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ABSTRACT

We present a new technique for learning visual-semantic embeddings for cross-
modal retrieval. Inspired by the use of hard negatives in structured prediction, and
ranking loss functions used in retrieval, we introduce a simple change to com-
mon loss functions used to learn multi-modal embeddings. That, combined with
fine-tuning and the use of augmented data, yields significant gains in retrieval per-
formance. We showcase our approach, dubbed VSE++, on the MS-COCO and
Flickr30K datasets, using ablation studies and comparisons with existing meth-
ods. On MS-COCO our approach outperforms state-of-the-art methods by 8.8%
in caption retrieval, and 11.3% in image retrieval (based on R@1).

1 INTRODUCTION

Joint embeddings enable a wide range of tasks in image, video and language understanding. Exam-
ples include shape-image embeddings (Li et al. (2015b)) for shape inference, bilingual word embed-
dings (Zou et al. (2013)), human pose-image embeddings for 3D pose inference (Li et al. (2015a)),
fine-grained recognition (Reed et al. (2016a)), zero-shot learning (Frome et al. (2013)), and modal-
ity conversion via synthesis (Reed et al. (2016b;a)). Such embeddings entail mappings from two
(or more) domains into a common vector space in which semantically associated inputs (e.g., text
and images) are mapped to similar locations. The embedding space thus represents the underlying
structure of the domains, where locations and often direction are semantically meaningful.

In this paper we focus on learning visual-semantic embeddings, central to tasks such as image-
caption retrieval and generation Kiros et al. (2014); Karpathy & Fei-Fei (2015), and visual question-
answering Malinowski et al. (2015). One approach to visual question-answering, for example, is
to first describe an image by a set of captions, and then to find the nearest caption in response to a
question (Agrawal et al. (2017); Zitnick et al. (2016)). In the case of image synthesis from text, one
approach is to invert the mapping from a joint visual-semantic embedding to the image space (Reed
et al. (2016b;a)).

Here we focus on visual-semantic embeddings for the generic task of cross-modal retrieval; i.e. the
retrieval of images given captions, or of captions from a query image. As is common in information
retrieval, we measure performance by R@K, i.e., recall at K – the fraction of queries for which the
correct item is retrieved in the closest K points to the query in the embedding space (K is usually
a small integer, often 1). More generally, retrieval is a natural way to assess the quality of joint
embeddings for image and language data for use in subsequent tasks (Hodosh et al. (2013)).

To this end, the problem is one of ranking, for which the correct target(s) should be closer to the
query than other items in the corpus, not unlike learning to rank problems (e.g., Li (2014)), and
max-margin structured prediction Chapelle et al. (2007); Le & Smola (2007). The formulation and
model architecture in this paper are most closely related to those of Kiros et al. (2014), learned
with a triplet ranking loss. In contrast to that work, we advocate a novel loss, the use of augmented
data, and fine-tuning, that together produce a significant increase in caption retrieval performance
over the baseline ranking loss on well-known benchmark datasets. We outperform the best reported
result on MS-COCO by almost 9%. We also demonstrate that the benefit from a more powerful
image encoder, and fine-tuning the image encoder, is amplified with the use of our stronger loss
function. To ensure reproducibility, our code will be made publicly available. We refer to our model
as VSE++.
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Finally, we note that our formulation complements other recent articles that propose new model
architectures or similarity functions for this problem. Wang et al. (2017) propose an embedding
network to fully replace the similarity function used for the ranking loss. An attention mechanism on
both image and caption is used by Nam et al. (2016), where the authors sequentially and selectively
focus on a subset of words and image regions to compute the similarity. In Huang et al. (2016),
the authors use a multi-modal context-modulated attention mechanism to compute the similarity
between an image and a caption. Our proposed loss function and triplet sampling could be extended
and applied to other such approaches.

