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Abstract

This paper proposes Multi-modAl Retrieval001
model via Visual modulE pLugin (MARVEL),002
which learns an embedding space for queries003
and multi-modal documents to conduct re-004
trieval. MARVEL encodes queries and multi-005
modal documents with a unified encoder model,006
which helps to alleviate the modality gap be-007
tween images and texts. Specifically, we enable008
the image understanding ability of the well-009
trained dense retriever, T5-ANCE, by incorpo-010
rating the visual module’s encoded image fea-011
tures as its inputs. To facilitate the multi-modal012
retrieval tasks, we build the ClueWeb22-MM013
dataset based on the ClueWeb22 dataset, which014
regards anchor texts as queries, and exacts the015
related text and image documents from anchor-016
linked web pages. Our experiments show that017
MARVEL significantly outperforms the state-018
of-the-art methods on the multi-modal retrieval019
dataset WebQA and ClueWeb22-MM. MAR-020
VEL provides an opportunity to broaden the021
advantages of text retrieval to the multi-modal022
scenario. Besides, we also illustrate that the023
language model has the ability to extract image024
semantics and partly map the image features to025
the input word embedding space. All source026
codes will be released via GitHub.027

1 Introduction028

With the growth of multimedia information on the029

Internet, search engines tend to return multi-modal030

retrieval results to better satisfy the user informa-031

tion need (Tautkute et al., 2019; Zhu et al., 2023).032

The media information provides more vivid re-033

trieval results, such as texts, images, videos, and034

more, which improves users’ experiences and even035

changes their browsing behaviors.036

Multi-modal retrieval (Bain et al., 2021; Awad037

et al., 2021; Arni et al., 2008; Chang et al., 2022)038

aims to return fusion results of images and texts039

to answer user questions. The task can be mod-040

eled using a divide-and-conquer pipeline (Chang041

Figure 1: Retrieval Pipeline with Our MARVEL Model.
MARVEL incorporates the visual module plugin, aim-
ing to unlock the multi-modal capabilities of well
trained dense retrieval model.

et al., 2022; Liu et al., 2023b) or universal dense 042

retrieval (Liu et al., 2023b). UniVL-DR (Liu et al., 043

2023b) encodes queries and multi-modal docu- 044

ments into a universal embedding space for multi- 045

modal retrieval. However, this work encodes image 046

features and texts using different encoders from 047

CLIP (Radford et al., 2021) and the separated text 048

and image encoding leads to a modality gap in 049

representing multi-modal documents. It makes 050

UniVL-DR design an additional image verbaliza- 051

tion method to alleviate the modality gap and also 052

limits the text retrieval models (Karpukhin et al., 053

2020; Xiong et al., 2021a; Zhan et al., 2021; Li 054

et al., 2021b; Yu et al., 2021) to excel their advan- 055

tages in multi-modal scenarios. 056

In this paper, we propose Multi-modAl Retrieval 057
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model via Visual modulE pLugin (MARVEL). As058

