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ABSTRACT

Probabilistic models with discrete latent variables naturally capture datasets com-
posed of discrete classes. However, they are difficult to train efficiently, since
backpropagation through discrete variables is generally not possible. We present
a novel method to train a class of probabilistic models with discrete latent variables
using the variational autoencoder framework, including backpropagation through
the discrete latent variables. The associated class of probabilistic models com-
prises an undirected discrete component and a directed hierarchical continuous
component. The discrete component captures the distribution over the discon-
nected smooth manifolds induced by the continuous component. As a result, this
class of models efficiently learns both the class of objects in an image, and their
specific realization in pixels, from unsupervised data; and outperforms state-of-
the-art methods on the permutation-invariant MNIST, Omniglot, and Caltech-101
Silhouettes datasets.

1 INTRODUCTION

Unsupervised learning of probabilistic models is a powerful technique, facilitating tasks such as
denoising and inpainting, and regularizing supervised tasks such as classification (Hinton et al.,
2006; Salakhutdinov & Hinton, 2009; Rasmus et al., 2015). Many datasets of practical interest are
projections of underlying distributions over real-world objects into an observation space; the pixels
of an image, for example. When the real-world objects are of discrete types subject to continuous
transformations, these datasets comprise multiple disconnected smooth manifolds. For instance,
natural images change smoothly with respect to the position and pose of objects, as well as scene
lighting. At the same time, it is extremely difficult to directly transform the image of a person to one
of a car while remaining on the manifold of natural images.

It would be natural to represent the space within each disconnected component with continuous vari-
ables, and the selection amongst these components with discrete variables. In contrast, most state-
of-the-art probabilistic models use exclusively discrete variables — as do DBMs (Salakhutdinov &
Hinton, 2009), NADEs (Larochelle & Murray, 2011), sigmoid belief networks (Spiegelhalter & Lau-
ritzen, 1990; Bornschein et al., 2016), and DARNs (Gregor et al., 2014) — or exclusively continuous
variables — as do VAEs (Kingma & Welling, 2014; Rezende et al., 2014) and GANs (Goodfellow
et al., 2014).1 Moreover, it would be desirable to apply the efficient variational autoencoder frame-
work to models with discrete values, but this has proven difficult, since backpropagation through
discrete variables is generally not possible (Bengio et al., 2013; Raiko et al., 2015).

We introduce a novel class of probabilistic models, comprising an undirected graphical model de-
fined over binary latent variables, followed by multiple directed layers of continuous latent variables.
This class of models captures both the discrete class of the object in an image, and its specific con-
tinuously deformable realization. Moreover, we show how these models can be trained efficiently
using the variational autoencoder framework, including backpropagation through the binary latent
variables. We ensure that the evidence lower bound remains tight by incorporating a hierarchical
approximation to the posterior distribution of the latent variables, which can model strong corre-
lations. Since these models efficiently marry the variational autoencoder framework with discrete
latent variables, we call them discrete variational autoencoders (discrete VAEs).

1Spike-and-slab RBMs (Courville et al., 2011) use both discrete and continuous latent variables.

1



Published as a conference paper at ICLR 2017

1.1 VARIATIONAL AUTOENCODERS ARE INCOMPATIBLE WITH DISCRETE DISTRIBUTIONS

Conventionally, unsupervised learning algorithms maximize the log-likelihood of an observed
dataset under a probabilistic model. Even stochastic approximations to the gradient of the log-
likelihood generally require samples from the posterior and prior of the model. However, sampling
from undirected graphical models is generally intractable (Long & Servedio, 2010), as is sampling
from the posterior of a directed graphical model conditioned on its leaf variables (Dagum & Luby,
1993).

In contrast to the exact log-likelihood, it can be computationally efficient to optimize a lower bound
on the log-likelihood (Jordan et al., 1999), such as the evidence lower bound (ELBO, L(x, θ, φ);
Hinton & Zemel, 1994):

L(x, θ, φ) = log p(x|θ)− KL[q(z|x, φ)||p(z|x, θ)], (1)

where q(z|x, φ) is a computationally tractable approximation to the posterior distribution p(z|x, θ).
We denote the observed random variables by x, the latent random variables by z, the parameters of
the generative model by θ, and the parameters of the approximating posterior by φ. The variational
autoencoder (VAE; Kingma & Welling, 2014; Rezende et al., 2014; Kingma et al., 2014) regroups
the evidence lower bound of Equation 1 as:

L(x, θ, φ) = −KL [q(z|x, φ)||p(z|θ)]︸ ︷︷ ︸
KL term

+Eq [log p(x|z, θ)]︸ ︷︷ ︸
autoencoding term

. (2)

In many cases of practical interest, such as Gaussian q(z|x) and p(z), the KL term of Equation 2
can be computed analytically. Moreover, a low-variance stochastic approximation to the gradient
of the autoencoding term can be obtained using backpropagation and the reparameterization trick,
so long as samples from the approximating posterior q(z|x) can be drawn using a differentiable,
deterministic function f(x, φ, ρ) of the combination of the inputs, the parameters, and a set of input-
and parameter-independent random variables ρ ∼ D. For instance, samples can be drawn from a
Gaussian distribution with mean and variance determined by the input, N (m(x, φ), v(x, φ)), using
f(x, φ, ρ) = m(x, φ) +

√
v(x, φ) · ρ, where ρ ∼ N (0, 1). When such an f(x, φ, ρ) exists,

∂

∂φ
Eq(z|x,φ) [log p(x|z, θ)] ≈

1

N

∑
ρ∼D

∂

∂φ
log p(x|f(x, ρ, φ), θ). (3)

The reparameterization trick can be generalized to a large set of distributions, including nonfactorial
approximating posteriors. We address this issue carefully in Appendix A, where we find that an
analog of Equation 3 holds. Specifically, Di is the uniform distribution between 0 and 1, and

f(x) = F−1(x), (4)

where F is the conditional-marginal cumulative distribution function (CDF) defined by:

Fi(x) =

∫ x

x′i=−∞
p (x′i|x1, . . . , xi−1) . (5)

However, this generalization is only possible if the inverse of the conditional-marginal CDF exists
and is differentiable.

A formulation comparable to Equation 3 is not possible for discrete distributions, such as restricted
Boltzmann machines (RBMs) (Smolensky, 1986):

p(z) =
1

Zp
e−Ep(z) =

1

Zp
· e(z>Wz+b>z), (6)

where z ∈ {0, 1}n, Zp is the partition function of p(z), and the lateral connection matrix W is
triangular. Any approximating posterior that only assigns nonzero probability to a discrete domain
corresponds to a CDF that is piecewise-contant. That is, the range of the CDF is a proper subset
of the interval [0, 1]. The domain of the inverse CDF is thus also a proper subset of [0, 1], and its
derivative is not defined, as required in Equations 3 and 4.2

2This problem remains even if we use the quantile function, F−1
p (ρ) = inf

{
z ∈ R :

∫ z
z′=−∞ p(z

′) ≥ ρ
}
,

the derivative of which is either zero or infinite if p is a discrete distribution.
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In the following sections, we present the discrete variational autoencoder (discrete VAE), a hierar-
chical probabilistic model consising of an RBM,3 followed by multiple directed layers of continuous
latent variables. This model is efficiently trainable using the variational autoencoder formalism, as
in Equation 3, including backpropagation through its discrete latent variables.

1.2 RELATED WORK

Recently, there have been many efforts to develop effective unsupervised learning techniques by
building upon variational autoencoders. Importance weighted autoencoders (Burda et al., 2016),
Hamiltonian variational inference (Salimans et al., 2015), normalizing flows (Rezende & Mohamed,
2015), and variational Gaussian processes (Tran et al., 2016) improve the approximation to the pos-
terior distribution. Ladder variational autoencoders (Sønderby et al., 2016) increase the power of the
architecture of both approximating posterior and prior. Neural adaptive importance sampling (Du
et al., 2015) and reweighted wake-sleep (Bornschein & Bengio, 2015) use sophisticated approxi-
mations to the gradient of the log-likelihood that do not admit direct backpropagation. Structured
variational autoencoders use conjugate priors to construct powerful approximating posterior distri-
butions (Johnson et al., 2016).

It is easy to construct a stochastic approximation to the gradient of the ELBO that admits both
discrete and continuous latent variables, and only requires computationally tractable samples. Un-
fortunately, this naive estimate is impractically high-variance, leading to slow training and poor
performance (Paisley et al., 2012). The variance of the gradient can be reduced somewhat using the
baseline technique, originally called REINFORCE in the reinforcement learning literature (Mnih
& Gregor, 2014; Williams, 1992; Mnih & Rezende, 2016), which we discuss in greater detail in
Appendix B.

Prior efforts by Makhzani et al. (2015) to use multimodal priors with implicit discrete variables
governing the modes did not successfully align the modes of the prior with the intrinsic clusters
of the dataset. Rectified Gaussian units allow spike-and-slab sparsity in a VAE, but the discrete
variables are also implicit, and their prior factorial and thus unimodal (Salimans, 2016). Graves
(2016) computes VAE-like gradient approximations for mixture models, but the component models
are assumed to be simple factorial distributions. In contrast, discrete VAEs generalize to powerful
multimodal priors on the discrete variables, and a wider set of mappings to the continuous units.

The generative model underlying the discrete variational autoencoder resembles a deep belief net-
work (DBN; Hinton et al., 2006). A DBN comprises a sigmoid belief network, the top layer of
which is conditioned on the visible units of an RBM. In contrast to a DBN, we use a bipartite Boltz-
mann machine, with both sides of the bipartite split connected to the rest of the model. Moreover, all
hidden layers below the bipartite Boltzmann machine are composed of continuous latent variables
with a fully autoregressive layer-wise connection architecture. Each layer j receives connections
from all previous layers i < j, with connections from the bipartite Boltzmann machine mediated by
a set of smoothing variables. However, these architectural differences are secondary to those in the
gradient estimation technique. Whereas DBNs are traditionally trained by unrolling a succession of
RBMs, discrete variational autoencoders use the reparameterization trick to backpropagate through
the evidence lower bound.

2 BACKPROPAGATING THROUGH DISCRETE LATENT VARIABLES BY ADDING
CONTINUOUS LATENT VARIABLES

When working with an approximating posterior over discrete latent variables, we can effectively
smooth the conditional-marginal CDF (defined by Equation 5 and Appendix A) by augmenting the
latent representation with a set of continous random variables. The conditional-marginal CDF over
the new continuous variables is invertible and its inverse is differentiable, as required in Equations 3
and 4. We redefine the generative model so that the conditional distribution of the observed variables
given the latent variables only depends on the new continuous latent space. This does not alter

3Strictly speaking, the prior contains a bipartite Boltzmann machine, all the units of which are connected to
the rest of the model. In contrast to a traditional RBM, there is no distinction between the “visible” units and the
“hidden” units. Nevertheless, we use the familiar term RBM in the sequel, rather than the more cumbersome
“fully hidden bipartite Boltzmann machine.”
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(b) Prior p(x, ζ, z)
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q(z = 1|x, φ)

F−1q(ζ|x,φ)(ρ)

p(x|ζ, φ)

(c) Autoencoding term

Figure 1: Graphical models of the smoothed approximating posterior (a) and prior (b), and the
network realizing the autoencoding term of the ELBO from Equation 2 (c). Continuous latent vari-
ables ζi are smoothed analogs of discrete latent variables zi, and insulate z from the observed vari-
ables x in the prior (b). This facilitates the marginalization of the discrete z in the autoencoding term
of the ELBO, resulting in a network (c) in which all operations are deterministic and differentiable
given independent stochastic input ρ ∼ U [0, 1].

the fundamental form of the model, or the KL term of Equation 2; rather, it can be interpreted as
adding a noisy nonlinearity, like dropout (Srivastava et al., 2014) or batch normalization with a small
minibatch (Ioffe & Szegedy, 2015), to each latent variable in the approximating posterior and the
prior. The conceptual motivation for this approach is discussed in Appendix C.