2 LEARNING VISUAL-SEMANTIC EMBEDDINGS

2.1 IMAGE-CAPTION RETRIEVAL

For image-caption retrieval the query is a caption and the task is to retrieve the most relevant image(s)
from a database. Or the query may be an image and one retrieves relevant captions. The goal is to
maximize recall at K (R@K), the fraction of queries for which the most relevant item is ranked
among the top K items returned.

Let S = {(in, cn)}Nn=1 be a training set of image-caption pairs. We refer to (in, cn) as positive pairs
and (in, cm 6=n) as negative pairs; i.e., the most relevant caption to the image in is cn and for caption
cn, it is the image in. We define a similarity function s(i, c) ∈ R that should, ideally, give higher
similarity scores to positive pairs than negatives. In caption retrieval, the query is an image and we
rank a database of captions based on the similarity function; i.e., R@K is the percentage of queries
for which the positive caption is ranked among the top K captions using s(i, c). And likewise for
image retrieval. In what follows the similarity function is defined on the joint embedding space.
This approach differs from others, such as Wang et al. (2017), which use a similarity network to
directly classify an image-caption pair as matching or non-matching.

2.2 VISUAL-SEMANTIC EMBEDDING

Let φ(i; θφ) ∈ RDφ be a feature-based representation computed from the image (e.g. the represen-
tation before logits in VGG19 (Simonyan & Zisserman (2014)) or ResNet152 (He et al. (2016))).
Similarly, let ψ(c; θψ) ∈ RDψ be a representation of a caption c in a caption embedding space (e.g.
a GRU-based text encoder). Here, θφ and θψ denote the model parameters used for the respective
mappings to obtain the initial image and caption representations.

The mappings into the joint embedding space are then defined in terms of linear projections; i.e.,

f(i;Wf , θφ) = WT
f φ(i; θφ) (1)

g(c;Wg, θψ) = WT
g ψ(c; θψ) (2)

where Wf ∈ RDφ×D and Wg ∈ RDψ×D. We further normalize f(i;Wf , θφ), and g(c;Wg, θψ), to
lie on the unit hypersphere. The similarity function in the embedding space is then defined as an
inner product:

s(i, c) = f(i;Wf , θφ) · g(c;Wg, θψ) . (3)

Let θ = {Wf ,Wg, θψ} be the model parameters. If we also fine-tune the image encoder, then we
would also include θφ in θ.

Training entails the minimization of empirical loss with respect to θ, i.e., the cumulative loss over
training data S = {(in, cn)}Nn=1:

e(θ, S) = 1
N

N∑
n=1

`(in, cn) (4)

where `(in, cn) is a suitable loss function for a single training exemplar.

Recent approaches to joint visual-semantic embeddings have used a form of triplet ranking loss
(Kiros et al. (2014); Karpathy & Fei-Fei (2015); Zhu et al. (2015); Socher et al. (2014)), inspired
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Figure 1: An illustration of typical positive pairs and the nearest negative samples. Here assume
similarity score is the negative distance. Filled circles show a positive pair (i, c), while empty
circles are negative samples for the query i. The dashed circles on the two sides are drawn at the
same radii. Notice that the hardest negative sample c′ is closer to i in (a). Assuming a zero margin,
(b) has a higher loss with the SH loss compared to (a). The MH loss assigns a higher loss to (a).

its use in image retrieval (Frome et al. (2007); Chechik et al. (2010)). Prior work has employed a
hinge-based, triplet ranking loss with margin α:

`SH(i, c) =
∑
ĉ

[α− s(i, c) + s(i, ĉ)]+ +
∑
î

[α− s(i, c) + s(̂i, c)]+ , (5)

where [x]+ ≡ max(x, 0). This hinge loss comprises two symmetric terms, with i and c being
queries. The first sum is taken over all negative captions ĉ given query i. The second negative
images î given caption c. Each term is proportional to the expected loss (or violation) over sets
of negative samples. If i and c are closer to one another in the joint embedding space than to any
negatives pairs, by the margin α, the hinge loss is zero. In practice, for computational efficiency,
rather than summing over all possible negatives in the training set, it is common to only sum over (or
randomly sample) the negatives within a mini-batch of stochastic gradient descent (e.g., see Kiros
et al. (2014); Socher et al. (2014); Karpathy & Fei-Fei (2015)).