shown in Figure 1, MARVEL is based on the text059

retriever T5-ANCE (Yu et al., 2023), regards the060

visual module as a plugin and pretrains the visual061

module with image-caption contrastive training for062

adaption. By incorporating a visual module into063

well-trained text retriever T5-ANCE, MARVEL064

seizes the opportunity to extend the benefits of065

unimodal learning to the multi-modal retrieval task.066

To facilitate the multi-modal retrieval task, we067

build a large-scale benchmark, ClueWeb22-MM,068

based on the web page dataset, ClueWeb22 (Over-069

wijk et al., 2022). Following previous work in070

text retrieval (Zhang et al., 2020; Xie et al., 2023),071

we regard the anchor text as a query and assume072

that its linked web page is related to the query.073

Subsequently, we extract image and text docu-074

ments from these anchor-linked web pages. Af-075

ter processing, the ClueWeb22-MM encompasses076

over 90k queries, maintaining a scale compara-077

ble to existing benchmark WebQA (Chang et al.,078

2022). Previous work (Xie et al., 2023) demon-079

strates that the high-quality training signals from080

anchor-document pairs contribute to developing a081

state-of-the-art dense retrieval model.082

Our experiments show that MARVEL outper-083

forms all baseline models, achieving improvements084

of over 2% and 7%, in the main metric MRR, on085

WebQA (Chang et al., 2022) and ClueWeb22-MM,086

respectively. The evaluation results indicate the087

effectiveness of MARVEL comes from the visual088

module plugin architecture, the visual module pre-089

training method, and the text matching knowledge090

learned by T5-ANCE. Our further analyses illus-091

trate that the image representations encoded by the092

visual module can be easily captured by only fine-093

tuning the language model parameters. The train-094

ing strategies guide the language model to assign095

more appropriate attention weights to image and096

text features, preventing the visual module from097

overfitting to the training signals. These encoded098

image representations not only inhabit the input099

embedding space for semantics alignment but also100

function as a kind of prompt.101

2 Related Work102

Existing dense retrieval models (Karpukhin et al.,103

2020; Xiong et al., 2021a; Ren et al., 2021; Xiong104

et al., 2021b; Gao and Callan, 2022; Luan et al.,105

2021; Khattab and Zaharia, 2020) usually focus106

on retrieving text documents and modeling the107

relevance between queries and documents. They 108

usually employ pretrained language models to en- 109

code queries and text documents into an embedding 110

space, followed by a KNN search to retrieve candi- 111

date documents. 112

Unlike the text retrieval task, the multi-modal 113

retrieval task (Chang et al., 2022; Hannan et al., 114

2020; Singh et al., 2021; Talmor et al., 2021) aims 115

to provide users with multi-modal documents that 116

satisfy their information needs. Earlier work pri- 117

marily focuses on building a divide-and-conquer 118

pipeline for multi-modal retrieval (Chang et al., 119

2022; Liu et al., 2023b; Escalante et al., 2008; 120

Grubinger et al., 2008). In these models, retrievers 121

individually search candidates from the document 122

collections of different modalities and then use a 123

reranking model to fuse the retrieval results, such 124

as vision-language models (Zhang et al., 2021). 125

However, this approach usually struggles to fuse 126

the retrieval results across different modalities (Liu 127

et al., 2023b). UniVL-DR (Liu et al., 2023b) builds 128

a universal multi-modal dense retrieval model. It 129

encodes queries and multi-modal documents as em- 130

beddings and conducts retrieval, modality routing, 131

and result fusion within a unified embedding space. 132

Representing images is also the core of multi- 133

modal retrieval, aiming to alleviate the modality 134

gap between images and texts. Existing work usu- 135

ally focuses on representing the images using cap- 136

tions and image features (Liu et al., 2023b) with 137

different encoding methods. BERT-style pretrained 138

visual-language models (Chen et al., 2019; Lu et al., 139

2019; Tan and Bansal, 2019; Su et al., 2020; Li 140

et al., 2019, 2021a; Cho et al., 2021; Hu et al., 141

2020; Wang et al., 2022) provide an opportunity to 142

model the captions and image features using the 143

same model. However, these visual-language mod- 144

els typically aim to align the semantics between 145

image features and captions instead of learning rep- 146

resentations for image documents. Thus they show 147

less effectiveness in learning an embedding space 148

for multi-modal retrieval (Liu et al., 2023b). 149

Another way to facilitate the image document 150

representations is using the visual-language mod- 151

els that focus on representation learning, such as 152

CLIP (Radford et al., 2021). It encodes image fea- 153

tures and texts using different encoders. However, 154

these approaches often only provide shallow inter- 155

actions between texts and visual features. Thus, 156

existing models (Liu et al., 2023b) pay more atten- 157

tion to alleviating the modality gap between texts 158

and images by the image verbalization method, 159
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aiming to bridge the modality gap between images160

and texts in the raw text space.161

Recent advancements in multi-modal large lan-162

guage models (Brown et al., 2020; Touvron et al.,163

2023) have introduced a novel approach to mod-164

eling multi-modality features. This approach in-165

corporates a visual encoder module into large lan-166

guage models through a transformation layer (Li167

et al., 2023; Alayrac et al., 2022; Liu et al., 2023a).168

These models extract image features using the vi-169

sual encoder module of CLIP and then optimize the170

prompt tokens and transformation layer to map the171

encoded image embeddings to the raw input space172

of large language models (Merullo et al., 2023;173

Lester et al., 2021). Such a visual encoder plu-174

gin method presents a unified modeling approach175

for handling image and text features. It not only176

enables the visual comprehension ability of large177

language models but also preserves their effective-178

ness by freezing their parameters.179

3 Multi-Modal Retrieval Model via Visual180

Module Plugin (MARVEL)181

In this section, we first describe the multi-modal182

retrieval (Sec. 3.1) and then introduce the model183

architecture of MARVEL (Sec. 3.2).184

3.1 Preliminary of Multi-Modal Retrieval185

Given a query q, the retrieval task requires the186

dense retrieval models to search relevant docu-187

ments from the document collection D to meet188

the information needs of users.189

Previous dense retrieval models (Karpukhin190

et al., 2020; Xiong et al., 2021a; Gao and Callan,191

2021; Yu et al., 2023) usually focus on the text192

retrieval task, which aims to model the relevance193

between user query q and text documents D =194

{d1Text, ..., d
m
Text}. They encode both query and the195

i-th document diText using language models, such as196

BERT (Devlin et al., 2019), RoBERTa (Liu et al.,197

2019) and T5 (Raffel et al., 2020):198

q⃗ = TextEncoder(q); d⃗iText = TextEncoder(diText). (1)199

Different from text retrieval (Nguyen et al., 2016;200

Thakur et al., 2021), the multi-modal retrieval201

task (Chang et al., 2022) aims to return a fusion re-202

sult of documents from the collection D, which are203

from different modalities. The document collection204

D not only contains texts T = {d1Text, ..., d
m
Text},205

but also includes images I = {d1Image, ..., d
n
Image}.206

The multi-modal retrieval task requires retriev-207

ers to conduct relevance modeling, cross-modal208

matching, and modality fusion (Liu et al., 2023b). 209

Previous work (Liu et al., 2023b) maps text and im- 210

age documents in an embedding space for retrieval, 211

encodes texts and images using different encoders, 212

and tries to bridge the modality gap using image 213

verbalization methods. However, this limits the 214

capability of dense retrieval models, hindering the 215

expansion of text matching knowledge for learning 216

representations for multi-modal documents. 217

3.2 Universal Multi-Modal Encoding 218

We show the model architecture in Figure 2. Dif- 219

ferent from previous work (Liu et al., 2023b), we 220

can universally encode query q and multi-modal 221

documents D = {d1Text, ..., d
m
Text, d

1
Image, ..., d

n
Image} 222

using one encoder, T5-ANCE-CLIP: 223

q⃗ = T5-ANCE-CLIP(q);

d⃗iText = T5-ANCE-CLIP(diText);