Specifically, as shown in Figure 1a, we augment the latent representation in the approximating pos-
terior with continuous random variables ζ,4 conditioned on the discrete latent variables z of the
RBM:

q(ζ, z|x, φ) = r(ζ|z) · q(z|x, φ), where

r(ζ|z) =
∏
i

r(ζi|zi).

The support of r(ζ|z) for all values of z must be connected, so the marginal distribution
q(ζ|x, φ) =∑z r(ζ|z) · q(z|x, φ) has a constant, connected support so long as 0 < q(z|x, φ) < 1.
We further require that r(ζ|z) is continuous and differentiable except at the endpoints of its support,
so the inverse conditional-marginal CDF of q(ζ|x, φ) is differentiable in Equations 3 and 4, as we
discuss in Appendix A.

As shown in Figure 1b, we correspondingly augment the prior with ζ:
p(ζ, z|θ) = r(ζ|z) · p(z|θ),

where r(ζ|z) is the same as for the approximating posterior. Finally, we require that the conditional
distribution over the observed variables only depends on ζ:

p(x|ζ, z, θ) = p(x|ζ, θ). (7)
The smoothing distribution r(ζ|z) transforms the model into a continuous function of the distri-
bution over z, and allows us to use Equations 2 and 3 directly to obtain low-variance stochastic
approximations to the gradient.

Given this expansion, we can simplify Equations 3 and 4 by dropping the dependence on z and
applying Equation 16 of Appendix A, which generalizes Equation 3:

∂

∂φ
Eq(ζ,z|x,φ) [log p(x|ζ, z, θ)] ≈

1

N

∑
ρ∼U(0,1)n

∂

∂φ
log p

(
x|F−1q(ζ|x,φ)(ρ), θ

)
. (8)

4We always use a variant of z for latent variables. This is zeta, or Greek z. The discrete latent variables z
can conveniently be thought of as English z.
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If the approximating posterior is factorial, then each Fi is an independent CDF, without conditioning
or marginalization.

As we shall demonstrate in Section 2.1, F−1q(ζ|x,φ)(ρ) is a function of q(z = 1|x, φ), where
q(z = 1|x, φ) is a deterministic probability value calculated by a parameterized function, such as
a neural network. The autoencoder implicit in Equation 8 is shown in Figure 1c. Initially, input x
is passed into a deterministic feedforward network q(z = 1|x, φ), for which the final nonlinearity is
the logistic function. Its output q, along with an independent random variable ρ ∼ U [0, 1], is passed
into the deterministic function F−1q(ζ|x,φ)(ρ) to produce a sample of ζ. This ζ, along with the original
input x, is finally passed to log p (x|ζ, θ). The expectation of this log probability with respect to ρ is
the autoencoding term of the VAE formalism, as in Equation 2. Moreover, conditioned on the input
and the independent ρ, this autoencoder is deterministic and differentiable, so backpropagation can
be used to produce a low-variance, computationally-efficient approximation to the gradient.

2.1 SPIKE-AND-EXPONENTIAL SMOOTHING TRANSFORMATION

As a concrete example consistent with sparse coding, consider the spike-and-exponential transfor-
mation from binary z to continuous ζ:

r(ζi|zi = 0) =

{∞, if ζi = 0

0, otherwise
Fr(ζi|zi=0)(ζ

′) = 1

r(ζi|zi = 1) =

{
βeβζ

eβ−1 , if 0 ≤ ζi ≤ 1

0, otherwise
Fr(ζi|zi=1)(ζ

′) =
eβζ

eβ − 1

∣∣∣∣ζ
′

0

=
eβζ

′ − 1

eβ − 1

where Fp(ζ ′) =
∫ ζ′
−∞ p(ζ) · dζ is the CDF of probability distribution p in the domain [0, 1]. This

transformation from zi to ζi is invertible: ζi = 0⇔ zi = 0, and ζi > 0⇔ zi = 1 almost surely.5

We can now find the CDF for q(ζ|x, φ) as a function of q(z = 1|x, φ) in the domain [0, 1], marginal-
izing out the discrete z:

Fq(ζ|x,φ)(ζ
′) = (1− q(z = 1|x, φ)) · Fr(ζi|zi=0)(ζ

′) + q(z = 1|x, φ) · Fr(ζi|zi=1)(ζ
′)

= q(z = 1|x, φ) ·
(
eβζ

′ − 1

eβ − 1
− 1

)
+ 1.

To evaluate the autoencoder of Figure 1c, and through it the gradient approximation of Equation 8,
we must invert the conditional-marginal CDF Fq(ζ|x,φ):

F−1q(ζ|x,φ)(ρ) =

{
1
β · log

[(
ρ+q−1
q

)
·
(
eβ − 1

)
+ 1
]
, if ρ ≥ 1− q

0, otherwise
(9)

where we use the substitution q(z = 1|x, φ) → q to simplify notation. For all values of the inde-
pendent random variable ρ ∼ U [0, 1], the function F−1q(ζ|x,φ)(ρ) rectifies the input q(z = 1|x, φ) if
q ≤ 1 − ρ in a manner analogous to a rectified linear unit (ReLU), as shown in Figure 2a. It is
also quasi-sigmoidal, in that F−1 is increasing but concave-down if q > 1 − ρ. The effect of ρ on
F−1 is qualitatively similar to that of dropout (Srivastava et al., 2014), depicted in Figure 2b, or the
noise injected by batch normalization (Ioffe & Szegedy, 2015) using small minibatches, shown in
Figure 2c.

Other expansions to the continuous space are possible. In Appendix D.1, we consider the case where
both r(ζi|zi = 0) and r(ζi|zi = 1) are linear functions of ζ; in Appendix D.2, we develop a spike-
and-slab transformation; and in Appendix E, we explore a spike-and-Gaussian transformation where
the continuous ζ is directly dependent on the input x in addition to the discrete z.

5In the limit β →∞, ζi = zi almost surely, and the continuous variables ζ can effectively be removed from
the model. This trick can be used after training with finite β to produce a model without smoothing variables ζ.
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(a) Spike-and-exp, β ∈ {1, 3, 5}
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ρ < 0.5

ρ ≥ 0.5
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(b) ReLU with dropout
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x · (1 ± 0.3)

no noise

x
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Figure 2: Inverse CDF of the spike-and-exponential smoothing transformation for
ρ ∈ {0.2, 0.5, 0.8}; β = 1 (dotted), β = 3 (solid), and β = 5 (dashed) (a). Rectified linear
unit with dropout rate 0.5 (b). Shift (red) and scale (green) noise from batch normalization; with
magnitude 0.3 (dashed), −0.3 (dotted), or 0 (solid blue); before a rectified linear unit (c). In all
cases, the abcissa is the input and the ordinate is the output of the effective transfer function. The
novel stochastic nonlinearity F−1q(ζ|x,φ)(ρ) from Figure 1c, of which (a) is an example, is qualitatively
similar to the familiar stochastic nonlinearities induced by dropout (b) or batch normalization (c).

3 ACCOMMODATING EXPLAINING-AWAY WITH A HIERARCHICAL
APPROXIMATING POSTERIOR

When a probabilistic model is defined in terms of a prior distribution p(z) and a conditional dis-
tribution p(x|z), the observation of x often induces strong correlations in the posterior p(z|x) due
to phenomena such as explaining-away (Pearl, 1988). Moreover, we wish to use an RBM as the
prior distribution (Equation 6), which itself may have strong correlations. In contrast, to maintain
tractability, many variational approximations use a product of independent approximating posterior
distributions (e.g., mean-field methods, but also Kingma & Welling (2014); Rezende et al. (2014)).

To accommodate strong correlations in the posterior distribution while maintaining tractability, we
introduce a hierarchy into the approximating posterior q(z|x) over the discrete latent variables.
Specifically, we divide the latent variables z of the RBM into disjoint groups, z1, . . . , zk,6 and
define the approximating posterior via a directed acyclic graphical model over these groups:

q(z1, ζ1, . . . , zk, ζk|x, φ) =
∏

1≤j≤k
r(ζj |zj) · q (zj |ζi<j , x, φ) where

q(zj |ζi<j , x, φ) =
egj(ζi<j ,x,φ)

>·zj∏
zι∈zj

(
1 + egzι (ζi<j ,x,φ)

) , (10)

zj ∈ {0, 1}n, and gj(ζi<j , x, φ) is a parameterized function of the inputs and preceding ζi, such as
a neural network. The corresponding graphical model is depicted in Figure 3a, and the integration
of such hierarchical approximating posteriors into the reparameterization trick is discussed in Ap-
pendix A. If each group zj contains a single variable, this dependence structure is analogous to that
of a deep autoregressive network (DARN; Gregor et al., 2014), and can represent any distribution.
However, the dependence of zj on the preceding discrete variables zi<j is always mediated by the
continuous variables ζi<j .

This hierarchical approximating posterior does not affect the form of the autoencoding term in Equa-
tion 8, except to increase the depth of the autoencoder, as shown in Figure 3b. The deterministic
probability value q(zj = 1|ζi<j , x, φ) of Equation 10 is parameterized, generally by a neural net-
work, in a manner analogous to Section 2. However, the final logistic function is made explicit in
Equation 10 to simplify Equation 12. For each successive layer j of the autoencoder, input x and all
previous ζi<j are passed into the network computing q(z = 1|ζi<j , x, φ). Its output qj , along with an

6The continuous latent variables ζ are divided into complementary disjoint groups ζ1, . . . , ζk.
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F−1 F−1 F−1q3(ζ3|ζi<3,x,φ)
(ρ)

p(x|ζ, φ)

(b) Hierarchical ELBO autoencoding term

Figure 3: Graphical model of the hierarchical approximating posterior (a) and the network realizing
the autoencoding term of the ELBO (b) from Equation 2. Discrete latent variables zj only depend
on the previous zi<j through their smoothed analogs ζi<j . The autoregressive hierarchy allows the
approximating posterior to capture correlations and multiple modes. Again, all operations in (b) are
deterministic and differentiable given the stochastic input ρ.

independent random variable ρ ∼ U [0, 1], is passed to the deterministic function F−1q(ζj |ζi<j ,x,φ)(ρ)
to produce a sample of ζj . Once all ζj have been recursively computed, the full ζ along with the
original input x is finally passed to log p (x|ζ, θ). The expectation of this log probability with respect
to ρ is again the autoencoding term of the VAE formalism, as in Equation 2.

In Appendix F, we show that the gradients of the remaining KL term of the ELBO (Equation 2) can
be estimated stochastically using:

∂

∂θ
KL [q||p] = Eq(z1|x,φ)

[
· · ·
[
Eq(zk|ζi<k,x,φ)

[
∂Ep(z, θ)

∂θ

]]]
− Ep(z|θ)

[
∂Ep(z, θ)

∂θ

]
and

(11)
∂

∂φ
KL [q||p] = Eρ

[
(g(x, ζ)− b)> · ∂q

∂φ
− z> ·W ·

(
1− z
1− q �

∂q

∂φ

)]
. (12)

In particular, Equation 12 is substantially lower variance than the naive approach to calculate
∂
∂φKL [q||p], based upon REINFORCE.