Of course there are other loss functions that one might consider. One approach is a pairwise hinge
loss in which elements of positive pairs are encouraged to be within a radius ρ1 in the joint em-
bedding space, while negative pairs should be no closer than ρ2 > ρ1. This is problematic as it
constrains the structure of the latent space more than does the ranking loss, and it entails the use
of two hyper-parameters which can be very difficult to set. Another possible approach is to use
Canonical Correlation Analysis to learn Wf and Wg , thereby trying to preserve correlation between
the text and images in the joint embedding (e.g., Klein et al. (2015); Eisenschtat & Wolf (2016)). By
comparison, when measuring performance as R@K, for small K, a correlation-based loss will not
give sufficient influence to the embedding of negative items in the local vicinity of positive pairs,
which is critical for R@K.

2.3 EMPHASIS ON HARD NEGATIVES

Inspired by common loss functions used in structured prediction (Tsochantaridis et al. (2005); Yu
& Joachims (2009); Felzenszwalb et al. (2010)), we focus on hard negatives for training, i.e., the
negatives closest to each training query. This is particularly relevant for retrieval since it is the
hardest negative that determines success or failure as measured by R@1.

Given a positive pair (i, c), the hardest negatives are given by i′ = argmaxj 6=i s(j, c) and c′ =
argmaxd6=c s(i, d). To emphasize hard negatives we therefore define our loss as

`MH(i, c) = max
c′

[α+ s(i, c′)− s(i, c)]+ +max
i′

[α+ s(i′, c)− s(i, c)]+ . (6)

Like Eq. 5, the loss comprises two terms, one with i and one with c as queries. Unlike Eq. 5, this
loss is specified in terms of the hardest negatives, c′ and i′. Hereafter, we refer to the loss in Eq. 6
as Max of Hinges (MH) loss, and the loss function in Eq. 5 as Sum of Hinges (SH) loss.

An example of where the MH loss is superior to SH is when multiple negatives with relatively small
violations combine to dominate the SH loss. For example, in Fig. 1, a positive pair is depicted
together with two sets of negative samples. In Fig. 1(a), there exists a single negative sample that is
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too close to the query. Essentially, moving such a hard negative, might require a significant change
to the mapping. However, any training step that pushes the hard negative away, can bring back many
small violating negative samples, as in Fig. 1(b). Using the SH loss, these ’new’ negative samples
may dominate the loss, so the model is pushed back to the first example in Fig. 1(a). This may create
local minima in the SH loss that may not be as problematic for the MH loss as it focuses solely on
the hardest negative.

For computational efficiency, instead of finding the hardest negatives in the whole training set, we
find them in a mini-batch. With random sampling of the mini-batches, this approximate yields other
advantages. One is that there is a high probability of getting hard negatives that are harder than at
least 90% of the entire training set. Moreover, the loss is potentially robust to label errors in the
training data because the probability of sampling the hardest negative over the entire training set is
somewhat low. In Appendix A, we analyze the probability of sampling hard negatives further.

3 EXPERIMENTS

We first perform experiments with our approach, VSE++, and compare it to a baseline formulation
with SH loss, referred to as VSE0, and other state-of-the-art approaches. Essentially, the baseline
formulation, VSE0, is the same used by Kiros et al. (2014), here referred to as UVS.

We experiment with two image encoders: VGG19 by Simonyan & Zisserman (2014) and ResNet152
by He et al. (2016). In what follows below we use VGG19 unless specified otherwise. As in
previous work we extract image features directly from FC7, the penultimate fully connected layer.
The dimensionality of the image embedding, Dφ, is 4096 for VGG19 and 2048 for ResNet152.