d⃗iImage = T5-ANCE-CLIP(diImage(I), d
i
Image(C)),

(2) 224

where diImage(I) and diImage(C) are the image fea- 225

ture and caption of the i-th image document diImage. 226

Then we calculate the relevance score f(q, di) 227

between query q and the i-th document di using 228

cosine similarity: 229

f(q, di) = cos(q⃗, d⃗i). (3) 230

Following this, we conduct KNN search (Johnson 231

et al., 2019) to retrieve multi-modal document can- 232

didates for the given query q. 233

Subsequently, we first introduce the visual mod- 234

ule plugin architecture of our MARVEL model 235

(Sec. 3.2.1). Then we adapt the visual module to 236

T5-ANCE by pretraining the visual understanding 237

module (Sec. 3.2.2). Finally, we finetune the pa- 238

rameters of T5-ANCE to learn an embedding space 239

for multi-modal retrieval (Sec. 3.2.3). 240

3.2.1 Dense Retrieval with Visual Plugin 241

MARVEL starts from the T5-ANCE model (Yu 242

et al., 2023), which is a dense retrieval model that 243

is well-trained using MS MARCO dataset (Nguyen 244

et al., 2016). Then we enable T5-ANCE by incorpo- 245

rating the visual module from the vision-language 246

model, CLIP (Radford et al., 2021), and conduct 247

the T5-ANCE-CLIP model. We can use a universal 248

encoder, T5-ANCE-CLIP, to encode texts, image 249

features, and image documents. 250

Specifically, we encode the image feature I us- 251

ing the visual encoder of CLIP (Radford et al., 252

2021) and get its encoded visual representation h⃗I : 253

h⃗I = CLIP(I), (4) 254
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Cap.on: Library Reading Room

Image:

(a) Visual Module Adaption Pretraining.

(b) Modality-Balanced Language Model Finetuning. We follow previous work (Liu et al., 2023b) and sample one image
document and one text document from corresponding negative document collections.

Figure 2: The Architecture of Multi-modAl Retrieval model via Visual modulE pLugin (MARVEL). We first
pretrain the visual modules using the image-caption alignment task (Figure 2(a)) and then finetune the language
model to conduct multi-modal retrieval (Figure 2(b)).

This representation is obtained from the grid fea-255

tures of the last layer of the visual encoder of CLIP,256

and h⃗I = {h⃗I1, ..., h⃗I49}. Here 49 is the number257

of patches. Then we follow the previous visual-258

language model (Merullo et al., 2023) and use a259

linear transformation layer to adapt the visual fea-260

tures h⃗Ii into the embedding space of the inputs of261

dense retrieval model:262

I⃗i = Linear(⃗hI
i ). (5)263

Finally, we can feed these encoded image features264

I⃗ = {I⃗1, ..., I⃗49} as the ahead input embeddings265

X⃗ for T5-ANCE:266

X⃗ = e⃗(<start>); I⃗1; ...; I⃗49; e⃗(<end>); e⃗1; ...; e⃗k, (6)267

where ; is the concatenation operation. e⃗(<start>)268

and e⃗(<end>) are the embeddings of prompt tokens269

to denote the start and end of encoded image feature270

representations. {e⃗1...; e⃗k} are the word embed-271

dings of the text input sequence T = {T1, ..., Tk}.272

Different from these visual-language mod-273

els (Alayrac et al., 2022; Li et al., 2023; Liu et al.,274

2023a; Tsimpoukelli et al., 2021), our MARVEL275

model aims to bring the advance of text retrieval-276

based pretraining to multi-modal retrieval tasks by277

using the visual model plugin to bridge the modal-278

ity gap between images and texts.279

3.2.2 Visual Module Adaption Pretraining 280

In MARVEL, we adapt the visual understanding 281

module to T5-ANCE by only pretraining the param- 282

eters of the visual module (Eq. 4) and the projection 283

layer (Eq. 5). We follow Radford et al. (2021) and 284

leverage the image-caption contrastive training loss 285

LVM to pretrain the visual understanding module. 286

The training loss utilizes the alignment between 287

image features I and captions C: 288

LVM = LIC + LCI, (7) 289

where LIC and LCI are the dual direction training 290

losses to regard image and caption as queries and 291

then map them with corresponding caption and 292

image, respectively: 293

LIC = − log
ef(I,C

+)/τ

ef(I,C+)/τ +
∑

C−∈D−
C
ef(I,C−)/τ

, (8) 294

295

LCI = − log
ef(C,I+)/τ

ef(C,I+)/τ +
∑

I−∈D−
I
ef(C,I−)/τ

, (9) 296

where τ is the temperature used to scale the simi- 297

larity score. D−
C and D−

I contain negative captions 298

and negative images respectively, which are sam- 299

pled from in-batch negatives. 300
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Dataset Modality #Doc #Query
Train Dev Test

WebQA
Image 389,750 16,400 2,554 2,511
Text 787,697 15,366 2,446 2,455
Multi-Modal 1,177,447 31,766 5,000 4,966

ClueWeb22-MM
Image 368,710 35,873 5,041 5,030
Text 363,508 36,155 4,959 4,970
Multi-Modal 732,218 72,028 10,000 10,000

Table 1: Data Statistics.

3.2.3 Modality-Balanced Language Model301

Finetuning302

During finetuning, we can freeze the parameters303

of the visual module (Eq. 4) and optimize other304

parameters of MARVEL. To enable the MARVEL305

model to learn a universal embedding space for306

both queries and multi-modal documents, we fol-307

low previous work (Liu et al., 2023b) and employ308

modality-balanced hard negative training to allevi-309

ate the modality discrimination of retrieval models:310

LLM = − log
ef(q,d

+)/τ

ef(q,d+)/τ +
∑

d−∈D− ef(q,d−)/τ

∝ − f(q, d+)/τ︸ ︷︷ ︸
LAlign

+ log(
∑

d−∈D−

(ef(q,d
−
Image)/τ︸ ︷︷ ︸

LImage

+ ef(q,d
−
Text)/τ︸ ︷︷ ︸

LText

)),

(10)

