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Abstract

In this work we study a fair variant of the near neighbor problem. Namely, given a
set of n points P and a parameter r, the goal is to preprocess the points, such that
given a query point q, any point in the r-neighborhood of the query, i.e., Bpq, rq,
have the same probability of being reported as the near neighbor.
We show that LSH based algorithms can be made fair, without a significant loss
in efficiency. Specifically, we show an algorithm that reports a point in the r-
neighborhood of a query q with almost uniform probability. The query time is
proportional to O

�
dnspq.rqQpn, cq

�
, and its space is OpSpn, cqq, where Qpn, cq

and Spn, cq are the query time and space of an LSH algorithm for c-approximate
near neighbor, and dnspq, rq is a function of the local density around q.
Our approach works more generally for sampling uniformly from a sub-collection
of sets of a given collection and can be used in a few other applications. Finally,
we run experiments to show performance of our approach on real data.

1 Introduction

Nowadays, many important decisions, such as college admissions, offering home loans, or estimat-
ing the likelihood of recidivism, rely on machine learning algorithms. There is a growing con-
cern about the fairness of the algorithms and creating bias toward a specific population or fea-
ture [HPS16, Cho17, MSP16, KLL�17]. While algorithms are not inherently biased, nevertheless,
they may amplify the already existing biases in the data. Hence, this concern has led to the design
of fair algorithms for many different applications, e.g., [DOBD�18, ABD�18, PRW�17, CKLV19,
EJJ�19, OA18, CKLV17, BIO�19, BCN19, KSAM19].

Bias in the data used for training machine learning algorithms is a monumental challenge in creat-
ing fair algorithms [HGB�07, TE11, ZVGRG17, Cho17]. Here, we are interested in a somewhat
different problem, of handling the bias introduced by the data-structures used by such algorithms.
Specifically, data-structures may introduce bias in the data stored in them, and the way they answer
queries, because of the way the data is stored and how it is being accessed. Such a defect leads to
selection bias by the algorithms using such data-structures. It is natural to want data-structures that
do not introduce a selection bias into the data when handling queries.

The target as such is to derive data-structures that are bias-neutral. To this end, imagine a data-
structure that can return, as an answer to a query, an item out of a set of acceptable answers. The
purpose is then to return uniformly a random item out of the set of acceptable outcomes, without
explicitly computing the whole set of acceptable answers (which might be prohibitively expensive).

Several notions of fairness have been studied, including group fairness1 (where demographics of the
population is preserved in the outcome) and individual fairness (where the goal is to treat individuals

1The concept is denoted as statistical fairness too, e.g., [Cho17].

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



with similar conditions similarly) [DHP�12]. In this work, we study the near neighbor problem from
the perspective of individual fairness.

Near Neighbor is a fundamental problem that has applications in many areas such as machine learn-
ing, databases, computer vision, information retrieval, and many others, see [SDI06, AI08] for an
overview. The problem is formally defined as follows. Let pM,dq be a metric space. Given a set
P � M of n points and a parameter r, the goal of the near neighbor problem is to preprocess P ,
such that for a query point q P M, one can report a point p P P , such that dpp, qq ¤ r if such a
point exists. As all the existing algorithms for the exact variant of the problem have either space
or query time that depends exponentially on the ambient dimension of M, people have considered
the approximate variant of the problem. In the c-approximate near neighbor (ANN) problem, the
algorithm is allowed to report a point p whose distance to the query is at most cr if a point within
distance r of the query exists, for some prespecified constant c ¡ 1.

Perhaps the most prominent approach to get an ANN data structure is via Locality Sensitive Hashing
(LSH) [IM98, HIM12], which leads to sub-linear query time and sub-quadratic space. In particular,
for M � Rd, by using LSH one can get a query time of nρ�op1q and space n1�ρ�op1q where for
the L1 distance metric ρ � 1{c [IM98, HIM12], and for the L2 distance metric ρ � 1{c2 � ocp1q
[AI08]. The idea of the LSH method is to hash all the points using several hash functions that are
chosen randomly, with the property that closer points have a higher probability of collision than the
far points. Therefore, the closer points to a query have a higher probability of falling into a bucket
being probed than far points. Thus, reporting a random point from a random bucket computed for
the query, produces a distribution that is biased by the distance to the query: closer points to the
query have a higher probability of being chosen.