In somewhat more detail, we first resize the image to 256× 256, and then use either a single center
crop of size 224× 224 or the mean of feature vectors for 10 crops of similar size, as done by Klein
et al. (2015) and Vendrov et al. (2015). We refer to training with one center crop as 1C and training
with 10 crops as 10C. We also consider using random crops, denoted by RC. For RC, we have the
full VGG19 model and extract features over a single randomly chosen cropped patch on the fly as
opposed to pre-computing the image features once and reusing them.

For the caption encoder, we use a GRU similar to the one used in Kiros et al. (2014). We set the
dimensionality of the GRU, Dψ , and the joint embedding space, D, to 1024. The dimensionality of
the word embeddings that are input to the GRU is set to 300.

We further note that in Kiros et al. (2014), the caption embedding is normalized, while the image em-
bedding is not. Normalization of both vectors means that the similarity function is cosine similarity.
In VSE++ we normalize both vectors. Not normalizing the image embedding changes the impor-
tance of samples. In our experiments, not normalizing the image embedding helped the baseline,
VSE0, to find a better solution. However, VSE++ is not significantly affected by this normalization.

3.1 DATASETS

We evaluate our method on the Microsoft COCO dataset (Lin et al. (2014)) and the Flickr30K dataset
(Young et al. (2014)). Flickr30K has a standard 30, 000 images for training. Following Karpathy
& Fei-Fei (2015), we use 1000 images for validation and 1000 images for testing. We also use the
splits of Karpathy & Fei-Fei (2015) for MS-COCO. In this split, the training set contains 82, 783
images, 5000 validation and 5000 test images. However, there are also 30, 504 images that were
originally in the validation set of MS-COCO but have been left out in this split. We refer to this
set as rV . Some papers use rV for training (113, 287 training images in total) to further improve
accuracy. We report results using both training sets. Each image comes with 5 captions. The results
are reported by either averaging over 5 folds of 1K test images or testing on the full 5K test images.

3.2 DETAILS OF TRAINING

We use the Adam optimizer Kingma & Ba (2014) to train the models. We train models for at most
30 epochs. Except for fine-tuned models, we start training with learning rate 0.0002 for 15 epochs
and then lower the learning rate to 0.00002 for another 15 epochs. The fine-tuned models are trained
by taking a model that is trained for 30 epochs with a fixed image encoder and then training it for 15
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# Model Trainset Caption Retrieval Image Retrieval
R@1 R@10 Med r R@1 R@10 Med r

1K Test Images
1.1 UVS (Kiros et al. (2014), GitHub) 1C (1 fold) 43.4 85.8 2 31.0 79.9 3
1.2 Order (Vendrov et al. (2015)) 10C+rV 46.7 88.9 2.0 37.9 85.9 2.0
1.3 Embedding Network (Wang et al. (2017)) ? 50.4 69.4 - 39.8 86.6 -
1.4 sm-LSTM (Huang et al. (2016)) ? 53.2 91.5 1 40.7 87.4 2
1.5 2WayNet (Eisenschtat & Wolf (2016)) ? 55.8 - - 39.7 - -
1.6 VSE++ 1C (1 fold) 43.6 84.6 2.0 33.7 81.0 3.0
1.7 VSE++ RC 49.0 88.4 1.8 37.1 83.8 2.0
1.8 VSE++ RC+rV 51.9 90.4 1.0 39.5 85.6 2.0
1.9 VSE++ (fine-tuned) RC+rV 57.2 93.3 1.0 45.9 89.1 2.0
1.10 VSE++ (ResNet152) RC+rV 58.3 93.3 1.0 43.6 87.8 2.0
1.11 VSE++ (ResNet152, fine-tuned) RC+rV 64.6 95.7 1.0 52.0 92.0 1.0

5K Test Images
1.12 Order (Vendrov et al. (2015)) 10C+rV 23.3 65.0 5.0 18.0 57.6 7.0
1.13 VSE++ (fine-tuned) RC+rV 32.9 74.7 3.0 24.1 66.2 5.0
1.14 VSE++ (ResNet152, fine-tuned) RC+rV 41.3 81.2 2.0 30.3 72.4 4.0

Table 1: Results of experiments on MS-COCO.