311

where D− contains the same number of negative312

documents of image and text. LAlign teaches mod-313

els to align the query with related documents. LText314

and LImage guide retrievers to choose the modality315

and make the embedding space uniform (Liu et al.,316

2023b; Wang and Isola, 2020; Chen et al., 2020).317

4 Experimental Methodology318

This section describes datasets, evaluation metrics,319

baselines and implementation details.320

Dataset. During pretraining, we collect the321

image-caption pairs from ClueWeb22 (Overwijk322

et al., 2022) to train the visual understanding mod-323

ule. More details of pretraining data are shown324

in Appendix A.2. Then two multi-modal retrieval325

datasets, WebQA and ClueWeb22-MM, are used326

for finetuning and evaluation. The data statistics327

are shown in Table 1.328

WebQA is a multi-hop, multi-modal, open-329

domain question answering benchmark (Chang330

et al., 2022). The dataset contains images and pas-331

sage snippets that are crawled from the general332

Web and Wikipedia. We follow previous work (Liu333

et al., 2023b) to keep the same experimental set-334

tings to preprocess the dataset. Besides, we build335

a new multi-modal retrieval dataset, ClueWeb22-336

MM, based on ClueWeb22 (Overwijk et al., 2022),337

which provides 10 billion web pages with rich infor- 338

mation. We only retain web pages in English and 339

build the ClueWeb22-MM dataset. We establish 340

query-document relations by pairing anchors with 341

their corresponding document (Xie et al., 2023; 342

Zhang et al., 2020). And then we regard the anchor 343

texts as queries and extract image documents and 344

text documents from the linked documents. More 345

details of building the ClueWeb22-MM dataset are 346

shown in Appendix A.4. 347

Evaluation Metrics. We use NDCG@10, 348

MRR@10 and Recall@100 as evaluation met- 349

rics. Following previous work (Liu et al., 2023b; 350

Nguyen et al., 2016), we regard MRR@10 as our 351

main evaluation. MRR and NDCG are computed 352

using the official scripts1. Statistic significances 353

are tested by permutation test with P< 0.05. 354

Baselines. In our experiments, we follow pre- 355

vious work (Liu et al., 2023b) to conduct baseline 356

models and divide them into three groups: single 357

modality retrieval, divide-and-conquer, and univer- 358

sal dense retrieval models. 359

Single Modality Retrieval. In our experi- 360

ments, we represent image documents using cap- 361

tions and use several text retrieval models as 362

baselines. BM25 (Robertson et al., 2009) is 363

widely used in text retrieval work, which con- 364

ducts exact matches between queries and docu- 365

ments. DPR (Karpukhin et al., 2020) is trained us- 366

ing NQ dataset (Kwiatkowski et al., 2019) and uses 367

a dual-encoder to encode queries and documents 368

as dense vectors for retrieval. We start from vanilla 369

BERT (Devlin et al., 2019) and DPR (Karpukhin 370

et al., 2020) checkpoints and train the encoders 371

using in-batch negatives to conduct BERT-DPR 372

and NQ-DPR models. NQ-ANCE is also com- 373

pared, which continuously trains NQ-DPR using 374

hard negatives (Xiong et al., 2021a). Besides, T5- 375

ANCE (Yu et al., 2023) and Anchor-DR (Xie et al., 376

2023) are dense retrieval models that are trained on 377

MS MARCO and ClueWeb22, respectively. 378

Divide-and-Conquer. The divide-and-conquer 379

models retrieve image documents and text docu- 380

ments individually and then fuse the retrieval re- 381

sults. Following previous work (Liu et al., 2023b), 382

we use single modality retrievers, VinVL-DPR, 383

CLIP-DPR and BM25, and fuse the retrieval re- 384

sults according to their unimodal rank reciprocals. 385

Universal Dense Retrieval. CLIP-DPR and 386

1https://github.com/microsoft/
MSMARCO-Passage-Ranking/blob/master/
ms_marco_eval.py
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Setting Model WebQA ClueWeb22-MM
MRR@10 NDCG@10 Rec@100 MRR@10 NDCG@10 Rec@100

Single Modality
(Text Only)

BM25 53.75 49.60 80.69 40.81 46.08 78.22
DPR (Zero-Shot) 22.72 20.06 45.43 20.59 23.24 44.93
CLIP-Text (Zero-Shot) 18.16 16.76 39.83 30.13 33.91 59.53
Anchor-DR (Zero-Shot) 39.96 37.09 71.32 42.92 48.50 76.52
T5-ANCE (Zero-Shot) 41.57 37.92 69.33 45.65 51.71 83.23
BERT-DPR 42.16 39.57 77.10 38.56 44.41 80.38
NQ-DPR 41.88 39.65 78.57 39.86 46.15 83.50
NQ-ANCE 45.54 42.05 69.31 45.89 51.83 81.21

Divide-Conquer
VinVL-DPR 22.11 22.92 62.82 29.97 36.13 74.56
CLIP-DPR 37.35 37.56 85.53 39.54 47.16 87.25
BM25 & CLIP-DPR 42.27 41.58 87.50 41.58 48.67 83.50

UnivSearch

CLIP (Zero-Shot) 10.59 8.69 20.21 16.28 18.52 40.36
VinVL-DPR 38.14 35.43 69.42 35.09 40.36 75.06
CLIP-DPR 48.83 46.32 86.43 42.59 49.24 87.07
UniVL-DR 62.40†§ 59.32†§ 89.42†§ 47.99†§ 55.41†§ 90.46†§

MARVEL-DPR 55.71† 52.94† 88.23† 46.93† 53.76† 88.74†

MARVEL-ANCE 65.15†‡§ 62.95†‡§ 92.40†‡§ 55.19†‡§ 62.83†‡§ 93.16†‡§

Table 2: Overall Performance. We keep the same experimental settings with previous work (Liu et al., 2023b). †, ‡
and § indicate statistically significant improvements over CLIP-DPR†, UniVL-DR‡ and MARVEL-DPR§.