When random nearby is better than nearest. The bias mentioned above towards nearer points
is usually a good property, but is not always desirable. Indeed, consider the following scenarios:

(I) The nearest neighbor might not be the best if the input is noisy, and the closest point might be
viewed as an unrepresentative outlier. Any point in the neighborhood might be then considered
to be equivalently beneficial. This is to some extent why k-NN classification [ELL09] is so
effective in reducing the effect of noise.

(II) However, k-NN works better in many cases if k is large, but computing the k nearest-neighbors
is quite expensive if k is large [HAAA14]. Computing quickly a random nearby neighbor can
significantly speed-up such classification.

(III) We are interested in annonymizing the query [Ada07], thus returning a random near-neighbor
might serve as first line of defense in trying to make it harder to recover the query. Simi-
larly, one might want to anonymize the nearest-neighbor [QA08], for applications were we are
interested in a “typical” data item close to the query, without identifying the nearest item.

(IV) If one wants to estimate the number of items with a desired property within the neighborhood,
then the easiest way to do it is via uniform random sampling from the neighborhood. In
particular, this is useful for density estimation [KLK12].

(V) Another natural application is simulating a random walk in the graph where two items are
connected if they are in distance at most r from each other. Such random walks are used by
some graph clustering algorithms [HK01].

1.1 Results

Our goal is to solve the near-neighbor problem, and yet be fair among “all the points” in the neigh-
borhood. We introduce and study the fair near neighbor problem – where the goal is to report any
point of Npq, rq with uniform distribution. That is, report a point within distance r of the query
point with probability of Ppq, rq � 1{npq, rq, where npq, rq � |Npq, rq|. Naturally, we study the
approximate fair near neighbor problem, where one can hope to get efficient data-structures. We
have the following results:

(I) Exact neighborhood. We present a data structure for reporting a neighbor according to an
“almost uniform” distribution with space Spn, cq, and query time rO

�
Qpn, cq � npq,crqnpq,rq

�
, where

Spn, cq and Qpn, cq are, respectively, the space and query time of the standard c-ANN data
structure. Note that, the query time of the algorithm might be high if the approximate neigh-

2



borhood of the query is much larger than the exact neighborhood.2 Guarantees of this data
structure hold with high probability. See Lemma 4.9 for the exact statement.

(II) Approximate neighborhood. This formulation reports an almost uniform distribution from
an approximate neighborhood S of the query. We can provide such a data structure that uses
space Spn, cq and whose query time is rOpQpn, cqq, albeit in expectation. See Lemma 4.3 for
the exact statement.

Moreover, the algorithm produces the samples independently of past queries. In particular, one can
assume that an adversary is producing the set of queries and has full knowledge of the data structure.
Even then the generated samples have the same (almost) uniform guarantees. Furthermore, we
remark that the new sampling strategy can be embedded in the existing LSH method to achieve
unbiased query results. Finally, we remark that to get a distribution that is p1 � εq-uniform (See
preliminaries for the definition), the dependence of our algorithms on ε is only Oplogp1{εqq.

Very recently, independent of our work, [APS19] also provides a similar definition for the fair near
neighbor problem.

Experiments. Finally, we compare the performance of our algorithm with the algorithm that uni-
formly picks a bucket and reports a random point, on the MNIST, SIFT10K, and GloVe data sets.
Our empirical results show that while the standard LSH algorithm fails to fairly sample a point
in the neighborhood of the query, our algorithm produces an empirical distribution which is much
closer to the uniform distribution: it improves the statistical distance to the uniform distribution by
a significant factor.