# Model Trainset Caption Retrieval Image Retrieval
R@1 R@10 Med r R@1 R@10 Med r

2.1 VSE0 1C (1 fold) 43.2 85.0 2.0 33.0 80.7 3.0
1.6 VSE++ 1C (1 fold) 43.6 84.6 2.0 33.7 81.0 3.0
2.2 VSE0 RC 43.1 87.1 2.0 32.5 82.1 3.0
1.7 VSE++ RC 49.0 88.4 1.8 37.1 83.8 2.0
2.3 VSE0 RC+rV 46.8 89.0 1.8 34.2 83.6 2.6
1.8 VSE++ RC+rV 51.9 90.4 1.0 39.5 85.6 2.0
2.4 VSE0 (fine-tuned) RC+rV 50.1 90.5 1.6 39.7 87.2 2.0
1.9 VSE++ (fine-tuned) RC+rV 57.2 93.3 1.0 45.9 89.1 2.0
2.5 VSE0 (ResNet152) RC+rV 52.7 91.8 1.0 36.0 85.5 2.2
1.10 VSE++ (ResNet152) RC+rV 58.3 93.3 1.0 43.6 87.8 2.0
2.6 VSE0 (ResNet152, fine-tuned) RC+rV 56.0 93.5 1.0 43.7 89.7 2.0
1.11 VSE++ (ResNet152, fine-tuned) RC+rV 64.6 95.7 1.0 52.0 92.0 1.0

Table 2: The effect of data augmentation and fine-tuning. We copy the relevant results for VSE++
from Table 1 to enable an easier comparison. Notice that applying all the modifications with the
exception the VSE0 model reaches 56.0% for R@1, while VSE++ achieves 64.6%.

epochs with a learning rate of 0.00002. We set the margin to 0.2 for most of the experiments. We
use a mini-batch size of 128 in all our experiments. Notice that since the size of the training set for
different models is different, the actual number of iterations in each epoch can vary. For evaluation
on the test set, we tackle over-fitting by choosing the snapshot of the model that performs best on
the validation set. The best snapshot is selected based on the sum of the recalls on the validation set.

3.3 RESULTS ON MS-COCO

The results on the MS-COCO dataset are presented in Table 1. To understand the effect of training
and algorithmic variations we report ablation studies for the baseline VSE0 (see Table 2). Our best
result with VSE++ is achieved by using ResNet152 and fine-tuning the image encoder (row 1.11),
where we see 21.2% improvement in R@1 for caption retrieval and 21% improvement in R@1 for
image retrieval compared to UVS (rows 1.1 and 1.11). Notice that using ResNet152 and fine-tuning
can only lead to 12.6% improvement using the VSE0 formulation (rows 2.6 and 1.1), while our MH
loss function brings a significant gain of 8.6% (rows 1.11 and 2.6).

Comparing VSE++ (ResNet152, fine-tuned) to the current state-of-the-art on MS-COCO, 2WayNet
(row 1.11 and row 1.5), we see 8.8% improvement in R@1 for caption retrieval and compared to
sm-LSTM (row 1.11 and row 1.4), 11.3% improvement in image retrieval. We also report results on
the full 5K test set of MS-COCO in rows 1.13 and 1.14.