VinVL-DPR employ the visual language models387

CLIP (Radford et al., 2021) and VinVL (Zhang388

et al., 2021) as image and text encoders and then are389

trained with in-batch negatives. UniVL-DR (Liu390

et al., 2023b) is our main baseline model, which391

further uses modality-balanced hard negative to392

train text and image encoders and also utilizes the393

image verbalization method to bridge the modality394

gap between images and texts.395

Implementation Details. In our experiments,396

we use T5-ANCE (Yu et al., 2023) as our backbone397

language model, which is well-trained on the MS398

MARCO dataset (Nguyen et al., 2016). Then we399

implement our MARVEL model by utilizing CLIP400

as the visual understanding module to empower the401

image understanding capability of T5-ANCE. The402

visual encoder is initialized with the clip-vit-base-403

patch32 checkpoint from OpenAI2. For MARVEL,404

we truncate queries, text documents and image cap-405

tions to 128 tokens and set the max number of406

visual tokens to 49.407

During training, we use AdamW (Loshchilov408

and Hutter, 2019) optimizer and set maximum train-409

ing epoch=20, batch size=64, learning rate=5e− 6,410

and the temperature hyperparameter τ = 0.01. We411

follow UniVL-DR (Liu et al., 2023b) and conduct412

MARVEL-ANCE by starting from in-batch nega-413

tive finetuned MARVEL-DPR, and continuously414

training MARVEL-DPR with modality-balanced415

hard negatives. These hard negatives are randomly416

sampled from the top 100 retrieved negatives using417

MARVEL-DPR. All models are evaluated per 500418

steps and the early stop step is set to 5.419

2https://github.com/openai/CLIP

5 Evaluation Result 420

In this section, we first evaluate the performance of 421

MARVEL and then conduct ablation studies. Sub- 422

sequently, we explore the effectiveness of different 423

visual and language model fusion methods and an- 424

alyze the role of image features in the MARVEL. 425

Some case studies are shown in Appendix A.7. 426

5.1 Overall Performance 427

The multi-modal retrieval performance of MAR- 428

VEL and baseline models is shown in Table 2. 429

Overall, MARVEL significantly outperforms 430

baseline models on all datasets by achieving more 431

than 2% improvements on both datasets, demon- 432

strating its advantages in multi-modal retrieval 433

tasks. Compared with text retrieval models, MAR- 434

VEL improves their performance, showing that the 435

image features are crucial in the multi-modal re- 436

trieval task. Furthermore, these universal multi- 437

modal dense retrievers, UniVL-DR and MARVEL, 438

outperform divide-and-conquer models by alle- 439

viating the modality fusion problem (Liu et al., 440

2023b). Compared with our main baseline UniVL- 441

DR, MARVEL encodes queries and multi-modal 442

documents using a universal encoder. Experimental 443

results show that MARVEL significantly improves 444

the retrieval effectiveness of UniVL-DR on both 445

datasets, demonstrating its effectiveness in bridging 446

the modality gap between images and texts. 447

5.2 Ablation Study 448

As shown in Table 3, we conduct ablation studies to 449

explore the role of different modules of MARVEL 450

6
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Model Modality WebQA ClueWeb22-MM
MRR@10 NDCG@10 Rec@100 MRR@10 NDCG@10 Rec@100

MARVEL-ANCE
Text 64.72‡ 58.88‡§ 90.26‡§ 71.73†‡§ 75.40†‡§ 92.29‡§

Image 66.12† 67.49†‡ 95.12†‡§ 77.57†‡§ 81.34†‡§ 96.50†‡

Multi 65.15‡ 62.95†‡ 92.40‡§ 55.19‡§ 62.83‡§ 93.16‡§

w/o CLIP Pretraining
Text 64.63‡ 58.79‡ 90.21‡§ 70.92§ 74.67§ 92.13‡§

Image 65.17 66.69 94.64 76.99‡§ 80.83‡§ 96.22
Multi 64.66 62.50‡ 92.24 ‡§ 55.18‡§ 62.81‡§ 93.07‡

w/o MS MARCO Pretraining
Text 63.37 56.93 88.54 70.74§ 74.35§ 91.27
Image 65.73 66.91 94.66 76.26 80.11 96.08
Multi 64.21 61.63 91.43 54.61§ 62.16§ 92.52

w/o Prompt
Text 63.86 58.00‡ 89.60‡ 69.99 73.82 91.65
Image 66.53†‡ 67.56†‡ 94.42 76.07 80.14 96.58†‡

Multi 64.92‡ 62.50‡ 91.81‡ 54.20 61.79 92.93‡

Table 3: Ablation Studies. †, ‡, and § indicate statistically significant improvements over MARVEL-ANCE w/o
CLIP Pretraining†, MARVEL-ANCE w/o MS MARCO Pretraining‡ and MARVEL-ANCE w/o Prompt§.