2 Preliminaries

Neighborhood, fair nearest-neighbor, and approximate neighborhood. Let pM,dq be a metric
space and let P � M be a set of n points. Let Bpc, rq � tx P M | dpc, xq ¤ ru be the (close) ball
of radius r around a point c P M, and let Npc, rq � Bpc, rq X P be the r-neighborhood of c in P .
The size of the r-neighborhood is npc, rq � |Npc, rq|.
Definition 2.1 (FANN). Given a data set P � M of n points and a parameter r, the goal is to
preprocess P such that for a given query q, one reports each point p P Npq, rq with probability µp
where µ is an approximately uniform probability distribution: Ppq, rq{p1�εq ¤ µp ¤ p1�εqPpq, rq,
where Ppq, rq � 1{npq, rq.

Definition 2.2 (FANN with approximate neighborhood). Given a data set P � M of n points
and a parameter r, the goal is to preprocess them such that for a given query q, one reports each
point p P S with probability µp where ϕ{p1� εq ¤ µp ¤ p1� εqϕ, where S is a point set such that
Npq, rq � S � Npq, crq, and ϕ � 1{|S|.

Set representation. Let U be an underlying ground set of n objects (i.e., elements). In this paper,
we deal with sets of objects. Assume that such a set X � U is stored in some reasonable data-
structure, where one can insert delete, or query an object in constant time. Querying for an object
o P U , requires deciding if o P X . Such a representation of a set is straightforward to implement
using an array to store the objects, and a hash table. This representation allows random access to the
elements in the set, or uniform sampling from the set.

If hashing is not feasible, one can just use a standard dictionary data-structure – this would slow
down the operations by a logarithmic factor.

Subset size estimation. We need the following standard estimation tool, [BHR�17, Lemma 2.8].
Lemma 2.3. Consider two sets B � U , where n � |U |. Let ξ, γ P p0, 1q be parameters, such
that γ   1{ log n. Assume that one is given an access to a membership oracle that, given an
element x P U , returns whether or not x P B. Then, one can compute an estimate s, such that
p1 � ξq |B| ¤ s ¤ p1 � ξq |B|, and computing this estimates requires Oppn{ |B|qξ�2 log γ�1q
oracle queries. The returned estimate is correct with probability ¥ 1� γ.

Weighted sampling. We need the following standard data-structure for weighted sampling.

2As we show, the term Qpn, rq � npq,crq
npq,rq

can also be replaced by Qpn, rq � |Npq, crqzNpq, rq| which can
potentially be smaller.
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Lemma 2.4. Given a set of objects H � to1, . . . , otu, with associated weights w1, . . . , wt, one
can preprocess them in Optq time, such that one can sample an object out of H. The probability of
an object oi to be sampled is wi{

°t
j�1 wj . In addition the data-structure supports updates to the

weights. An update or sample operation takes Oplog tq time. (Proof in Appendix A.1)

3 Data-structure: Sampling from the union of sets

The problem. Assume you are given a data-structure that contains a large collection F of sets of
objects. The sets in F are not necessarily disjoint. The task is to preprocess the data-structure, such
that given a sub-collection G � F of the sets, one can quickly pick uniformly at random an object
from the set

�
G :�

�
XPG X.

Naive solution. The naive solution is to take the sets under consideration (in G), compute their
union, and sample directly from the union set

�
G. Our purpose is to do (much) better – in particular,

the goal is to get a query time that depends logarithmically on the total size of all sets in G.

3.1 Preprocessing

For each set X P F , we build the set representation mentioned in the preliminaries section. In
addition, we assume that each set is stored in a data-structure that enables easy random access or
uniform sampling on this set (for example, store each set in its own array). Thus, for each set X ,
and an element, we can decide if the element is in X in constant time.

3.2 Uniform sampling via exact degree computation

The query is a family G � F , and define m �
G :�

°
XPG |X| (which should be distinguished

from g � |G| and from n � |
�

G|). The degree of an element x P
�

G, is the number of sets of
G that contains it – that is, dGpxq � |DGpxq|, where DGpxq � tX P G | x P Xu . The algorithm
repeatedly does the following:

(I) Picks one set from G with probabilities proportional to their sizes. That is, a set X P G is
picked with probability |X| {m.

(II) It picks an element x P X uniformly at random.
(III) Computes the degree d � dGpxq.
(IV) Outputs x and stop with probability 1{d. Otherwise, continues to the next iteration.