Effect of the training set. We compare VSE0 and VSE++ by incrementally improving the training
data. Comparing the models trained on 1C (rows 1.1 and 1.6), we only see 2.7% improvement
in R@1 for image retrieval but no improvement in caption retrieval performance. However, when
we train using RC (rows 1.7 and 2.2) or RC+rV (rows 1.8 and 2.3), we see that VSE++ gains an
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# Model Trainset Caption Retrieval Image Retrieval
R@1 R@10 Med r R@1 R@10 Med r

3.1 UVS (Kiros et al. (2014)) 1C 23.0 62.9 5 16.8 56.5 8
3.2 UVS (GitHub) 1C 29.8 70.5 4 22.0 59.3 6
3.3 Embedding Network (Wang et al. (2017)) ? 40.7 79.2 - 29.2 71.7 -
3.4 DAN (Nam et al. (2016)) ? 41.4 82.5 2 31.8 72.5 3
3.5 sm-LSTM (Huang et al. (2016)) ? 42.5 81.5 2 30.2 72.3 3
3.6 2WayNet (Eisenschtat & Wolf (2016)) ? 49.8 - - 36.0 - -
3.7 DAN (ResNet152) (Nam et al. (2016)) ? 55.0 89.0 1 39.4 79.1 2
3.8 VSE0 1C 29.8 71.9 3.0 23.0 61.0 6.0
3.9 VSE0 RC 31.6 71.7 4.0 21.6 63.8 5.0
3.10 VSE++ 1C 31.9 68.0 4.0 23.1 60.7 6.0
3.11 VSE++ RC 38.6 74.6 2.0 26.8 66.8 4.0
3.12 VSE++ (fine-tuned) RC 41.3 77.9 2.0 31.4 71.2 3.0
3.13 VSE++ (ResNet152) RC 43.7 82.1 2.0 32.3 72.1 3.0
3.14 VSE++ (ResNet152, fine-tuned) RC 52.9 87.2 1.0 39.6 79.5 2.0

Table 3: Results on the Flickr30K dataset.

improvement of 5.9% and 5.1%, respectively, in R@1 for caption retrieval compared to VSE0. This
shows that VSE++ can better exploit the additional data.

Effect of a better image encoding. We also investigate the effect of a better image encoder on the
models. Row 1.9 and row 2.4 show the effect of fine-tuning the VGG19 image encoder. We see
that the gap between VSE0 and VSE++ increases to 6.1%. If we use ResNet152 instead of VGG19
(row 1.10 and row 2.5), the gap is 5.6%. As for our best result, if we use ResNet152 and also
fine-tune the image encoder (row 1.11 and row 2.6) the gap becomes 8.6%. The increase in the
performance gap shows that the improved loss of VSE++ can better guide the optimization when a
more powerful image encoder is used.

3.4 RESULTS ON FLICKR30K

Tables 3 summarizes the performance on Flickr30K. We obtain 23.1% improvement in R@1 for
caption retrieval and 17.6% improvement in R@1 for image retrieval (rows 3.1 and 3.14). We
observed that VSE++ over-fits when trained with the pre-computed features of 1C. The reason is
potentially the limited size of the Flickr30K training set. As explained in Sec. 3.2, we select a
snapshot of the model before over-fitting occurs, based on performance with the validation set.
Over-fitting does not occur when the model is trained using the RC training data. Our results show
the improvements incurred by our MH loss persist across datasets, as well as across models.

3.5 BEHAVIOR OF LOSS FUNCTIONS

We have observed that the MH loss can take a few epochs to ’warm-up’ during training. Fig. 2(a)
depicts such behavior on the Flickr30K dataset using RC. One can see that the SH loss starts off
faster, but after approximately 5 epochs MH loss surpasses SH loss. To explain this, the MH loss
depends on a smaller set of triplets compared to the SH loss. At the beginning of the training, there is
so much that the model has to learn. However, the gradient of the MH loss, may only be influenced
by a small set of triples. As such, it can take longer to train a model with the MH loss. We explored a
simple form of curriculum learning (Bengio et al. (2009)) to speed-up the training. We start training
with the SH loss for a few epochs, then switch to the MH loss for the rest of the training. However,
it did not perform better than training solely with the MH loss.