in multi-modal retrieval. More ablation studies are451

shown in Appendix A.6.452

In the comparison between MARVEL and MAR-453

VEL (w/o CLIP Pretraining), pretraining the visual454

understanding module shows its effectiveness by455

improving the performance on single/multi-modal456

retrieval tasks. It shows that the image-caption457

alignment relations provide some opportunities to458

adapt the visual module to the language model via459

pretraining. Subsequently, MARVEL also outper-460

forms MARVEL (w/o MS MARCO Pretraining),461

especially on the text retrieval task. It demonstrates462

that MARVEL can broaden the advantage of text463

relevance modeling to the multi-modal retrieval464

task. To unify the multi-modal encoding, MAR-465

VEL follows previous work (Hannan et al., 2020)466

uses prompt tokens to indicate the start and end po-467

sitions of encoded image features (Eq. 6), aiming468

to distinguish the image features from text token469

embeddings. These image prompt tokens bring470

light improvements, illustrating their roles in multi-471

modal document representation.472

5.3 Retrieval Effectiveness of Different473

Visual-Language Fusion Methods474

In this experiment, we show the retrieval effective-475

ness of MARVEL on the WebQA dataset by using476

different modality fusion and finetuning methods.477

Modality Fusion. Three kinds of visual-478

language fusion methods are compared in our ex-479

periments, including Sum, Concat and Plugin. For480

Sum and Concat methods, we encode the captions481

and image features separately as embeddings, then482

sum or concatenate these embeddings, followed by483

joint training of T5-ANCE and CLIP models with484

in-batch negatives. We show the experimental re-485

Method Modality MRR@10 Rec@100
Text 51.75 84.37

CLIP-Sum Image 60.61 94.84
Multi 48.83 86.43
Text 51.84 85.06

T5-CLIP (Sum) Image 58.09 93.13
Multi 35.03 79.00
Text 48.71 81.78

T5-CLIP (Concat) Image 37.20 81.14
Multi 25.19 62.77
Text 54.28 85.80

T5-CLIP (Plugin) Image 60.81 93.55
Multi 55.58 88.50

Table 4: Retrieval Performance of the Models using
Different Visual-Language Fusion Methods. T5-CLIP
(Sum/Concat) is similar to previous work (Liu et al.,
2023b), which only replace the image caption encoder
with T5-ANCE. The CLIP-Sum model is the CLIP-
DPR model from previous work (Liu et al., 2023b). All
models are trained with in-batch negatives. MRR@10 is
used to evaluate the retrieval effectiveness of all models.

sults in Table 4. MARVEL’s visual module plugin 486

method outperforms other fusion methods. This 487

highlights the effectiveness of utilizing pretrained 488

attention heads of language models for extracting 489

image semantics and fostering deeper interactions 490

between image and text inputs. Our plugin method 491

proves instrumental in mitigating the modality gap 492

between texts and images, enabling MARVEL to 493

better represent image documents by jointly mod- 494

eling image captions and features. 495

Different from Liu et al. (2023b), we use T5- 496

ANCE and CLIP as the text and image encoders, 497

respectively. These models have different archi- 498

tectures and are pretrained on text retrieval and 499

image-caption matching tasks. The multi-modal re- 500

trieval performance of CLIP-Sum decreases when 501
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(a) Attention Weights. (b) Attention Entropy.

Figure 3: Attention Distribution of MARVEL-ANCE.
The attention weights of image features are shown in
Figure 3(a). And the attention weight entropy of image
captions and features is shown in Figure 3(b).

we encode the image caption with a stronger re-502

trieval model T5-ANCE (T5-CLIP-Sum) instead503

of CLIP. It demonstrates that incorporating an ad-504

ditional visual module into a well-trained dense505

retrieval model is still challenging for multi-modal506

retrieval. Notably, MARVEL provides a promising507

way to enable the image understanding ability of508

dense retrieval models by using the visual module509

plugin modeling method.510

Finetuning Strategies. We then show the effec-511

tiveness of different finetuning strategies. In this512

experiment, we individually finetune the language513

model (T5) and visual module (CLIP) to show the514

changes of attention distributions and analyze the515

behaviors of different finetuning strategies.516

As shown in Figure 3. The attention scores are517

calculated by cross attentions from the decoder518

to the encoder module of T5. We first show the519

attention weight distribution of image features in520

Figure 3(a). When we only finetune the language521

model, the attention heads tend to allocate more522

balanced attention weights between image features523

and captions, helping to adapt the visual module524

in the language model. On the other hand, the525

image features win more attention weights when526

the CLIP module is finetuned. However, as shown527

in Figure 3(b), only finetuning the CLIP module528

shows a scattered attention weight mechanism than529

other models, which misleads the T5-ANCE to530

capture more important information from encoded531

representations of documents. All these phenom-532

ena demonstrate the necessity of the training strate-533

gies of MARVEL, which pretrain visual module534

for adaption and only finetune the language model535

for multi-modal retrieval. In addition, we show536

the retrieval effectiveness with different finetuning537

methods in Appendix A.3.538

Model MRR@10 NDCG@10 Rec@100
MARVEL-DPR 55.71 52.94 88.23
w/ 1-NN Token 38.80 35.89 73.59
w/ 5-NN Tokens 42.39 39.27 75.04
w/ Random Token 37.73 35.34 71.92
MARVEL-ANCE 65.15 62.95 92.40
w/ 1-NN Token 51.37 48.27 80.47
w/ 5-NN Tokens 52.22 49.35 81.88
w/ Random Token 44.22 41.55 71.23

Table 5: Multi-Modal Retrieval Performance of Differ-
ent Image Feature Replacement Strategies. We conduct
experiments on MARVAL-DPR and MARVAL-ANCE
models by replacing the image features with the average
of k-NN (k Nearest Neighbour) word embeddings. The
k is set to 1 and 5.