Lemma 3.1. Let n � |
�

G| and g � |G|. The above algorithm samples an element x P
�

G
according to the uniform distribution. The algorithm takes in expectation Opgm{nq � Opg2q time.
The query time is takes Opg2 log nq with high probability. (Proof in Appendix A.2)

3.3 Almost uniform sampling via degree approximation

The bottleneck in the above algorithm is computing the degree of an element. We replace this by an
approximation.
Definition 3.2. Given two positive real numbers x and y, and a parameter ε P p0, 1q, the numbers
x and y are ε-approximation of each other, denoted by x �ε y, if x{p1 � εq ¤ y ¤ xp1 � εq and
y{p1� εq ¤ x ¤ yp1� εq.

In the approximate version, given an item x P
�

G, we can approximate its degree and get an
improved runtime for the algorithm.
Lemma 3.3. The input is a family of sets F that one can preprocess in linear time. Let G � F
be a sub-family and let n � |

�
G|, g � |G|, and ε P p0, 1q be a parameter. One can sample an

element x P
�

G with almost uniform probability distribution. Specifically, the probability of an
element to be output is �ε 1{n. After linear time preprocessing, the query time is O

�
gε�2 log n

�
,

in expectation, and the query succeeds with high probability. (Proof in Appendix A.3)

Remark 3.4. The query time of Lemma 3.3 deteriorates to O
�
gε�2 log2 n

�
if one wants the bound

to hold with high probability. This follows by restarting the query algorithm if the query time
exceeds (say by a factor of two) the expected running time. A standard application of Markov’s
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inequality implies that this process would have to be restarted at most Oplog nq times, with high
probability.

Remark 3.5. The sampling algorithm is independent of whether or not we fully know the under-
lying family F and the sub-family G. This means the past queries do not affect the sampled object
reported for the query G. Therefore, the almost uniform distribution property holds in the presence
of several queries and independently for each of them.

3.4 Further Improvement.

In Appendix B, we show how to further improve the dependence on ε, from ε�2 down to logp1{εq.
Remark 3.6. Similar to Remark 3.4, the query time of this algorithm (Lemma B.3) can be made
to work with high probability with an additional logarithmic factor. Thus with high probability, the
query time is Opg logpg{εq log nq.

Finally, in Appendix C, we show further applications of this data structure.

3.5 Handling outliers

Imagine a situation where we have a marked set of outliers O. We are interested in sampling from�
GzO. We assume that the total degree of the outliers in the query is at most mO for some pre-

specified parameter mO. More precisely, we have dGpOq �
°
xPO dGpxq ¤ mO.

Lemma 3.7. The input is a family of sets F that one can preprocess in linear time. A query is a
sub-family G � F , a set of outliers O, a parameter mO, and a parameter ε P p0, 1q. One can either

(A) Sample an element x P
�

GzO with ε-approximate uniform distribution. Specifically, the
probabilities of two elements to be output is the same up to a factor of 1� ε.

(B) Alternatively, report that dGpOq ¡ mO.

The expected query time is OpmO � g logpN{εqq, and the query succeeds with high probability,
where g � |G|, and N �

F. (Proof in Appendix A.4)

4 In the search for a fair near neighbor

In this section, we employ our data structure of Section 3 to show the two results on uniformly
reporting a neighbor of a query point mentioned in Section 1.1. First, let us briefly give some
preliminaries on LSH. We refer the reader to [HIM12] for further details. Throughout the section,
we assume that our metric space, admits the LSH data structure.

4.1 Background on LSH

Locality Sensitive Hashing (LSH). Let D denote the data structure constructed by LSH, and let
c denote the approximation parameter of LSH. The data-structure D consists of L hash functions
g1, . . . , gL (e.g., L � n1{c for a c-approximate LSH), which are chosen via a random process and
each function hashes the points to a set of buckets. For a point p P M, let Hippq be the bucket that
the point p is hashed to using the hash function gi. The following are standard guarantees provided
by the LSH data structure [HIM12].
Lemma 4.1. For a given query point q, let S �

�
iHipqq. Then for any point p P Npq, rq, we have

that with a probability of least 1 � 1{e � 1{3, we have (i) p P S and (ii) |SzBpq, crq| ¤ 3L, i.e.,
the number of outliers is at most 3L. Moreover, the expected number of outliers in any single bucket
Hipqq is at most 1.

