower than Mirror- and Mirror-Prox-GAN.
The quality of Adam’s final solution is also not as good as Mirror- and Mirror-Prox-GAN;
see the discussions in Section 5.1.

E.2 Real Data

E.2.1 MNSIT

Results on MNIST dataset are shown in Figure 7. The models are trained by each algo-
rithm for 105 iterations. We can see that all algorithms achieve comparable performance.
Therefore, the dataset seems too weak to be a discriminator for different algorithms.

E.2.2 LSUN Bedroom

Algorithm RMSProp Adam Entropic MD Extra-Adam

Simultaneous - - 3.0955 2.0015

Alternated 3.0555 1.3730 - 3.1620

Table 2: Inception Score of generator trained on LSUN dataset. The reported scores are
based on the average of 6400 images from each generator.
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Figure 5: Fitting 25 Gaussian mixtures up to 105 iterations.

More results on the LSUN bedroom dataset are shown in Figure 8. We show images generated
after 4 × 104, 8 × 104, and 105 iterations by each algorithm. We can see that the Mirror-
GAN and Alternated Extra-Adam outperform vanilla RMSProp. Adam was able to obtain
meaningful images in early stages of training. However, further iterations do not improve
the image quality of Adam. In contrast, they lead to severe mode collapse at the 8× 104th
iteration, and converge to noise later on. Simultaneous Extra-Adam completely fails in this
task.

Finally, for reference, we report the Inception Score in Table 2.
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Figure 6: Learning 25 Gaussian mixtures accross different iterations.
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(a) True Data

(b) SGD (c) Adam

(d) Mirror-GAN (e) Mirror-Prox-GAN

Figure 7: True MNIST images and samples generated by different algorithms.
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4× 104 iterations 8× 104 iterations 105 iterations

(a) RMSProp

(b) Adam

(c) Mirror-GAN, Algorithm 3
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(d) Simultaneous Extra-Adam

(e) Alternated Extra-Adam

Figure 8: Image generated by RMSProp, Simultaneous and Alternated Extra-Adam, Adam,
and Mirror-GAN on the LSUN bedroom dataset.
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