4 MODELLING CONTINUOUS DEFORMATIONS WITH A HIERARCHY OF
CONTINUOUS LATENT VARIABLES

We can make both the generative model and the approximating posterior more powerful by adding
additional layers of latent variables below the RBM. While these layers can be discrete, we focus on
continuous variables, which have proven to be powerful in generative adversarial networks (Goodfel-
low et al., 2014) and traditional variational autoencoders (Kingma & Welling, 2014; Rezende et al.,
2014). When positioned below and conditioned on a layer of discrete variables, continuous variables
can build continuous manifolds, from which the discrete variables can choose. This complements
the structure of the natural world, where a percept is determined first by a discrete selection of the
types of objects present in the scene, and then by the position, pose, and other continuous attributes
of these objects.

Specifically, we augment the latent representation with continuous random variables z,7 and define
both the approximating posterior and the prior to be layer-wise fully autoregressive directed graphi-
cal models. We use the same autoregressive variable order for the approximating posterior as for the

7We always use a variant of z for latent variables. This is Fraktur z, or German z.
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(a) Approx post w/ cont latent vars q(z, ζ, z|x)

z

ζ
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x

(b) Prior w/ cont latent vars p(x, z, ζ, z)

Figure 4: Graphical models of the approximating posterior (a) and prior (b) with a hierarchy of
continuous latent variables. The shaded regions in parts (a) and (b) expand to Figures 3a and 1b
respectively. The continuous latent variables z build continuous manifolds, capturing properties like
position and pose, conditioned on the discrete latent variables z, which can represent the discrete
types of objects in the image.

prior, as in DRAW (Gregor et al., 2015), variational recurrent neural networks (Chung et al., 2015),
the deep VAE of Salimans (2016), and ladder networks (Rasmus et al., 2015; Sønderby et al., 2016).
We discuss the motivation for this ordering in Appendix G.

The directed graphical model of the approximating posterior and prior are defined by:

q(z0, . . . , zn|x, φ) =
∏

0≤m≤n
q (zm|zl<m, x, φ) and

p(z0, . . . , zn|θ) =
∏

0≤m≤n
p (zm|zl<m, θ) . (13)

The full set of latent variables associated with the RBM is now denoted by z0 = {z1, ζ1, . . . , zk, ζk}.
However, the conditional distributions in Equation 13 only depend on the continuous ζj . Each zm≥1
denotes a layer of continuous latent variables, and Figure 4 shows the resulting graphical model.

The ELBO decomposes as:

L(x, θ, φ) = Eq(z|x,φ) [log p(x|z, θ)]−
∑
m

Eq(zl<m|x,φ) [KL [q(zm|zl<m, x, φ)||p(zm|zl<m, θ)]] .

(14)

If both q(zm|zl<m, x, φ) and p(zm|zl<m, θ) are Gaussian, then their KL divergence has a simple
closed form, which is computationally efficient if the covariance matrices are diagonal. Gradients
can be passed through the q(zl<m|x, φ) using the traditional reparameterization trick, described in
Section 1.1.

5 RESULTS

Discrete variational autoencoders comprise a smoothed RBM (Section 2) with a hierarchical approx-
imating posterior (Section 3), followed by a hierarchy of continuous latent variables (Section 4). We
parameterize all distributions with neural networks, except the smoothing distribution r(ζ|z) dis-
cussed in Section 2. Like NVIL (Mnih & Gregor, 2014) and VAEs (Kingma & Welling, 2014;
Rezende et al., 2014), we define all approximating posteriors q to be explicit functions of x, with
parameters φ shared between all inputs x. For distributions over discrete variables, the neural net-
works output the parameters of a factorial Bernoulli distribution using a logistic final layer, as in
Equation 10; for the continuous z, the neural networks output the mean and log-standard deviation
of a diagonal-covariance Gaussian distribution using a linear final layer. Each layer of the neu-
ral networks parameterizing the distributions over z, z, and x consists of a linear transformation,
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batch normalization (Ioffe & Szegedy, 2015) (but see Appendix H.2), and a rectified-linear point-
wise nonlinearity (ReLU). We stochastically approximate the expectation with respect to the RBM
prior p(z|θ) in Equation 11 using block Gibbs sampling on persistent Markov chains, analogous to
persistent contrastive divergence (Tieleman, 2008). We minimize the ELBO using ADAM (Kingma
& Ba, 2015) with a decaying step size.

The hierarchical structure of Section 4 is very powerful, and overfits without strong regularization
of the prior, as shown in Appendix H. In contrast, powerful approximating posteriors do not induce
significant overfitting. To address this problem, we use conditional distributions over the input
p(x|ζ, θ) without any deterministic hidden layers, except on Omniglot. Moreover, all other neural
networks in the prior have only one hidden layer, the size of which is carefully controlled. On
statically binarized MNIST, Omniglot, and Caltech-101, we share parameters between the layers of
the hierarchy over z. We present the details of the architecture in Appendix H.

We train the resulting discrete VAEs on the permutation-invariant MNIST (LeCun et al., 1998), Om-
niglot8 (Lake et al., 2013), and Caltech-101 Silhouettes datasets (Marlin et al., 2010). For MNIST,
we use both the static binarization of Salakhutdinov & Murray (2008) and dynamic binarization.
Estimates of the log-likelihood9 of these models, computed using the method of (Burda et al., 2016)
with 104 importance-weighted samples, are listed in Table 1. The reported log-likelihoods for dis-
crete VAEs are the average of 16 runs; the standard deviation of these log-likelihoods are 0.08, 0.04,
0.05, and 0.11 for dynamically and statically binarized MNIST, Omniglot, and Caltech-101 Silhou-
ettes, respectively. Removing the RBM reduces the test set log-likelihood by 0.09, 0.37, 0.69, and
0.66.

MNIST (dynamic binarization) MNIST (static binarization)
LL ELBO LL

DBN -84.55 HVI -88.30 -85.51
IWAE -82.90 DRAW -87.40
Ladder VAE -81.74 NAIS NADE -83.67
Discrete VAE -80.15 Normalizing flows -85.10

Variational Gaussian process -81.32
Discrete VAE -84.58 -81.01

Omniglot Caltech-101 Silhouettes
LL LL

IWAE -103.38 IWAE -117.2
Ladder VAE -102.11 RWS SBN -113.3
RBM -100.46 RBM -107.8
DBN -100.45 NAIS NADE -100.0
Discrete VAE -97.43 Discrete VAE -97.6

Table 1: Test set log-likelihood of various models on the permutation-invariant MNIST, Omniglot,
and Caltech-101 Silhouettes datasets. For the discrete VAE, the reported log-likelihood is estimated
with 104 importance-weighted samples (Burda et al., 2016). For comparison, we also report perfor-
mance of some recent state-of-the-art techniques. Full names and references are listed in Appendix I.

We further analyze the performance of discrete VAEs on dynamically binarized MNIST: the largest
of the datasets, requiring the least regularization. Figure 5 shows the generative output of a discrete
VAE as the Markov chain over the RBM evolves via block Gibbs sampling. The RBM is held con-
stant across each sub-row of five samples, and variation amongst these samples is due to the layers
of continuous latent variables. Given a multimodal distribution with well-separated modes, Gibbs
sampling passes through the large, low-probability space between the modes only infrequently. As
a result, consistency of the digit class over many successive rows in Figure 5 indicates that the RBM
prior has well-separated modes. The RBM learns distinct, separated modes corresponding to the
different digit types, except for 3/5 and 4/9, which are either nearby or overlapping; at least tens of

8We use the partitioned, preprocessed Omniglot dataset of Burda et al. (2016), available from
https://github.com/yburda/iwae/tree/master/datasets/OMNIGLOT.

9The importance-weighted estimate of the log-likelihood is a lower bound, except for the log partition
function of the RBM. We describe our unbiased estimation method for the partition function in Appendix H.1.
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Figure 5: Evolution of samples from a discrete VAE trained on dynamically binarized MNIST, using
persistent RBM Markov chains. We perform 100 iterations of block-Gibbs sampling on the RBM
between successive rows. Each horizontal group of 5 uses a single, shared sample from the RBM,
but independent continuous latent variables, and shows the variation induced by the continuous
layers as opposed to the RBM. The long vertical sequences in which the digit ID remains constant
demonstrate that the RBM has well-separated modes, each of which corresponds to a single (or
occasionally two) digit IDs, despite being trained in a wholly unsupervised manner.
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Figure 6: Log likelihood versus the number of iterations of block Gibbs sampling per minibatch (a),
the number of units in the RBM (b), and the number of layers in the approximating posterior over
the RBM (c). Better sampling (a) and hierarchical approximating posteriors (c) support better per-
formance, but the network is robust to the size of the RBM (b).

thousands of iterations of single-temperature block Gibbs sampling is required to mix between the
modes. We present corresponding figures for the other datasets, and results on simplified architec-
tures, in Appendix J.

The large mixing time of block Gibbs sampling on the RBM suggests that training may be con-
strained by sample quality. Figure 6a shows that performance10 improves as we increase the num-
ber of iterations of block Gibbs sampling performed per minibatch on the RBM prior: p(z|θ) in
Equation 11. This suggests that a further improvement may be achieved by using a more effective
sampling algorithm, such as parallel tempering (Swendsen & Wang, 1986).

10All models in Figure 6 use only 10 layers of continuous latent variables, for computational efficiency.
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Commensurate with the small number of intrinsic classes, a moderately sized RBM yields the best
performance on MNIST. As shown in Figure 6b, the log-likelihood plateaus once the number of
units in the RBM reaches at least 64. Presumably, we would need a much larger RBM to model a
dataset like Imagenet, which has many classes and complicated relationships between the elements
of various classes.

The benefit of the hierarchical approximating posterior over the RBM, introduced in Section 3, is
apparent from Figure 6c. The reduction in performance when moving from 4 to 8 layers in the
approximating posterior may be due to the fact that each additional hierarchical layer over the ap-
proximating posterior adds three layers to the encoder neural network: there are two deterministic
hidden layers for each stochastic latent layer. As a result, expanding the number of RBM approx-
imating posterior layers significantly increases the number of parameters that must be trained, and
increases the risk of overfitting.

6 CONCLUSION

Datasets consisting of a discrete set of classes are naturally modeled using discrete latent variables.
However, it is difficult to train probabilistic models over discrete latent variables using efficient
gradient approximations based upon backpropagation, such as variational autoencoders, since it is
generally not possible to backpropagate through a discrete variable (Bengio et al., 2013).