Therefore, if we take t � Oplog nq different data structures D1, . . . ,Dt with corresponding hash
functions gji to denote the ith hash function in the jth data structure, we have the following lemma.
Lemma 4.2. Let the query point be q, and let p be any point inNpq, rq. Then, with high probability,
there exists a data structure Dj , such that p P S �

�
iH

j
i pqq and |SzBpq, crq| ¤ 3L.

By the above, the space used by LSH is Spn, cq � rOpn � Lq and the query time is Qpn, cq � rOpLq.
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4.2 Approximate Neighborhood

For t � Oplog nq, let D1, . . . ,Dt be data structures constructed by LSH. Let F be the set of
all buckets in all data structures, i.e., F �

 
Hj
i ppq

�� i ¤ L, j ¤ t, p P P
(
. For a query point q,

consider the family G of all buckets containing the query, i.e., G � tHj
i pqq | i ¤ L, j ¤ tu, and thus

|G| � OpL log nq. Moreover, we let O to be the set of outliers, i.e., the points that are farther than
cr from q. Note that as mentioned in Lemma 4.1, the expected number of outliers in each bucket of
LSH is at most 1. Therefore, by Lemma 3.7, we immediately get the following result.

Lemma 4.3. Given a set P of n points and a parameter r, we can preprocess it such that given
query q, one can report a point p P S with probability µp where ϕ{p1 � εq ¤ µp ¤ p1 � εqϕ,
where S is a point set such that Npq, rq � S � Npq, crq, and ϕ � 1{|S|. The algorithm uses space
Spn, cq and its expected query time is rOpQpn, cq � logp1{εqq. (Proof in Appendix A.5)

Remark 4.4. For the L1 distance, the runtime of our algorithm is rOpnp1{cq�op1qq and for the L2

distance, the runtime of our algorithm is rOpnp1{c2q�op1qq. These matches the runtime of the standard
LSH-based near neighbor algorithms up to polylog factors.

4.3 Exact Neighborhood

As noted earlier, the result of the previous section only guarantees a query time which holds in
expectation. Here, we provide an algorithm whose query time holds with high probability. Note
that, here we cannot apply Lemma 3.7 directly, as the total number of outliers in our data structure
might be large with non-negligible probability (and thus we cannot bound mO). However, as noted
in Lemma 4.2, with high probability, there exists a subset of these data structures J � rts such
that for each j P J , the number of outliers in Sj �

�
iH

j
i pqq is at most 3L, and moreover, we

have that Npq, rq �
�
jPJ Sj . Therefore, on a high level, we make a guess J 1 of J , which we

initialize it to J 1 � rts, and start by drawing samples from G; once we encounter more than 3L
outliers from a certain data structure Dj , we infer that j R J , update the value of J 1 � J 1ztju, and
set the weights of the buckets corresponding to Dj equal to 0, so that they will never participate in
the sampling process. As such, at any iteration of the algorithm we are effectively sampling from
G � tHj

i pqq | i ¤ L, j P J 1u.

Preprocessing. We keep t � Oplog nq LSH data structures which we refer to as D1, . . . ,Dt, and
we keep the hashed points by the ith hash function of the jth data structure in the array denoted by
Hj
i . Moreover, for each bucket in Hj

i , we store its size |Hj
i |.

Query Processing. We maintain the variables zji showing the weights of the bucketHj
i pqq, which is

initialized to |Hj
i pqq| that is stored in the preprocessing stage. Moreover, we keep the set of outliers

detected from Hj
i pqq in Oj

i which is initially set to be empty. While running the algorithm, as we
detect an outlier inHj

i pqq, we add it to Oj
i , and we further decrease zji by one. Moreover, in order to

keep track of J 1, for any data structure Dj , whenever
°
i |O

j
i | exceeds 3L, we will ignore all buckets

in Dj , by setting all corresponding zji to zero.