5.4 Learned Semantics of Image Features 539

In this experiment, we explore the semantic infor- 540

mation of image features encoded by the visual 541

module on the WebQA dataset. During training 542

MARVEL model, we map the encoded image fea- 543

tures into the input space of T5-ANCE’s word em- 544

beddings. We conduct several experiments by re- 545

placing the encoded image features with the em- 546

beddings of the nearest or random tokens. 547

As shown in Table 5, replacing encoded image 548

features with k-NN token embeddings generally 549

outperforms the retrieval model using randomly 550

selected token embeddings. It demonstrates that 551

the visual plugin module effectively maps image 552

semantics in the input space of the language model, 553

and the ability to keep growing with more token 554

embeddings (5-NN). However, the retrieval per- 555

formance significantly drops when employing k- 556

NN token embeddings to replace the image fea- 557

tures, compared to the MARVEL model. It demon- 558

strates the role of encoded image features beyond 559

the semantic representations of word embeddings. 560

The encoded image features may act as a kind of 561

prompt, encouraging language models to capture 562

image semantics (Merullo et al., 2023). More cases 563

are shown in Appendix A.5. 564

6 Conclusion 565

This paper proposes Multi-modAl Retrieval via 566

Visual modulE pLugin (MARVEL). MARVEL in- 567

tegrates a visual plugin module with a well-trained 568

dense retriever and pretrains the visual module 569

with image-caption contrastive training for adap- 570

tion. Our MARVEL model achieves state-of-the- 571

art on all benchmarks by unifying the multi-modal 572

document encoding and alleviating the modality 573

gap between images and texts. 574
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Limitations575

Even though MARVEL shows strong effectiveness576

in the multi-modal retrieval task, there are some577

limitations in our work. Existing multi-modal re-578

trieval systems still highly depend on the semantics579

of image caption instead of the image understand-580

ing ability of the visual module. In this case, MAR-581

VEL pretrains the visual understanding module but582

achieves limited improvements. Building an effec-583

tive visual understanding module is crucial for the584

multi-modal retrieval task.585
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Finetune Modality MRR@10 NDCG@10 Rec@100
Text 64.89 58.71 89.98

CLIP & T5 Image 64.36 65.41 94.19
Multi 64.37 61.77 91.78
Text 64.72 58.88 90.26

T5 Image 66.12 67.49 95.12
Multi 65.15 62.95 92.40
Text 48.38 41.63 75.11

CLIP Image 56.28 56.17 87.67
Multi 49.22 45.80 80.42
Text 48.38 41.39 74.57

N/A Image 55.09 54.99 87.26
Multi 48.12 44.75 79.69

Table 6: The Retrieval Performance with Differ-
ent Training Strategies. We freeze each module of
MARVEL-ANCE to explore the benefits of training
between different modules.

A Appendix851

A.1 License852

We show the licenses of the datasets that we use.853

WebQA uses CC0-1.0 license, while ClueWeb22854

shows its terms of use at website3. All of these855

licenses and agreements allow their data for aca-856

demic use.857

A.2 Experimental Details of MARVEL858

Pretraining Data859

In this subsection, we introduce the experimental860

details to process the pretraining data.861

To pretrain the visual module in MARVEL,862

we collect the image-caption pairs from the863

ClueWeb22 dataset. We retain the English pages,864

extract the content within the image tag and use the865

image and alt-text to construct the image-caption866

pair. To ensure the quality of the pretraining dataset,867

following LAION-400M (Schuhmann et al., 2021),868

we use CLIP to calculate the embeddings of im-869

ages and captions and compute the cosine similar-870

ity between the two embeddings. Subsequently,871

we discard all samples with a cosine similarity872

lower than 0.3. The pretraining dataset contains873

1.6M image-caption pairs, and we randomly select874

10,000 pieces of data as the development set and875

use the rest for the pretraining visual module.876

A.3 Retrieval Effectiveness of Different877

Finetuning Strategies878

In this experiment, we show the performance of879

single/cross and multi-modal retrieval tasks with880

different finetuning strategies.881

3https://lemurproject.org/clueweb22/

Data Type Median Average Max Min
Queries 8.0 9.9 245.0 1.0
Text Documents 52.0 127.8 1121183.0 1.0
Image Captions 6.0 8.1 998.0 1.0

Table 7: Length Statistics of Queries, Text Documents
and Image Captions in ClueWeb22-MM Dataset.

Range of Image Sizes Number
Height or Width ≥ 1024 23.8k
Height and Width ≥ 1024 7.4k
Height or Width ≥ 512 81.9k
Height and Width ≥ 512 43.9k
Height or Width ≥ 256 234.6k
Height and Width ≥ 256 170.2k

Table 8: Image Size Distribution of ClueWeb22-MM.