We avoid this problem by symmetrically projecting the approximating posterior and the prior into a
continuous space. We then evaluate the autoencoding term of the evidence lower bound exclusively
in the continous space, marginalizing out the original discrete latent representation. At the same
time, we evaluate the KL divergence between the approximating posterior and the true prior in the
original discrete space; due to the symmetry of the projection into the continuous space, it does not
contribute to the KL term. To increase representational power, we make the approximating posterior
over the discrete latent variables hierarchical, and add a hierarchy of continuous latent variables
below them. The resulting discrete variational autoencoder achieves state-of-the-art performance on
the permutation-invariant MNIST, Omniglot, and Caltech-101 Silhouettes datasets.
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A MULTIVARIATE VAES BASED ON THE CUMULATIVE DISTRIBUTION
FUNCTION

The reparameterization trick is always possible if the cumulative distribution function (CDF) of
q(z|x, φ) is invertible, and the inverse CDF is differentiable, as noted in Kingma & Welling (2014).
However, for multivariate distributions, the CDF is defined by:

F (x) =

∫ x1

x′1=−∞
· · ·
∫ xn

x′n=−∞
p(x′1, . . . , x

′
n).
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The multivariate CDF mapsRn → [0, 1], and is generally not invertible.11

In place of the multivariate CDF, consider the set of conditional-marginal CDFs defined by:12

Fi(x) =

∫ x

x′i=−∞
p (x′i|x1, . . . , xi−1) . (15)

That is, Fj(x) is the CDF of xj , conditioned on all xi such that i < h, and marginalized over
all xk such the j < k. The range of each Fj is [0, 1], so F maps the domain of the original
distribution to ρ ∈ [0, 1]

n. To invert F, we need only invert each conditional-marginal CDF in turn,
conditioning xj = F−1j (ρ) on x1 = F−11 (ρ), . . . , xj−1 = F−1j−1(ρ). These inverses exist so long as
the conditional-marginal probabilities are everywhere nonzero. It is not problematic to effectively
define F−1j (ρ) based upon xi<j , rather than ρi<j , since by induction we can uniquely determine
xi<j given ρi<j .

Using integration-by-substition, we can compute the gradient of the ELBO by taking the expectation
of a uniform random variable ρ on [0, 1]n, and using F−1q(z|x,φ) to transform ρ back to the element
of z on which p(x|z, θ) is conditioned. To perform integration-by-substitution, we will require the
determinant of the Jacobian of F−1.

The derivative of a CDF is the probability density function at the selected point, and Fj is a simple
CDF when we hold fixed the variables xi<j on which it is conditioned, so using the inverse function
theorem we find:

∂F−1j (ρ)

∂ρj
=

1

F ′j(F
−1
j (ρ))

=
1

p
(
xj = F−1j (ρ)|xi<j ,

)

where ρ is a vector, and F ′j is ∂Fj∂ρj
. The Jacobian matrix ∂F

∂x is triangular, since the earlier conditional-
marginal CDFs Fj are independent of the value of the later xk, j < k, over which they are marginal-
ized. Moreover, the inverse conditional-marginal CDFs have the same dependence structure as F,
so the Jacobian of F−1 is also triangular. The determinant of a triangular matrix is the product of
the diagonal elements.

11For instance, for the bivariate uniform distribution on the interval [0, 1]2, the CDF F (x, y) = x · y for
0 ≤ x, y ≤ 1, so for any 0 ≤ c ≤ 1 and c ≤ x ≤ 1, y = c

x
yields F (x, y) = c. Clearly, many different pairs

(x, y) yield each possible value c of F (x, y).
12The set of marginal CDFs, used to define copulas, is invertible. However, it does not gener-

ally map the original distribution to a simple joint distribution, such as a multivariate unform distribu-

tion, as required for variational autoencoders. In Equation 16,
∣∣∣∣det( ∂F−1

q(z|x,φ)(ρ)

∂φ

)∣∣∣∣ does not cancel out

q
(
F−1
q(z|x,φ)(ρ)|x, φ

)
. The determinant of the inverse Jacobian is instead

[∏
i q
(
zi = F−1

i (ρ)
)]−1, which

differs from
[
q
(
F−1
q(z|x,φ)(ρ)

)]−1

if q is not factorial. As a result, we do not recover the variational autoen-
coder formulation of Equation 16.
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Using these facts to perform a multivariate integration-by-substitution, we obtain:

Eq(z|x,φ) [log p(x|z, θ)] =
∫
z

q(z|x, φ) · log p(x|z, θ)

=

∫ 1

ρ=0

q
(
F−1q(z|x,φ)(ρ)|x, φ

)
· log p

(
x|F−1q(z|x,φ)(ρ), θ

)
·
∣∣∣∣∣det

(
∂F−1q(z|x,φ)(ρ)

∂ρ

)∣∣∣∣∣
=

∫ 1

ρ=0

q
(
F−1q(z|x,φ)(ρ)|x, φ

)
· log p

(
x|F−1q(z|x,φ)(ρ), θ

)
·

∏
j

∂F−1qj(zj |x,φ)(ρj)

∂ρj


=

∫ 1

ρ=0

q
(
F−1q(z|x,φ)(ρ)|x, φ

)
∏
j q
(
zj = F−1j (ρ)|zi<j

) · log p(x|F−1q(z|x,φ)(ρ), θ)
=

∫ 1

ρ=0

log p
(
x|F−1q(z|x,φ)(ρ), θ

)
(16)

The variable ρ has dimensionality equal to that of z; 0 is the vector of all 0s; 1 is the vector of all 1s.

The gradient with respect to φ is then easy to approximate stochastically:

∂

∂φ
Eq(z|x,φ) [log p(x|z, θ)] ≈

1

N

∑
ρ∼U(0,1)n

∂

∂φ
log p

(
x|F−1q(z|x,φ)(ρ), θ

)
(17)

Note that if q(z|x, φ) is factorial (i.e., the product of independent distributions in each dimension zj),
then the conditional-marginal CDFs Fj are just the marginal CDFs in each direction. However, even
if q(z|x, φ) is not factorial, Equation 17 still holds so long as F is nevertheless defined to be the set
of conditional-marginal CDFs of Equation 15.

B THE DIFFICULTY OF ESTIMATING GRADIENTS OF THE ELBO WITH
REINFORCE

It is easy to construct a stochastic approximation to the gradient of the ELBO that only requires
computationally tractable samples, and admits both discrete and continuous latent variables. Un-
fortunately, this naive estimate is impractically high-variance, leading to slow training and poor
performance (Paisley et al., 2012). The variance of the gradient can be reduced somewhat using the
baseline technique, originally called REINFORCE in the reinforcement learning literature (Mnih &
Gregor, 2014; Williams, 1992; Bengio et al., 2013; Mnih & Rezende, 2016):

∂

∂φ
Eq(z|x,φ) [log p(x|z, θ)] = Eq(z|x,φ)

[
[log p(x|z, θ)−B(x)] · ∂

∂φ
log q(z|x, φ)

]
≈ 1

N

∑
z∼q(z|x,φ)

(
[log p(x|z, θ)−B(x)] · ∂

∂φ
log q(z|x, φ)

)
(18)

where B(x) is a (possibly input-dependent) baseline, which does not affect the gradient, but can
reduce the variance of a stochastic estimate of the expectation.

In REINFORCE, ∂
∂φEq(z|x,φ) [log p(x|z, θ)] is effectively estimated by something akin to a finite

difference approximation to the derivative. The autoencoding term is a function of the conditional
log-likelihood log p(x|z, θ), composed with the approximating posterior q(z|x, φ), which deter-
mines the value of z at which p(x|z, θ) is evaluated. However, the conditional log-likelihood is
never differentiated directly in REINFORCE, even in the context of the chain rule. Rather, the con-
ditional log-likelihood is evaluated at many different points z ∼ q(z|x, φ), and a weighted sum of
these values is used to approximate the gradient, just like in the finite difference approximation.

Equation 18 of REINFORCE captures much less information about p(x|z, θ) per sample than Equa-
tion 3 of the variational autoencoder, which actively makes use of the gradient. In particular, the
change of p(x|z, θ) in some direction ~d can only affect the REINFORCE gradient estimate if a sam-
ple is taken with a component in direction ~d. In aD-dimensional latent space, at leastD samples are

16



Published as a conference paper at ICLR 2017

required to capture the variation of p(x|z, θ) in all directions; fewer samples span a smaller subspace.
Since the latent representation commonly consists of dozens of variables, the REINFORCE gradi-
ent estimate can be much less efficient than one that makes direct use of the gradient of p(x|z, θ).
Moreover, we will show in Section 5 that, when the gradient is calculated efficiently, hundreds of
latent variables can be used effectively.

C AUGMENTING DISCRETE LATENT VARIABLES WITH CONTINUOUS LATENT
VARIABLES

Intuitively, variational autoencoders break the encoder13 distribution into “packets” of probability
of infinitessimal but equal mass, within which the value of the latent variables is approximately
constant. These packets correspond to a region ri < ρi < ri + δ for all i in Equation 16, and the
expectation is taken over these packets. There are more packets in regions of high probability, so
high-probability values are more likely to be selected. More rigorously, Fq(z|x,φ)(ζ) maps intervals
of high probability to larger spans of 0 ≤ ρ ≤ 1, so a randomly selected ρ ∼ U [0, 1] is more likely
to be mapped to a high-probability point by F−1q(z|x,φ)(ρ).

As the parameters of the encoder are changed, the location of a packet can move, while its mass is
held constant. That is, ζ = F−1q(z|x,φ)(ρ) is a function of φ, whereas the probability mass associated
with a region of ρ-space is constant by definition. So long as F−1q(z|x,φ) exists and is differentiable, a
small change in φ will correspond to a small change in the location of each packet. This allows us to
use the gradient of the decoder to estimate the change in the loss function, since the gradient of the
decoder captures the effect of small changes in the location of a selected packet in the latent space.

In contrast, REINFORCE (Equation 18) breaks the latent represention into segments of infinites-
simal but equal volume; e.g., zi ≤ z′i < zi + δ for all i (Williams, 1992; Mnih & Gregor, 2014;
Bengio et al., 2013). The latent variables are also approximately constant within these segments,
but the probability mass varies between them. Specifically, the probability mass of the segment
z ≤ z′ < z + δ is proportional to q(z|x, φ).
Once a segment is selected in the latent space, its location is independent of the encoder and decoder.
In particular, the gradient of the loss function does not depend on the gradient of the decoder with
respect to position in the latent space, since this position is fixed. Only the probability mass assigned
to the segment is relevant.

Although variational autoencoders can make use of the additional gradient information from the
decoder, the gradient estimate is only low-variance so long as the motion of most probability packets
has a similar effect on the loss. This is likely to be the case if the packets are tightly clustered (e.g.,
the encoder produces a Gaussian with low variance, or the spike-and-exponential distribution of
Section 2.1), or if the movements of far-separated packets have a similar effect on the total loss (e.g.,
the decoder is roughly linear).

Nevertheless, Equation 17 of the VAE can be understood in analogy to dropout (Srivastava et al.,
2014) or standout (Ba & Frey, 2013) regularization. Like dropout and standout, F−1q(z|x,φ)(ρ) is an
element-wise stochastic nonlinearity applied to a hidden layer. Since F−1q(z|x,φ)(ρ) selects a point
in the probability distribution, it rarely selects an improbable point. Like standout, the distribution
of the hidden layer is learned. Indeed, we recover the encoder of standout if we use the spike-and-
Gaussian distribution of Section E.1 and let the standard deviation σ go to zero.

However, variational autoencoders cannot be used directly with discrete latent representations, since
changing the parameters of a discrete encoder can only move probability mass between the allowed
discrete values, which are far apart. If we follow a probability packet as we change the encoder
parameters, it either remains in place, or jumps a large distance. As a result, the vast majority of
probability packets are unaffected by small changes to the parameters of the encoder. Even if we are
lucky enough to select a packet that jumps between the discrete values of the latent representation,

13Since the approximating posterior q(z|x, φ) maps each input to a distribution over the latent space, it is
sometimes called the encoder. Correspondingly, since the conditional likelihood p(x|z, θ) maps each configu-
ration of the latent variables to a distribution over the input space, it is called the decoder.
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the gradient of the decoder cannot be used to accurately estimate the change in the loss function,
since the gradient only captures the effect of very small movements of the probability packet.