At each iteration, the algorithm proceeds by sampling a bucket Hj
i pqq proportional to its weight zji ,

but only among the set of buckets from those data structures Dj for which less than 3L outliers are
detected so far, i.e., j P J 1. We then sample a point uniformly at random from the points in the
chosen bucket that have not been detected as an outlier, i.e., Hj

i pqqzO
j
i . If the sampled point is an

outlier, we update our data structure accordingly. Otherwise, we proceed as in Lemma ??.

Definition 4.5 (Active data structures and active buckets). Consider an iteration k of the al-
gorithm. Let us define the set of active data structures to be the data structures from whom
we have seen less than 3L outliers so far, and let us denote their indices by J 1k � rts, i.e.,
J 1k �

 
j
�� °

i |Oi
j |   3L

(
.

Moreover, let us define the active buckets to be all buckets containing the query in these active data
structures, i.e., Gk � tHj

i pqq | i ¤ L, j P J 1ku.

Observation 4.6. Lemma 4.2 implies that with high probability at any iteration k of the algorithm
Npq, rq �

�
Gk.
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Definition 4.7 (active size). For an active bucket Hj
i pqq, we define its active size to be zji which

shows the total number of points in the bucket that have not yet been detected as an outlier, i.e.,
|Hj

i pqqzO
j
i |.

Lemma 4.8. Given a set P of n points and a parameter r, we can preprocess it such that given a
query q, one can report a point p P P with probability µp, so that there exists a value ρ P r0, 1s
where

 For p P Npq, rq, we have ρ
p1�Opεqq ¤ µp ¤ p1�Opεqqρ.

 For p P Npq, crqzNpq, rq, we have µp ¤ p1�Opεqqρ.
 For p R Npq, crq, we have µp � 0.

The space used is rOpSpn, cqq and the query time is rO
�
Qpn, cq � logp1{εqq with high probability.

(Proof in Appendix A.6)

Lemma 4.9. Given a set P of n points and a parameter r, we can preprocess it such that given
a query q, one can report a point p P S with probability µp where µ is an approximately uniform
probability distribution: ϕ{p1 � εq ¤ µp ¤ ϕp1 � εq, where ϕ � 1{|Npq, rq|. The algorithm uses
space Spn, cq and has query time of rO

�
Qpn, cq � |Npq,crq|

|Npq,rq| � logp1{εq
�

with high probability. (Proof
in Appendix A.7)

5 Experiments

In this section, we consider the task of retrieving a random point from the neighborhood of a given
query point, and evaluate the effectiveness of our proposed algorithm empirically on real data sets.

Data set and Queries. We run our experiments on three datasets that are standard benchmarks in
the context of Nearest Neighbor algorithms (see [ABF17])

(I) Our first data set contains a random subset of 10K points in the MNIST training data set
[LBBH98]3. The full data set contains 60K images of hand-written digits, where each
image is of size 28 by 28. For the query, we use a random subset of 100 (out of 10K)
images of the MNIST test data set. Therefore, each of our points lie in a 784 dimensional
Euclidean space and each coordinate is in r0, 255s.

(II) Second, we take SIFT10K image descriptors that contains 10K 128-dimensional points as
data set and 100 points as queries 4.

(III) Finally, we take a random subset of 10K words from the GloVe data set [PSM14] and a
random subset of 100 words as our query. GloVe is a data set of 1.2M word embeddings in
100-dimensional space and we further normalize them to unit norm.

We use the L2 Euclidean distance to measure the distance between the points.

LSH data structure and parameters. We use the locality sensitive hashing data structure for theL2

Euclidean distance [AI08]. That is, each of the L hash functions gi, is a concatenation of k unit hash
functions h1i `� � �`h

k
i . Each of the unit hash functions hji is chosen by selecting a point in a random

direction (by choosing every coordinate from a Gaussian distribution with parameters p0, 1q). Then
all the points are projected onto this one dimensional direction. Then we put a randomly shifted one
dimensional grid of length w along this direction. The cells of this grid are considered as buckets
of the unit hash function. For tuning the parameters of LSH, we follow the method described in
[DIIM04], and the manual of E2LSH library [And05], as follows.