3.6 EFFECT OF NEGATIVE SET SIZE ON MH LOSS

In practice, our MH loss searches for the hardest negative only within each mini-batch at each
iteration. To explore the impact of this approximation we examined how performance depends on
the effective sample size over which we searched for negatives (while keeping the mini-batch size
fixed at 128). In the extreme case, when the negative set is the training set, we get the hardest
negatives in the entire training set. As discussed in Sec. 2.3, sampling a negative set smaller than the
training set can potentially be more robust to label errors.
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(a) (b)

Figure 2: Analysis of the behavior of the MH loss on the Flickr30K dataset training with RC. Fig. (a)
compares the SH loss to the MH loss (Table 3, row 3.9 and row 3.11). Notice that, in the first 5
epochs the SH loss achieves a better performance, however, from there-on the MH loss leads to
much higher recall rates. Fig. (b) shows the effect of the negative set size on the R@1 performance.

# Model Caption Retrieval Image Retrieval
R@1 R@10 Med r R@1 R@10 Med r

1K Test Images
4.1 Order (Vendrov et al. (2015)) 46.7 88.9 2.0 37.9 85.9 2.0
4.2 VSE0 49.5 90.0 1.8 38.1 85.1 2.0
4.3 Order0 48.5 90.3 1.8 39.6 86.7 2.0
4.4 VSE++ 51.3 91.0 1.2 40.1 86.1 2.0
4.5 Order++ 53.0 91.9 1.0 42.3 88.1 2.0

Table 4: Comparison on MS-COCO. Training set for all the rows is 10C+rV .

Fig. 2(b) shows the effect of the negative sample size on the MH Loss function. We compare the
caption retrieval performance for different negative set sizes varied from 2 to 512. In practice,
for negative set sizes smaller than the mini-batch size, 128, we randomly sample the negative set
from the mini-batch. In other cases where the mini-batch size is smaller than the negative set, we
randomly sample the mini-batch from the negative set. We observe that on this dataset, the optimal
negative set size is around 128. Interestingly, for negative sets as small as 2, R@1 is slightly below
VSE0. To understand this, note that the SH loss is still over a large sample size which has a relatively
high probability of containing hard negatives. For large negative sets, the model takes longer to train
for the first epochs. Using the negative set size 512, the performance dropped. This can be due to
the small size of the dataset and the increase in the probability of sampling the hardest negative and
outliers. Even though the performance drops with larger mini-batch sizes, it still performs better
than the SH loss.

3.7 IMPROVING ORDER EMBEDDINGS

Given the simplicity of our approach, our proposed loss function can complement the recent ap-
proaches that use more sophisticated model architectures or similarity functions. Here we demon-
strate the benefits of the MH loss by applying it to another approach to joint embeddings called
order-embeddings Vendrov et al. (2015). The main difference with the formulation above is the
use of an asymmetric similarity function, i.e., s(i, c) = −‖max(0, g(c;Wg, θψ)− f(i;Wf , θφ))‖2.
Again, we simply replace their use of the SH loss by our MH loss.

Like their experimental setting, we use the training set 10C+rV . For our Order++, we use the same
learning schedule and margin as our other experiments. However, we use their training settings to
train Order0. We start training with a learning rate of 0.001 for 15 epochs and lower the learning
rate to 0.0001 for another 15 epochs. Like Vendrov et al. (2015) we use a margin of 0.05. Addition-
ally, Vendrov et al. (2015) takes the absolute value of embeddings before computing the similarity
function which we replicate only for Order0.
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GT: Two elephants are stand-
ing by the trees in the wild.

VSE0: [9] Three elephants
kick up dust as they walk
through the flat by the bushes.

VSE++: [1] A couple elephants
walking by a tree after sunset.

GT: A large multi layered cake
with candles sticking out of it.

VSE0: [1] A party decoration
containing flowers, flags, and
candles.

VSE++: [1] A party decoration
containing flowers, flags, and
candles.

GT: The man is walking down
the street with no shirt on.

VSE0: [24] A person standing
on a skate board in an alley.