To use discrete latent representations in the variational autoencoder framework, we must first trans-
form to a continuous latent space, within which probability packets move smoothly. That is, we
must compute Equation 17 over a different distribution than the original posterior distribution. Sur-
prisingly, we need not sacrifice the original discrete latent space, with its associated approximating
posterior. Rather, we extend the encoder q(z|x, φ) and the prior p(z|θ) with a transformation to a
continuous, auxiliary latent representation ζ, and correspondingly make the decoder a function of
this new continuous representation. By extending both the encoder and the prior in the same way,
we avoid affecting the remaining KL divergence in Equation 2.14

The gradient is defined everywhere if we require that each point in the original latent space map to
nonzero probability over the entire auxiliary continuous space. This ensures that, if the probability
of some point in the original latent space increases from zero to a nonzero value, no probability
packet needs to jump a large distance to cover the resulting new region in the auxiliary continuous
space. Moreover, it ensures that the conditional-marginal CDFs are strictly increasing as a function
of their main argument, and thus are invertible.

If we ignore the cases where some discrete latent variable has probability 0 or 1, we need only
require that, for every pair of points in the original latent space, the associated regions of nonzero
probability in the auxiliary continuous space overlap. This ensures that probability packets can move
continuously as the parameters φ of the encoder, q(z|x, φ), change, redistributing weight amongst
the associated regions of the auxiliary continuous space.

D ALTERNATIVE TRANSFORMATIONS FROM DISCRETE TO CONTINUOUS
LATENT REPRESENTATIONS

The spike-and-exponential transformation from discrete latent variables z to continuous latent vari-
ables ζ presented in Section 2.1 is by no means the only one possible. Here, we develop a collection
of alternative transformations.

D.1 MIXTURE OF RAMPS

As another concrete example, we consider a case where both r(ζi|zi = 0) and r(ζi|zi = 1) are
linear functions of ζi:

r(ζi|zi = 0) =

{
2 · (1− ζi), if 0 ≤ ζi ≤ 1

0, otherwise
Fr(ζi|zi=0)(ζ

′) = 2ζi − ζ2i
∣∣ζ′
0

= 2ζ ′ − ζ ′2

r(ζi|zi = 1) =

{
2 · ζi, if 0 ≤ ζi ≤ 1

0, otherwise
Fr(ζi|zi=1)(ζ

′) = ζ2i
∣∣ζ′
0

= ζ ′
2

where Fp(ζ ′) =
∫ ζ′
−∞ p(ζ) · dζ is the CDF of probability distribution p in the domain [0, 1]. The

CDF for q(ζ|x, φ) as a function of q(z = 1|x, φ) is:

Fq(ζ|x,φ)(ζ
′) = (1− q(z = 1|x, φ)) ·

(
2ζ ′ − ζ ′2

)
+ q(z = 1|x, φ) · ζ ′2

= 2 · q(z = 1|x, φ) ·
(
ζ ′

2 − ζ ′
)
+ 2ζ ′ − ζ ′2. (19)

14Rather than extend the encoder and the prior, we cannot simply prepend the transformation to continuous
space to the decoder, since this does not change the space of the probabilty packets.
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We can calculate F−1q(ζ|x,φ) explicitly, using the substitutions Fq(ζ|x,φ) → ρ, q(z = 1|x, φ)→ q, and
ζ ′ → ζ in Equation 19 to simplify notation:

ρ = 2 · q · (ζ2 − ζ) + 2ζ − ζ2

0 = (2q − 1) · ζ2 + 2(1− q) · ζ − ρ

ζ =
2(q − 1)±

√
4(1− 2q + q2) + 4(2q − 1)ρ

2(2q − 1)

=
(q − 1)±

√
q2 + 2(ρ− 1)q + (1− ρ)

2q − 1

if q 6= 1
2 ; ρ = ζ otherwise. F−1q(ζ|x,φ) has the desired range [0, 1] if we choose

F−1(ρ) =
(q − 1) +

√
q2 + 2(ρ− 1)q + (1− ρ)

2q − 1

=
q − 1 +

√
(q − 1)2 + (2q − 1) · ρ

2q − 1
(20)

if q 6= 1
2 , and F−1(ρ) = ρ if q = 1

2 . We plot F−1q(ζ|x,φ)(ρ) as a function of q for various values of ρ
in Figure 7.
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Figure 7: Inverse CDF of the mixture of ramps transformation for ρ ∈ {0.2, 0.5, 0.8}

In Equation 20, F−1q(ζ|x,φ)(ρ) is quasi-sigmoidal as a function of q(z = 1|x, φ). If ρ � 0.5, F−1

is concave-up; if ρ � 0.5, F−1 is concave-down; if ρ ≈ 0.5, F−1 is sigmoid. In no case is F−1
extremely flat, so it does not kill gradients. In contrast, the sigmoid probability of z inevitably
flattens.

D.2 SPIKE-AND-SLAB

We can also use the spike-and-slab transformation, which is consistent with sparse coding and
proven in other successful generative models (Courville et al., 2011):

r(ζi|zi = 0) =

{∞, if ζi = 0

0, otherwise
Fr(ζi|zi=0)(ζ

′) = 1

r(ζi|zi = 1) =

{
1, if 0 ≤ ζi ≤ 1

0, otherwise
Fr(ζi|zi=1)(ζ

′) = ζi|ζ
′

0 = ζ ′

where Fp(ζ ′) =
∫ ζ′
−∞ p(ζ) · dζ is the cumulative distribution function (CDF) of probability distribu-

tion p in the domain [0, 1]. The CDF for q(ζ|x, φ) as a function of q(z = 1|x, φ) is:

Fq(ζ|x,φ)(ζ
′) = (1− q(z = 1|x, φ)) · Fr(ζi|zi=0)(ζ

′) + q(z = 1|x, φ) · Fr(ζi|zi=1)(ζ
′)

= q(z = 1|x, φ) · (ζ ′ − 1) + 1.
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We can calculate F−1q(ζ|x,φ) explicitly, using the substitution q(z = 1|x, φ)→ q to simplify notation:

F−1q(ζ|x,φ)(ρ) =

{
ρ−1
q + 1, if ρ ≥ 1− q

0, otherwise

We plot F−1q(ζ|x,φ)(ρ) as a function of q for various values of ρ in Figure 8.
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Figure 8: Inverse CDF of the spike-and-slab transformation for ρ ∈ {0.2, 0.5, 0.8}

D.3 ENGINEERING EFFECTIVE SMOOTHING TRANSFORMATIONS

If the smoothing transformation is not chosen appropriately, the contribution of low-probability
regions to the expected gradient of the inverse CDF may be large. Using a variant of the inverse
function theorem, we find:

∂

∂θ
F (F−1(ρ)) =

∂F

∂θ

∣∣∣∣
F−1(ρ)

+
∂F

∂z

∣∣∣∣
F−1(ρ)

· ∂
∂θ
F−1(ρ) = 0

p(z) · ∂
∂θ
F−1(ρ) = −∂F

∂θ

∣∣∣∣
z

, (21)

where z = F−1(ρ). Consider the case where r(ζi|zi = 0) and r(ζi|zi = 1) are unimodal, but have
little overlap. For instance, both distributions might be Gaussian, with means that are many standard
deviations apart. For values of ζi between the two modes, F (ζi) ≈ q(zi = 0|x, φ), assuming
without loss of generality that the mode corresponding to zi = 0 occurs at a smaller value of ζi than
that corresponding to zi = 1. As a result, ∂F∂q ≈ 1 between the two modes, and ∂F−1

∂q ≈ 1
r(ζi)

even
if r(ζi) ≈ 0. In this case, the stochastic estimates of the gradient in equation 8, which depend upon
∂F−1

∂q , have large variance.

These high-variance gradient estimates arise because r(ζi|zi = 0) and r(ζi|zi = 1) are too well
separated, and the resulting smoothing transformation is too sharp. Such disjoint smoothing trans-
formations are analogous to a sigmoid transfer function σ(c · x), where σ is the logistic function
and c → ∞. The smoothing provided by the continuous random variables ζ is only effective
if there is a region of meaningful overlap between r(ζ|z = 0) and r(ζ|z = 1). In particular,∑
zi
r(ζi|zi = 0)+ r(ζi|zi = 1)� 0 for all ζi between the modes of r(ζi|zi = 0) and r(ζi|zi = 1),

so p(z) remains moderate in equation 21. In the spike-and-exponential distribution described in
Section 2.1, this overlap can be ensured by fixing or bounding β.

E TRANSFORMATIONS FROM DISCRETE TO CONTINUOUS LATENT
REPRESENTATIONS THAT DEPEND UPON THE INPUT

It is not necessary to define the transformation from discrete to continuous latent variables in the
approximating posterior, r(ζ|z), to be independent of the input x. In the true posterior distribution,
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p(ζ|z, x) ≈ p(ζ|z) only if z already captures most of the information about x and p(ζ|z, x) changes
little as a function of x, since

p(ζ|z) =
∫
x

p(ζ, x|z) =
∫
x

p(ζ|z, x) · p(x|z).

This is implausible if the number of discrete latent variables is much smaller than the entropy of the
input data distribution. To address this, we can define:

q(ζ, z|x, φ) = q(z|x, φ) · q(ζ|z, x, φ)
p(ζ, z|θ) = p(ζ|z) · p(z|θ)

This leads to an evidence lower bound that resembles that of Equation 2, but adds an extra term:

LV AE(x, θ, φ) = log p(x|θ)− KL [q(z, ζ|x, φ)||p(z, ζ|x, θ)]
= log p(x|θ)− KL [q(ζ|z, x, φ) · q(z|x, φ)||p(ζ|z, x, θ) · p(z|x, θ)]

=
∑
z

∫
ζ

q(ζ|z, x, φ) · q(z|x, φ) · log
[
p(x|ζ, θ) · p(ζ|z, θ) · p(z|θ)
q(ζ|z, x, φ) · q(z|x, φ)

]
= Eq(ζ|z,x,φ)·q(z|x,φ) [log p(x|ζ, θ)]− KL [q(z|x, φ)||p(z|θ)]
−
∑
z

q(z|x, φ) · KL [q(ζ|z, x, φ)||p(ζ|z)] . (22)

The extension to hierarchical approximating posteriors proceeds as in sections 3 and 4.

If both q(ζ|z, x, φ) and p(ζ|z) are Gaussian, then their KL divergence has a simple closed form,
which is computationally efficient if the covariance matrices are diagonal. However, while the gra-
dients of this KL divergence are easy to calculate when conditioned on z, the gradients with respect
of q(z|x, φ) in the new term seem to force us into a REINFORCE-like approach (c.f. Equation 18):∑
z

∂q(z|x, φ)
∂φ

·KL [q(ζ|z, x, φ)||p(ζ|z)] = Eq(z|x,φ)
[

KL [q(ζ|z, x, φ)||p(ζ|z)] · ∂ log q(z|x, φ)
∂φ

]
.

(23)
The reward signal is now KL [q(ζ|z, x, φ)||p(ζ|z)] rather than log p(x|z, θ), but the effect on the
variance is the same, likely negating the advantages of the variational autoencoder in the rest of the
loss function.