For MNIST, the average distance of a query to its nearest neighbor in the our data set is around 4.5.
Thus we choose the near neighbor radius r � 5. Consequently, as we observe, the r-neighborhood
of at least half of the queries are non-empty. As suggested in [DIIM04] to set the value of w � 4, we
tune it between 3 and 5 and set its value to w � 3.1. We tune k and L so that the false negative rate
(the near points that are not retrieved by LSH) is less than 10%, and moreover the cost of hashing
(proportional to L) balances out the cost of scanning. We thus get k � 15 and L � 100. This also
agrees with the fact that L should be roughly square root of the total number of points. Note that
we use a single LSH data structure as opposed to taking t � Oplog nq instances. We use the same

3The dataset is available here: http://yann.lecun.com/exdb/mnist/
4The dataset if available here: http://corpus-texmex.irisa.fr/
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method for the other two data sets. For SIFT, we use R � 255, w � 4, k � 15, L � 100, and for
GloVe we use R � 0.9, w � 3.3, k � 15, and L � 100.

Algorithms. Given a query point q, we retrieve all L buckets corresponding to the query. We then
implement the following algorithms and compare their performance in returning a neighbor of the
query point.

 Uniform/Uniform: Picks bucket uniformly at random and picks a random point in bucket.
 Weighted/Uniform: Picks bucket according to its size, and picks uniformly random point inside

bucket.
 Optimal: Picks bucket according to size, and then picks uniformly random point p inside bucket.

Then it computes p’s degree exactly and rejects p with probability 1� 1{degppq.
 Degree approximation: Picks bucket according to size, and picks uniformly random point p

inside bucket. It approximates p’s degree and rejects p with probability 1� 1{deg1ppq.

Degree approximation method. We use the algorithm of Appendix B for the degree approximation:
we implement a variant of the sampling algorithm which repeatedly samples a bucket uniformly at
random and checks whether p belongs to the bucket. If the first time this happens is at iteration i,
then it outputs the estimate as deg1ppq � L{i.

Experiment Setup. In order to compare the performance of different algorithms, for each query
q, we compute Mpqq: the set of neighbors of q which fall to the same bucket as q by at least one
of the L hash functions. Then for 100|Mpqq| times, we draw a sample from the neighborhood of
the query, using all four algorithms. We compare the empirical distribution of the reported points
on |Mpqq| with the uniform distribution on it. More specifically, we compute the total variation
distance (statistical distance)5 to the uniform distribution. We repeat each experiment 10 times and
report the average result of all 10 experiments over all 100 query points.

Results. Figure 1 shows the comparison between all four algorithms. To compare their performance,
we compute the total variation distance of the empirical distribution of the algorithms to the uniform
distribution. For the tuned parameters (k � 15 , L � 100), our results are as follows. For MNIST,
we see that our proposed degree approximation based algorithm performs only 2.4 times worse than
the optimal algorithm, while we see that other standard sampling methods perform 6.6 times and
10 times worse than the optimal algorithm. For SIFT, our algorithm performs only 1.4 times worse
than the optimal while the other two perform 6.1 and 9.7 times worse. For GloVe, our algorithm
performs only 2.7 times worse while the other two perform 6.5 and 13.1 times worse than the optimal
algorithm.

Moreover, in order get a different range of degrees and show that our algorithm works well for those
cases, we further vary the parameters k and L of LSH. More precisely, to get higher ranges of the
degrees, first we decrease k (the number of unit hash functions used in each of the L hash function);
this will result in more collisions. Second, we increase L (the total number of hash functions).
These are two ways to increase the degree of points. For example for the MNIST data set, the above
procedure increases the degree range from r1, 33s to r1, 99s.

Query time discussion. As stated in the experiment setup, in order to have a meaningful comparison
between distributions, in our code, we retrieve a random neighbor of each query 100m times, where
m is the size of its neighborhood (which itself can be as large as 1000). We further repeat each
experiment 10 times. Thus, every query might be asked upto 106 times. This is going to be costly
for the optimal algorithm that computes the degree exactly. Thus, we use the fact that we are asking
the same query many times and preprocess the exact degrees for the optimal solution. Therefore,
it is not meaningful to compare runtimes directly. Thus we run the experiments on a smaller size
dataset to compare the runtimes of all the four approaches: Our sampling approach is twice faster
than the optimal algorithm, and almost five times slower than the other two approaches. However,
when the number of buckets (L) increases from 100 to 300, our algorithm is 4.3 times faster than the
optimal algorithm, and almost 15 times slower than the other two approaches.