VSE++: [10] Two young men
are skateboarding on the street.

GT: A row of motorcycles
parked in front of a building.

VSE0: [2] a parking area for
motorcycles and bicycles along
a street

VSE++: [1] A number of mo-
torbikes parked on an alley

GT: some skateboarders do-
ing tricks and people watching
them
VSE0: [39] Young skate-
boarder displaying skills on
sidewalk near field.

VSE++: [3] Two young men
are outside skateboarding to-
gether.

GT: a brown cake with white
icing and some walnut toppings

VSE0: [6] A large slice of an-
gel food cake sitting on top of a
plate.

VSE++: [16] A baked loaf of
bread is shown still in the pan.

GT: A woman holding a child
and standing near a bull.

VSE0: [1] A woman holding a
child and standing near a bull.

VSE++: [1] A woman holding
a child looking at a cow.

GT: A woman in a short pink
skirt holding a tennis racquet.

VSE0: [6] A man playing ten-
nis and holding back his racket
to hit the ball.

VSE++: [1] A woman is stand-
ing while holding a tennis
racket.

Figure 3: Examples of test images and the top 1 retrieved captions for VSE0 and VSE++ (ResNet)-
finetune. The value in brackets is the rank of the highest ranked ground-truth caption. GT is a sample
from the ground-truth captions.

Table 4 reports the results when the SH loss is replaced by the MH loss. We replicate their results
using our Order0 formulation and get slightly better results (row 4.1 and row 4.3). We observe 4.5%
improvement from Order0 to Order++ in R@1 for caption retrieval (row 4.3 and row 4.5). Com-
pared to the improvement from VSE0 to VSE++, where the improvement on the 10C+rV training
set is 1.8%, we gain an even higher improvement here. This shows that the MH loss can potentially
improve numerous similar loss functions used in retrieval and ranking tasks.

4 CONCLUSION

This paper focused on learning visual-semantic embeddings for cross-modal, image-caption re-
trieval. Inspired by structured prediction, we proposed a new loss based on violations in-
curred by relatively hard negatives compared to current methods that used expected errors
(Kiros et al. (2014); Vendrov et al. (2015)). We performed experiments on the MS-COCO
and Flickr30K datasets and showed that our proposed loss significntly improves performance on
these datasets. We observed that the improved loss can better guide a more powerful image en-
coder, ResNet152, and also guide better when fine-tuning an image encoder. With all modifica-
tions, our VSE++ model achieves state-of-the-art performance on the MS-COCO dataset, and is
slightly below the best recent model on the Flickr30K dataset. Our proposed loss function can
be used to train more sophisticated models that have been using a similar ranking loss for train-
ing.
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Appendix
A PROBABILITY OF SAMPLING THE HARDEST NEGATIVE

Let S = {(in, cn)}Nn=1 denote a training set of image-caption pairs, and let C = {cn} denote the
set of captions. Suppose we draw M samples in a mini-batch, Q = {(im, cm)}Mm=1, from S. Let
the permutation, πm, on C refer to the rankings of captions according to the similarity function
s(im, cn) for cn ∈ S \ {cm}. We can assume permutations, πm, are uncorrelated.

Given a query image, im, we are interested in the probability of getting no captions from the 90th
percentile of πm in the mini-batch. Assuming IID samples, this probability is simply .9(M−1), the
probability that no sample in the mini-batch is from the 90th percentile. This probability tends to
zero exponentially fast and it goes below 1% for M ≥ 44. Hence, for large enough mini-batch size,
with probability close to 1, we sample negative captions in the mini-batch that are harder than 90%
of the training set.

The same probability for the 99.9th percentile of πm tends to zero much more slowly. The same
probability goes below 1% for M ≥ 6905 which is a relatively large mini-batch size. This anal-
ysis shows that while we can get strong signals just by randomly sampling mini-batches, we are
potentially robust to outliers such as negative captions that better describe an image compared to the
ground-truth caption.
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