However, whereas REINFORCE is high-variance because it samples over the expectation, we can
perform the expectation in Equation 23 analytically, without injecting any additional variance.
Specifically, if q(z|x, φ) and q(ζ|z, x, φ) are factorial, with q(ζi|zi, x, φ) only dependent on zi,
then KL [q(ζ|z, x, φ)||p(ζ|z)] decomposes into a sum of the KL divergences over each variable, as
does ∂ log q(z|x,φ)

∂φ . The expectation of all terms in the resulting product of sums is zero except those

of the form E
[
KL [qi||pi] · ∂ log qi

∂φ

]
, due to the identity explained in Equation 27. We then use the

reparameterization trick to eliminate all hierarchical layers before the current one, and marginalize
over each zi. As a result, we can compute the term of Equation 23 by backpropagating

KL [q(ζ|z = 1, x, φ||p(ζ|z = 1)]− KL [q(ζ|z = 0, x, φ)||p(ζ|z = 0)]

into q(z|x, φ). This is especially simple if q(ζi|zi, x, φ) = p(ζi|zi) when zi = 0, since then
KL [q(ζ|z = 0, x, φ)||p(ζ|z = 0)] = 0.

E.1 SPIKE-AND-GAUSSIAN

We might wish q(ζi|zi, x, φ) to be a separate Gaussian for both values of the binary zi. However, it
is difficult to invert the CDF of the resulting mixture of Gaussians. It is much easier to use a mixture
of a delta spike and a Gaussian, for which the CDF can inverted piecewise:

q(ζi|zi = 0, x, φ) = δ(ζi) Fq(ζi|zi=0,x,φ)(ζi) = H(ζi) =

{
0, if ζi < 0

1, otherwise

q(ζi|zi = 1, x, φ) = N
(
µq,i(x, φ), σ

2
q,i(x, φ)

)
Fq(ζi|zi=1,x,φ)(ζi) =

1

2

[
1 + erf

(
ζi − µq,i(x, φ)√

2σq,i(x, φ)

)]
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where µq(x, φ) and σq(x, φ) are functions of x and φ. We use the substitutions q(zi = 1|x, φ)→ q,
µq,i(x, φ)→ µq,i, and σq,i(x, φ)→ σq,i in the sequel to simplify notation. The prior distribution p
is similarly parameterized.

We can now find the CDF for q(ζ|x, φ) as a function of q(z = 1|x, φ)→ q:

Fq(ζ|x,φ)(ζi) = (1− qi) ·H(ζi)

+
qi
2
·
[
1 + erf

(
ζi − µq,i√

2σq,i

)]
Since zi = 0 makes no contribution to the CDF until ζi = 0, the value of ρ at which ζi = 0 is

ρstepi =
qi
2

[
1 + erf

(
−µq,i√
2σq,i

)]
so:

ζi =


µq,i +

√
2σq,i · erf−1

(
2ρi
qi
− 1
)
, if ρi < ρstepi

0, if ρstepi ≤ ρi ≤ ρstepi + (1− qi)
µq,i +

√
2σq,i · erf−1

(
2(ρi−1)
qi

+ 1
)
, otherwise

Gradients are always evaluated for fixed choices of ρ, and gradients are never taken with respect
to ρ. As a result, expectations with respect to ρ are invariant to permutations of ρ. Furthermore,

2ρi
qi
− 1 =

2(ρ′i − 1)

qi
+ 1

where ρ′i = ρi + (1− qi). We can thus shift the delta spike to the beginning of the range of ρi, and
use

ζi =

{
0, if ρi ≤ 1− qi
µq,i +

√
2σq,i · erf−1

(
2(ρi−1)
qi

+ 1
)
, otherwise

All parameters of the multivariate Gaussians should be trainable functions of x, and independent of
q. The new term in Equation 22 is:∑

z

q(z|x, φ) · KL [q(ζ|z, x, φ)||p(ζ|z)] =∑
z,i

q(zi = 1|x, φ) · KL [q(ζi|zi = 1, x, φ)||p(ζi|zi = 1)]

+ (1− q(zi = 1|x, φ)) · KL [q(ζi|zi = 0, x, φ)||p(ζi|zi = 0)]

If zi = 0, then q(ζi|zi = 0, x, φ) = p(ζi|zi = 0, θ), and KL [q(ζi|zi = 0, x, φ)||p(ζi|zi = 0, θ)] = 0
as in Section 2. The KL divergence between two multivariate Gaussians with diagonal covariance
matrices, with means µp,i, µq,i, and covariances σ2

p,i and σ2
q,i, is

KL [q||p] =
∑
i

(
log σp,i − log σq,i +

σ2
q,i + (µq,i − µp,i)2

2 · σ2
p,i

− 1

2

)
To train q(zi = 1|x, φ), we thus need to backpropagate KL [q(ζi|zi = 1, x, φ)||p(ζi|zi = 1)] into it.

Finally,

∂KL[q||p]
∂µq,i

=
µq,i − µp,i

σ2
p,i

∂KL[q||p]
∂σq,i

= − 1

σq,i
+
σq,i
σ2
p,i
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so

∑
z

q(z|x, φ) · ∂

∂µq,i
KL [q||p] = q(zi = 1|x, φ) · µq,i − µp,i

σ2
p,i∑

z

q(z|x, φ) · ∂

∂σq,i
KL [q||p] = q(zi = 1|x, φ) ·

(
− 1

σq,i
+
σq,i
σ2
p,i

)

For p, it is not useful to make the mean values of ζ adjustable for each value of z, since this is
redundant with the parameterization of the decoder. With fixed means, we could still parameterize
the variance, but to maintain correspondence with the standard VAE, we choose the variance to be
one.

F COMPUTING THE GRADIENT OF KL [q(ζ, z|x, φ)||p(ζ, z|θ)]

The KL term of the ELBO (Equation 2) is not significantly affected by the introduction of additional
continuous latent variables ζ, so long as we use the same expansion r(ζ|z) for both the approximat-
ing posterior and the prior:

KL [q||p] =
∑
z

∫
ζ

 ∏
1≤j≤k

r(ζj |zj) · q(zj |ζi<j , x)

 · log [∏1≤j≤k r(ζj |zj) · q(zj |ζi<j , x)
p(z) ·∏1≤j≤k r(ζj |zj)

]

=
∑
z

∫
ζ

 ∏
1≤j≤k

r(ζj |zj) · q(zj |ζi<j , x)

 · log [∏1≤j≤k q(zj |ζi<j , x)
p(z)

]
. (24)

The gradient of Equation 24 with respect to the parameters θ of the prior, p(z|θ), can be es-
timated stochastically using samples from the approximating posterior, q(ζ, z|x, φ), and the true
prior, p(z|θ). When the prior is an RBM, defined by Equation 6, we find:

− ∂

∂θ
KL [q||p] = −

∑
ζ,z

q(ζ, z|x, φ) · ∂Ep(z, θ)
∂θ

+
∑
z

p(z|θ) · ∂Ep(z, θ)
∂θ

= −Eq(z1|x,φ)
[
· · ·
[
Eq(zk|ζi<k,x,φ)

[
∂Ep(z, θ)

∂θ

]]]
+ Ep(z|θ)

[
∂Ep(z, θ)

∂θ

]
(25)

The final expectation with respect to q(zk|ζi<k, x, φ) can be performed analytically; all other expec-
tations require samples from the approximating posterior. Similarly, for the prior, we must sample
from the RBM, although Rao-Blackwellization can be used to marginalize half of the units.

F.1 GRADIENT OF THE ENTROPY WITH RESPECT TO φ

In contrast, the gradient of the KL term with respect to the parameters of the approximating posterior
is severely complicated by a nonfactorial approximating posterior. We break KL [q||p] into two
terms, the negative entropy

∑
z,ζ q log q, and the cross-entropy −∑z,ζ q log p, and compute their

gradients separately.
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We can regroup the negative entropy term of the KL divergence so as to use the reparameterization
trick to backpropagate through

∏
i<j q(zj |ζi<j , x):

−H(q) =
∑
z

∫
ζ

 ∏
1≤j≤k

r(ζj |zj) · q(zj |ζi<j , x)

 · log
 ∏
1≤j≤k

q(zj |ζi<j , x)


=
∑
z

∫
ζ

∏
j

r(ζj |zj) · q(zj |ζi<j , x)

 ·
∑

j

log q(zj |ζi<j , x)


=
∑
j

∑
z

∫
ζ

∏
i≤j

r(ζi|zi) · q(zi|ζh<i, x)

 · log q(zj |ζi<j , x)
=
∑
j

Eq(ζi<j ,zi<j |x,φ)

∑
zj

q(zj |ζi<j , x) · log q(zj |ζi<j , x)


=
∑
j

Eρi<j

∑
zj

q(zj |ρi<j , x) · log q(zj |ρi<j , x)

 (26)

where indices i and j denote hierarchical groups of variables. The probability q(zj |ρi<j , x) is
evaluated analytically, whereas all variables zi<j and ζi<j are implicitly sampled stochastically
via ρi<j .

We wish to take the gradient of −H(q) in Equation 26. Using the identity:

Eq
[
c · ∂
∂φ

log q

]
= c ·

∑
z

q ·
(
∂q

∂φ
/q

)
= c · ∂

∂φ

(∑
z

q

)
= 0 (27)

for any constant c, we can eliminate the gradient of log qj|ρi<j in −∂H(q)
∂φ , and obtain:

− ∂

∂φ
H(q) =

∑
j

Eρi<j

∑
zj

(
∂

∂φ
q(zj |ρi<j , x)

)
· log q(zj |ρi<j , x)

 .
Moreover, we can eliminate any log-partition function in log q(zj |ρi<j , x) by an argument analogous
to Equation 27.15 By repeating this argument one more time, we can break ∂

∂φq(zj |ρi<j , x) into its
factorial components.16 If zi ∈ {0, 1}, then using Equation 10, gradient of the negative entropy
reduces to:

− ∂

∂φ
H(q) =

∑
j

Eρi<j

∑
ι∈j

∑
zι

qι(zι) ·
(
zι ·

∂gι
∂φ
−
∑
zι

(
qι(zι) · zι ·

∂gι
∂φ

))
· (gι · zι)


=
∑
j

Eρi<j

[
∂g>j
∂φ
·
(
gj �

[
qj(zj = 1)− q2j (zj = 1)

])]
where ι and zι correspond to single variables within the hierarchical groups denoted by j. In Ten-
sorFlow, it might be simpler to write:

− ∂

∂φ
H(q) = Eρi<j

[
∂q>j (zj = 1)

∂φ
· gj
]
.

15∑
z c ·

∂q
∂φ

= c · ∂
∂φ

∑
z q = 0, where c is the log partition function of q(zj |ρi<j , x).

16 ∂
∂φ

∏
i qi =

∑
i
∂qi
∂φ
·
∏
j 6=i qj , so the qj 6=i marginalize out of ∂qi

∂φ
·
∏
j 6=i qj when multiplied by log qi.

When ∂qi
∂φ
·
∏
j 6=i qj is multiplied by one of the log qj 6=i, the sum over zi can be taken inside the ∂

∂φ
, and again

∂
∂φ

∑
zi
qi = 0.
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F.2 GRADIENT OF THE CROSS-ENTROPY

The gradient of the cross-entropy with respect to the parameters φ of the approximating posterior
does not depend on the partition function of the prior Zp, since:

− ∂

∂φ

∑
z

q log p =
∑
z

∂

∂φ
q · Ep +

∂

∂φ
q · logZp =

∑
z

∂

∂φ
q · Ep

by Equations 6 and 27, so we are left with the gradient of the average energy Ep.