Trade-off of time and accuracy. We can show a trade-off between our proposed sampling approach
and the optimal. For the MNIST data set with tuned parameters (k � 15 and L � 100), by asking
twice more queries (for degree approximation), the solution of our approach improves from 2.4 to
1.6, and with three times more, it improves to 1.2, and with four times more, it improves to 1.05. For

5For two discrete distributions µ and ν on a finite setX , the total variation distance is 1
2

°
xPX |µpxq�νpxq|.
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k Distance Uniform/UniformWeighted/Uniform Degree Approx Alg. Optimal Algorithm
10 L_1 0.232314 0.12688 0.033376 0.0292465
11 L_1 0.254682 0.152997 0.036595 0.0289694
12 L_1 0.270557 0.155822 0.0412464 0.0295204
13 L_1 0.29587 0.181187 0.0540551 0.0294889
14 L_1 0.265355 0.164732 0.0546907 0.0283629
15 L_1 0.270462 0.179841 0.0655905 0.0271386
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(a) MNIST, varying the parameter k of LSH

L Distance Uniform/Uniform Weighted/UniformDegree Approx Alg. Optimal Algorithm

100 L_1 0.270462 0.179841 0.0655905 0.0271386

200 L_1 0.261574 0.181687 0.0482219 0.0288596

300 L_1 0.266737 0.192748 0.0415369 0.030014
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(b) MNIST, varying the parameter L of LSH

k Distance Uniform/UniformWeighted/Uniform Degree Approx Alg. Optimal Algorithm

10 L_1 0.238835 0.121115 0.034519 0.0325837

11 L_1 0.257074 0.136035 0.0339621 0.0319185

12 L_1 0.262333 0.147088 0.0347092 0.0311503

13 L_1 0.289308 0.161984 0.0363214 0.0304271

14 L_1 0.283914 0.168455 0.0393677 0.0307069

15 L_1 0.298677 0.18676 0.0418197 0.0308013
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(c) SIFT, varying the parameter k of LSH

L Distance Uniform/Uniform Weighted/UniformDegree Approx Alg. Optimal Algorithm

100 L_1 0.298677 0.18676 0.0418197 0.0308013

200 L_1 0.272122 0.163594 0.0354278 0.0310783

300 L_1 0.257769 0.153891 0.0334061 0.0316253
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(d) SIFT, varying the parameter L of LSH

k Distance Uniform/UniformWeighted/Uniform Degree Approx Alg. Optimal Algorithm

10 L_1 0.18548 0.0716024 0.0276405 0.025369

11 L_1 0.166131 0.0815812 0.0318271 0.0226141

12 L_1 0.205148 0.0884866 0.0267989 0.0234282

13 L_1 0.222327 0.114844 0.0399721 0.0218407

14 L_1 0.218101 0.112578 0.0371863 0.0191638

15 L_1 0.260527 0.129309 0.0529889 0.019864
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(e) GloVe, varying the parameter k of LSH

L Distance Uniform/Uniform Weighted/UniformDegree Approx Alg. Optimal Algorithm

100 L_1 0.260527 0.129309 0.0529889 0.019864

200 L_1 0.224737 0.134605 0.0396967 0.0196103

300 L_1 0.201756 0.1022228 0.0225251 0.0218176
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(f) GloVe, varying the parameter L of LSH

Figure 1: Comparison of the performance of the four algorithms is measured by computing the
statistical distance of their empirical distribution to the uniform distribution.

the SIFT data set (using the same parameters), using twice more queries, the solution improves from
1.4 to 1.16, and with three times more, it improves to 1.04, and with four times more, it improves to
1.05. For GloVe, using twice more queries, the solution improves from 2.7 to 1.47, and with three
times more, it improves to 1.14, and with four times more, it improves to 1.01.
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