The remaining cross-entropy term is∑
z

q · Ep = −Eρ
[
z> ·W · z + b> · z

]
.

We can handle the term b> · z analytically, since zi ∈ {0, 1}, and

Eρ
[
b> · z

]
= b> · Eρ [q(z = 1)] .

The approximating posterior q is continuous, with nonzero derivative, so the reparameterization trick
can be applied to backpropagate gradients:

∂

∂φ
Eρ
[
b> · z

]
= b> · Eρ

[
∂

∂φ
q(z = 1)

]
.

In contrast, each element of the sum

z> ·W · z =
∑
i,j

Wij · zi · zj

depends upon variables that are not usually in the same hierarchical level, so in general
Eρ [Wijzizj ] 6=WijEρ [zi] · Eρ [zj ] .

We might decompose this term into
Eρ [Wijzizj ] =Wij · Eρk≤i

[
zi · Eρk>i [zj ]

]
,

where without loss of generality zi is in an earlier hierarchical layer than zj ; however, it is not clear
how to take the derivative of zi, since it is a discontinuous function of ρk≤i.

F.3 NAIVE APPROACH

The naive approach would be to take the gradient of the expectation using the gradient of log-
probabilities over all variables:

∂

∂φ
E [Wijzizj ] = Eq

[
Wijzizj ·

∂

∂φ
log q

]
= Eq1,q2|1,...

[
Wijzizj ·

∑
k

∂

∂φ
log qk|l<k

]
(28)

= Eq1,q2|1,...

[
Wijzizj ·

∑
k

1

qk|l<k
· ∂qk|l<k

∂φ

]
.

For ∂qk|l<k∂φ , we can drop out terms involving only zi<k and zj<k that occur hierarchically before k,
since those terms can be pulled out of the expectation over qk, and we can apply Equation 27.
However, for terms involving zi>k or zj>k that occur hierarchically after k, the expected value of zi
or zj depends upon the chosen value of zk.

The gradient calculation in Equation 28 is an instance of the REINFORCE algorithm (Equation 18).
Moreover, the variance of the estimate is proportional to the number of terms (to the extent that the
terms are independent). The number of terms contributing to each gradient ∂qk|l<k∂φ grows quadrati-
cally with number of units in the RBM. We can introduce a baseline, as in NVIL (Mnih & Gregor,
2014):

Eq
[
(Wijzizj − c(x)) ·

∂

∂φ
log q

]
,

but this approximation is still high-variance.
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F.4 DECOMPOSITION OF ∂
∂φWijzizj VIA THE CHAIN RULE

When using the spike-and-exponential, spike-and-slab, or spike-and-Gaussian distributions of sec-
tions 2.1 D.2, and E.1, we can decompose the gradient of E [Wijzizj ] using the chain rule. Previ-
ously, we have considered z to be a function of ρ and φ. We can instead formulate z as a function of
q(z = 1) and ρ, where q(z = 1) is itself a function of ρ and φ. Specifically,

zi(qi(zi = 1), ρi) =

{
0 if ρi < 1− qi(zi = 1) = qi(zi = 0)

1 otherwise.
(29)

Using the chain rule, ∂
∂φzi =

∑
j

∂zi
∂qj(zj=1) ·

∂qj(zj=1)
∂φ , where ∂zi

∂qj(zj=1) holds all qk 6=j fixed, even
though they all depend on the common variables ρ and parameters φ. We use the chain rule to
differentiate with respect to q(z = 1) since it allows us to pull part of the integral over ρ inside the
derivative with respect to φ. In the sequel, we sometimes write q in place of q(z = 1) to minimize
notational clutter.

Expanding the desired gradient using the reparameterization trick and the chain rule, we find:

∂

∂φ
Eq [Wijzizj ] =

∂

∂φ
Eρ [Wijzizj ]

= Eρ

[∑
k

∂Wijzizj
∂qk(zk = 1)

· ∂qk(zk = 1)

∂φ

]
. (30)

We can change the order of integration (via the expectation) and differentiation since

|Wijzizj | ≤Wij <∞
for all ρ and bounded φ (Cheng, 2006). Although z(q, ρ) is a step function, and its derivative is
a delta function, the integral (corresponding to the expectation with respect to ρ) of its derivative
is finite. Rather than dealing with generalized functions directly, we apply the definition of the
derivative, and push through the matching integral to recover a finite quantity.

For simplicity, we pull the sum over k out of the expectation in Equation 30, and consider each
summand independently. From Equation 29, we see that zi is only a function of qi, so all terms
in the sum over k in Equation 30 vanish except k = i and k = j. Without loss of generality, we
consider the term k = i; the term k = j is symmetric. Applying the definition of the gradient to one
of the summands, and then analytically taking the expectation with respect to ρi, we obtain:

Eρ
[
∂Wij · zi(q, ρ) · zj(q, ρ)

∂qi(zi = 1)
· ∂qi(zi = 1)

∂φ

]
= Eρ

[
lim

δqi(zi=1)→0

Wij · zi(q + δqi, ρ) · zj(q + δqi, ρ)−Wij · zi(q, ρ) · zj(q, ρ)
δqi

· ∂qi(zi = 1)

∂φ

]
= Eρk 6=i

[
lim

δqi(zi=1)→0
δqi ·

Wij · 1 · zj(q, ρ)−Wij · 0 · zj(q, ρ)
δqi

· ∂qi(zi = 1)

∂φ

∣∣∣∣
ρi=qi(zi=0)

]

= Eρk 6=i

[
Wij · zj(q, ρ) ·

∂qi(zi = 1)

∂φ

∣∣∣∣
ρi=qi(zi=0)

]
.

The third line follows from Equation 29, since zi(q+ δqi, ρ) differs from zi(q, ρ) only in the region
of ρ of size δqi around qi(zi = 0) = 1− qi(zi = 1) where zi(q + δqi, ρ) 6= zi(q, ρ). Regardless of
the choice of ρ, zj(q + δqi, ρ) = zj(q, ρ).

The third line fixes ρi to the transition between zi = 0 and zi = 1 at qi(zi = 0). Since zi = 0
implies ζi = 0,17 and ζ is a continuous function of ρ, the third line implies that ζi = 0. At the same
time, since qi is only a function of ρk<i from earlier in the hierarchy, the term ∂qi

∂φ is not affected by
the choice of ρi.18 As noted above, due to the chain rule, the perturbation δqi has no effect on other

17We chose the conditional distribution r(ζi|zi = 0) to be a delta spike at zero.
18In contrast, zi is a function of ρi.
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qj by definition; the gradient is evaluated with those values held constant. On the other hand, ∂qi∂φ is
generally nonzero for all parameters governing hierarchical levels k < i.

Since ρi is fixed such that ζi = 0, all units further down the hierarchy must be sampled consis-
tent with this restriction. A sample from ρ has ζi = 0 if zi = 0, which occurs with probability
qi(zi = 0).19 We can compute the gradient with a stochastic approximation by multiplying each
sample by 1− zi, so that terms with ζi 6= 0 are ignored,20 and scaling up the gradient when zi = 0
by 1

qi(zi=0) :

∂

∂φ
E [Wijzizj ] = Eρ

[
Wij ·

1− zi
1− qi(zi = 1)

· zj ·
∂qi(zi = 1)

∂φ

]
. (31)

The term 1−zi
1−qi is not necessary if j comes before i in the hierarchy.

While Equation 31 appears similar to REINFORCE, it is better understood as an importance-
weighted estimate of an efficient gradient calculation. Just as a ReLU only has a nonzero gradi-
ent in the linear regime, ∂zi∂φ effectively only has a nonzero gradient when zi = 0, in which case
∂zi
∂φ ∼

∂qi(zi=1)
∂φ . Unlike in REINFORCE, we do effectively differentiate the reward, Wijzizj .

Moreover, the number of terms contributing to each gradient ∂qi(zi=1)
∂φ grows linearly with the num-

ber of units in an RBM, whereas it grows quadratically in the method of Section F.3.

G MOTIVATION FOR BUILDING APPROXIMATING POSTERIOR AND PRIOR
HIERARCHIES IN THE SAME ORDER

Intuition regarding the difficulty of approximating the posterior distribution over the latent variables
given the data can be developed by considering sparse coding, an approach that uses a basis set of
spatially locallized filters (Olshausen & Field, 1996). The basis set is overcomplete, and there are
generally many basis elements similar to any selected basis element. However, the sparsity prior
pushes the posterior distribution to use only one amongst each set of similar basis elements.

As a result, there is a large set of sparse representations of roughly equivalent quality for any single
input. Each basis element individually can be replaced with a similar basis element. However,
having changed one basis element, the optimal choice for the adjacent elements also changes so
the filters mesh properly, avoiding redundancy or gaps. The true posterior is thus highly correlated,
since even after conditioning on the input, the probability of a given basis element depends strongly
on the selection of the adjacent basis elements.

These equivalent representations can easily be disambiguated by the successive layers of the rep-
resentation. In the simplest case, the previous layer could directly specify which correlated set of
basis elements to use amongst the applicable sets. We can therefore achieve greater efficiency by
inferring the approximating posterior over the top-most latent layer first. Only then do we compute
the conditional approximating posteriors of lower layers given a sample from the approximating
posterior of the higher layers, breaking the symmetry between representations of similar quality.

H ARCHITECTURE

The stochastic approximation to the ELBO is computed via one pass down the approximating pos-
terior (Figure 4a), sampling from each continuous latent layer ζi and zm>1 in turn; and another pass
down the prior (Figure 4b), conditioned on the sample from the approximating posterior. In the pass
down the prior, signals do not flow from layer to layer through the entire model. Rather, the input
to each layer is determined by the approximating posterior of the previous layers, as follows from
Equation 14. The gradient is computed by backpropagating the reconstruction log-likelihood, and
the KL divergence between the approximating posterior and true prior at each layer, through this
differentiable structure.

19It might also be the case that ζi = 0 when zi = 1, but with our choice of r(ζ|z), this has vanishingly
small probability.

20This takes advantage of the fact that zi ∈ {0, 1}.
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All hyperparameters were tuned via manual experimentation. Except in Figure 6, RBMs have 128
units (64 units per side, with full bipartite connections between the two sides), with 4 layers of
hierarchy in the approximating posterior. We use 100 iterations of block Gibbs sampling, with 20
persistent chains per element of the minibatch, to sample from the prior in the stochastic approxi-
mation to Equation 11.

When using the hierarchy of continuous latent variables described in Section 4, discrete VAEs overfit
if any component of the prior is overparameterized, as shown in Figure 9a. In contrast, a larger
and more powerful approximating posterior generally did not reduce performance within the range
examined, as in Figure 9b. In response, we manually tuned the number of layers of continuous latent
variables, the number of such continuous latent variables per layer, the number of deterministic
hidden units per layer in the neural network defining each hierarchical layer of the prior, and the
use of parameter sharing in the prior. We list the selected values in Table 2. All neural networks
implementing components of the approximating posterior contain two hidden layers of 2000 units.
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(a) Prior

500 1,000 1,500 2,000

Num hidden units per encoder layer

(b) Approximating posterior

Figure 9: Log likelihood on statically binarized MNIST versus the number of hidden units per neural
network layer, in the prior (a) and approximating posterior (b). The number of deterministic hidden
layers in the networks parameterizing the prior/approximating posterior is 1 (blue), 2 (red), 3 (green)
in (a/b), respectively. The number of deterministic hidden layers in the final network parameterizing
p(x|z) is 0 (solid) or 1 (dashed). All models use only 10 layers of continuous latent variables, with
no parameter sharing.

Num
layers

Vars per
layer

Hids per
prior layer

Param
sharing

MNIST (dyn bin) 18 64 1000 none
MNIST (static bin) 20 256 2000 2 groups
Omniglot 16 256 800 2 groups
Caltech-101 Sil 12 80 100 complete

Table 2: Architectural hyperparameters used for each dataset. Successive columns list the number
of layers of continuous latent variables, the number of such continuous latent variables per layer,
the number of deterministic hidden units per layer in the neural network defining each hierarchical
layer of the prior, and the use of parameter sharing in the prior. Smaller datasets require more
regularization, and achieve optimal performance with a smaller prior.

On statically binarized MNIST, Omniglot, and Caltech-101 Silhouettes, we further regularize using
recurrent parameter sharing. In the simplest case, each p (zm|zl<m, θ) and p (x|z, θ) is a func-
tion of

∑
l<m zl, rather than a function of the concatenation [z0, z1, . . . , zm−1]. Moreover, all

p (zm≥1|zl<m, θ) share parameters. The RBM layer z0 is rendered compatible with this parame-
terization by using a trainable linear transformation of ζ, M · ζ; where the number of rows in M is
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equal to the number of variables in each zm>0. We refer to this architecture as complete recurrent
parameter sharing.

On datasets of intermediate size, a degree of recurrent parameter sharing somewhere between full
independence and complete sharing is beneficial. We define the n group architecture by dividing the
continuous latent layers zm≥1 into n equally sized groups of consecutive layers. Each such group is
independently subject to recurrent parameter sharing analogous to the complete sharing architecture,
and the RBM layer z0 is independently parameterized.

We use the spike-and-exponential transformation described in Section 2.1. The exponent is a train-
able parameter, but it is bounded above by a value that increases linearly with the number of training
epochs. We use warm-up with strength 20 for 5 epochs, and additional warm-up of strength 2 on the
RBM alone for 20 epochs (Raiko et al., 2007; Bowman et al., 2016; Sønderby et al., 2016).

When p(x|z) is linear, all nonlinear transformations are part of the prior over the latent variables.
In contrast, it is also possible to define the prior distribution over the continuous latent variables
to be a simple factorial distribution, and push the nonlinearity into the final decoder p(x|z), as in
traditional VAEs. The former case can be reduced to something analogous to the latter case using
the reparameterization trick.

However, a VAE with a completely independent prior does not regularize the nonlinearity of the
prior; whereas a hierarchical prior requires that the nonlinearity of the prior (via its effect on the
true posterior) be well-represented by the approximating posterior. Viewed another way, a com-
pletely independent prior requires the model to consist of many independent sources of variance,
so the data manifold must be fully unfolded into an isotropic ball. A hierarchical prior allows the
data manifold to remain curled within a higher-dimensional ambient space, with the approximating
posterior merely tracking its contortions. A higher-dimensional ambient space makes sense when
modeling multiple classes of objects. For instance, the parameters characterizing limb positions and
orientations for people have no analog for houses.

H.1 ESTIMATING THE LOG PARTITION FUNCTION

We estimate the log-likelihood by subtracting an estimate of the log partition function of the RBM
(logZp from Equation 6) from an importance-weighted computation analogous to that of Burda et al.
(2016). For this purpose, we estimate the log partition function using bridge sampling, a variant
of Bennett’s acceptance ratio method (Bennett, 1976; Shirts & Chodera, 2008), which produces
unbiased estimates of the partition function. Interpolating distributions were of the form p(x)β ,
and sampled with a parallel tempering routine (Swendsen & Wang, 1986). The set of smoothing
parameters β in [0, 1] were chosen to approximately equalize replica exchange rates at 0.5. This
standard criteria simultaneously keeps mixing times small, and allows for robust inference. We
make a conservative estimate for burn-in (0.5 of total run time), and choose the total length of run,
and number of repeated experiments, to achieve sufficient statistical accuracy in the log partition
function. In Figure 10, we plot the distribution of independent estimations of the log-partition
function for a single model of each dataset. These estimates differ by no more than about 0.1,
indicating that the estimate of the log-likelihood should be accurate to within about 0.05 nats.

H.2 CONSTRAINED LAPLACIAN BATCH NORMALIZATION

Rather than traditional batch normalization (Ioffe & Szegedy, 2015), we base our batch normaliza-
tion on the L1 norm. Specifically, we use:

y = x− x

xbn = y/
(
|y|+ ε

)
� s+ o,

where x is a minibatch of scalar values, x denotes the mean of x, � indicates element-wise mul-
tiplication, ε is a small positive constant, s is a learned scale, and o is a learned offset. For the
approximating posterior over the RBM units, we bound 2 ≤ s ≤ 3, and −s ≤ o ≤ s. This helps
ensure that all units are both active and inactive in each minibatch, and thus that all units are used.
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Figure 10: Distribution of estimates of the log-partition function, using Bennett’s acceptance ratio
method with parallel tempering, for a single model trained on dynamically binarized MNIST (a),
statically binarized MNIST (b), Omniglot (c), and Caltech-101 Silhouettes (d)

I COMPARISON MODELS

In Table 1, we compare the performance of the discrete variational autoencoder to a selection of
recent, competitive models. For dynamically binarized MNIST, we compare to deep belief networks
(DBN; Hinton et al., 2006), reporting the results of Murray & Salakhutdinov (2009); importance-
weighted autoencoders (IWAE; Burda et al., 2016); and ladder variational autoencoders (Ladder
VAE; Sønderby et al., 2016).

For the static MNIST binarization of (Salakhutdinov & Murray, 2008), we compare to Hamilto-
nian variational inference (HVI; Salimans et al., 2015); the deep recurrent attentive writer (DRAW;
Gregor et al., 2015); the neural adaptive importance sampler with neural autoregressive distribution
estimator (NAIS NADE; Du et al., 2015); deep latent Gaussian models with normalizing flows (Nor-
malizing flows; Rezende & Mohamed, 2015); and the variational Gaussian process (Tran et al.,
2016).

On Omniglot, we compare to the importance-weighted autoencoder (IWAE; Burda et al., 2016);
ladder variational autoencoder (Ladder VAE; Sønderby et al., 2016); and the restricted Boltzmann
machine (RBM; Smolensky, 1986) and deep belief network (DBN; Hinton et al., 2006), reporting
the results of Burda et al. (2015).

Finally, for Caltech-101 Silhouettes, we compare to the importance-weighted autoencoder (IWAE;
Burda et al., 2016), reporting the results of Li & Turner (2016); reweighted wake-sleep with a
deep sigmoid belief network (RWS SBN; Bornschein & Bengio, 2015); the restricted Boltzmann
machine (RBM; Smolensky, 1986), reporting the results of Cho et al. (2013); and the neural adaptive
importance sampler with neural autoregressive distribution estimator (NAIS NADE; Du et al., 2015).
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Figure 11: Evolution of samples from a discrete VAE trained on statically binarized MNIST, using
persistent RBM Markov chains. We perform 100 iterations of block-Gibbs sampling on the RBM
between successive rows. Each horizontal group of 5 uses a single, shared sample from the RBM, but
independent continuous latent variables, and shows the variation induced by the continuous layers
as opposed to the RBM. Vertical sequences in which the digit ID remains constant demonstrate that
the RBM has distinct modes, each of which corresponds to a single digit ID, despite being trained
in a wholly unsupervised manner.

J SUPPLEMENTARY RESULTS

To highlight the contribution of the various components of our generative model, we investigate
performance on a selection of simplified models.21 First, we remove the continuous latent layers.
The resulting prior, depicted in Figure 1b, consists of the bipartite Boltzmann machine (RBM), the
smoothing variables ζ, and a factorial Bernoulli distribution over the observed variables x defined via
a deep neural network with a logistic final layer. This probabilistic model achieves a log-likelihood
of −86.9 with 128 RBM units and −85.2 with 200 RBM units.

Next, we further restrict the neural network defining the distribution over the observed variables x
given the smoothing variables ζ to consist of a linear transformation followed by a pointwise logistic
nonlinearity, analogous to a sigmoid belief network (SBN; Spiegelhalter & Lauritzen, 1990; Neal,
1992). This decreases the negative log-likelihood to −92.7 with 128 RBM units and −88.8 with
200 RBM units.

We then remove the lateral connections in the RBM, reducing it to a set of independent binary
random variables. The resulting network is a noisy sigmoid belief network. That is, samples are
produced by drawing samples from the independent binary random variables, multiplying by an
independent noise source, and then sampling from the observed variables as in a standard SBN.
With this SBN-like architecture, the discrete variational autoencoder achieves a log-likelihood of
−97.0 with 200 binary latent variables.

Finally, we replace the hierarchical approximating posterior of Figure 3a with the factorial approxi-
mating posterior of Figure 1a. This simplification of the approximating posterior, in addition to the
prior, reduces the log-likelihood to −102.9 with 200 binary latent variables.

21In all cases, we report the negative log-likelihood on statically binarized MNIST (Salakhutdinov & Mur-
ray, 2008), estimated with 104 importance weighted samples (Burda et al., 2016).
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Figure 12: Evolution of samples from a discrete VAE trained on Omniglot, using persistent RBM
Markov chains. We perform 100 iterations of block-Gibbs sampling on the RBM between successive
rows. Each horizontal group of 5 uses a single, shared sample from the RBM, but independent
continuous latent variables, and shows the variation induced by the continuous layers as opposed to
the RBM.

Figure 13: Evolution of samples from a discrete VAE trained on Caltech-101 Silhouettes, using
persistent RBM Markov chains. We perform 100 iterations of block-Gibbs sampling on the RBM
between successive rows. Each horizontal group of 5 uses a single, shared sample from the RBM,
but independent continuous latent variables, and shows the variation induced by the continuous
layers as opposed to the RBM. Vertical sequences in which the silhouette shape remains similar
demonstrate that the RBM has distinct modes, each of which corresponds to a single silhouette type,
despite being trained in a wholly unsupervised manner.
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Figures 11, 12, and 13 repeat the analysis of Figure 5 for statically binarized MNIST, Omniglot,
and Caltech-101 Silhouettes. Specifically, they show the generative output of a discrete VAE as
the Markov chain over the RBM evolves via block Gibbs sampling. The RBM is held constant
across each sub-row of five samples, and variation amongst these samples is due to the layers of
continuous latent variables. Given a multimodal distribution with well-separated modes, Gibbs
sampling passes through the large, low-probability space between the modes only infrequently. As a
result, consistency of the object class over many successive rows in Figures 11, 12, and 13 indicates
that the RBM prior has well-separated modes.

On statically binarized MNIST, the RBM still learns distinct, separated modes corresponding to
most of the different digit types. However, these modes are not as well separated as in dynamically
binarized MNIST, as is evident from the more rapid switching between digit types in Figure 11.
There are not obvious modes for Omniglot in Figure 12; it is plausible that an RBM with 128 units
could not represent enough well-separated modes to capture the large number of distinct character
types in the Omniglot dataset. On Caltech-101 Silhouettes, there may be a mode corresponding to
large, roughly convex blobs.
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