As shown in Table 6, finetuning the CLIP mod- 882

ule indeed improves the retrieval performance of 883

the whole frozen model, especially in the image 884

retrieval task. This observation shows that multi- 885

modal training signals are effective to benefit the ca- 886

pability of visual modules. When we only tune the 887

parameters of T5, MARVEL-ANCE achieves sig- 888

nificant improvements over the frozen model, show- 889

ing the language model’s strong ability to adapt the 890

visual module to the dense retriever. Nevertheless, 891

the fully finetuned model decreases the retrieval 892

performance of MARVEL-ANCE that only fine- 893

tunes T5. It shows the necessity of the pretraining- 894

and-then-finetuning strategy of MARVEL, which 895

pretrains the visual understanding module for adap- 896

tion and finetunes the language model for multi- 897

modal retrieval. 898

A.4 More Details of ClueWeb22-MM 899

To show the details of our ClueWeb22-MM dataset, 900

we show the data collection, data processing and 901

data statistics. 902

Data Collection. Following previous work in 903

text retrieval (Zhang et al., 2020; Xie et al., 2023), 904

we regard the anchor text as a query and assume 905

that its linked web page is related to the query. 906

Then we extract image documents and text doc- 907

uments from these anchor-linked web pages. To 908

obtain image documents, we parse HTML to ex- 909

tract the content within the image tag, then use 910

alt-text as image caption, and crawl the image fea- 911

tures from the image URL. 912

Data Processing. Ensuring the quality and 913

meaningfulness of the ClueWeb22-MM dataset, we 914

conduct additional processing on the data to filter 915

out noise data according to the quality of images 916

and alt-texts. Concerning images, we retain data 917
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Queries with the Text Document as Label
Query: Chinese Dragons — Facts, Culture, Origins, and Art
Text Document: Live updates on China travel restrictions for 2022. Learn more Home Chinese Culture Traditional
Chinese Clothes Chinese Dragons — Facts, Culture, Origins, and Art Written by Mike Ho Updated Dec. 14, 2021 Chinese
dragons are powerful and benevolent symbols in Chinese culture, with supposed control over watery phenomenon, e.g.
summoning rain during a drought. Dragons are everywhere in China — in legends, festivals, astrology, art, names, and
idioms.
Query: How to manage partitions with the Disk Management tool, in Windows | Digital Citizen
Text Document: Disk Management A new window should pop up, listing the drive letter of the partition. Click or tap
Change and, in the next window, select the new drive letter you wish to assign to it. Then, click or tap OK.
Query: here’s a small-batch peanut butter oatmeal cookie recipe for you
Text Document: You are here: Home / Recipes / Small-batch Peanut Butter Oatmeal Cookies Small-batch Peanut Butter
Oatmeal Cookies 02/21/19 | Cookies , Desserts , Recipes , Small-batch Dessert These Small-batch Peanut Butter Oatmeal
Cookies are the perfect cookie hybrid. They’re rich and peanut buttery, bendy and chewy, and the best of both worlds. A
few weeks ago, I posted these (AMAZING) Peanut Butter Oatmeal Cookies . It was a big-batch recipe meant for sharing
and freezing, so I promised that I’d add a small-batch version ASAP for those of you who are here for small-batch desserts.
So here we go. Let’s make a cute little batch of Peanut Butter Oatmeal Cookies and share with no one.
Query: What foods increase uric acid
Text Document: Vegetables and legumes that increase uric acid Legumes such as lentils, chickpeas or beans are known
for their purine content, so their intake should be limited to only once or twice a week if you have high uric acid. Other
vegetables that should be eaten in moderation are asparagus, mushrooms, cauliflower, spinach, radishes and leeks... Other
foods that increase uric acid Other foods that increases uric acid and should be avoided are: All kinds of alcoholic
beverages , especially beer and wine. Carbonated beverages, sugar-laden soft drinks and packaged juices. Avoid cooking
with brewer’s yeast...

Queries with the Image Document as Label

Query: Use Web apps With the New Chromium Edge on Windows 10
Image Caption: Web Apps Running Chromium Edge

Query: What are Runestones In Witcher 3?
Image Caption: Witcher 3 best runewords

Query: Everything We Know About Mindy Kaling and BJ Novak’s
Relationship—Including Sweet Details from Her Book
Image Caption: mindy-kaling-bj-novak-removebg

Query: Vector Cross Product Formula Excel Template
Image Caption: Vector Cross Product Formula-1.2

Table 9: Examples of ClueWeb22-MM. We give practical examples of queries, image documents, and text
documents.

with image file extensions such as jpg/png/jpeg and918

discard samples with image URLs containing key-919

words, e.g. “logo”, “button”, “icon”, “plugin”, or920

“widget”. Besides, we exclude the example, which921

has empty alt-text, has “no alt attribute” and con-922

tains an alt-text that is shorter than 5.923

To further guarantee the quality of the dataset,924

we use T5-ANCE (Yu et al., 2023) to estimate the925

relevance between the anchor and its corresponding926

image document. We encode all captions of image927

documents using T5-ANCE, use the anchor texts928

as queries to retrieve the images and reserve the 929

anchors that are ranked in the top 10. Finally, we 930

respectively sample 10,000 queries to build the 931

development set and test set. The rest data are 932

used for finetuning models, which contain 72,028 933

queries. 934

Data Statistics. We provide length statistics 935

on queries, text documents, and image captions in 936

Table 7 and present the image size distribution in 937

Table 8. Subsequently, as shown in Table 9, we 938

show eight examples to illuminate the ClueWeb22- 939
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Figure Text
Manual Caption: Mardi Gras Bourbon Street 2015 Bourbon Street, New Orleans, during Mardi Gras

Nearest Tokens: [“kehr”,“voted”, “brightness”, “event”, “city”, “venue”, “local”, “pub”, “bounce”, “island”, “ferry”,

“keto”, “Ice”, “residents”, “lighting”, “store”, “lights”, “banks”, “Lake”, “impacted”, “lively”, “drinks”, “eye”]

Nearest Tokens w/o CLIP Pretraining: [“OUG”, “7,000”, “ban”, “CU”, “edited”, “ition”, “Pop”, “imprisonment”,

“O”, “militari”, “immuno”, “Ton”, “reset”, “États”, “concise”, “Arbeits”, “IN”, “Hi”, “RAM”,

“Hello”, “stocked”, “charged”, “institu”]

Manual Caption: Red-shanked Douc at the Philadelphia Zoo

Nearest Tokens: [“Whale”, “endangered”, “horn”, “bird”, “goat”, “animals”, “wildlife”, “mammals”, “whale”, “Gib”,

“Elephant”, “Savannah”, “dach”, “birds”, “creatures”, “Wildlife”, “lois”, “biomass”, “limb”, “Creatures”]

Nearest Tokens w/o CLIP Pretraining: [“RAM”, “bilingual”, “MOD”, “native”, “recognizable”, “Graphic”, “charged”,

“ordentlich”, “gray”, “suffisamment”, “colorful”, “clar”, “haunt”, “riad”, “CM”, “ammunition”, “ordre”, “thetic”,

“Hi”, “auftrag”, “he”, “ban”, “sets”, “7,000”, “representation”]

Manual Caption: Military parade in Baku on an Army Day28 Military parade in Baku on an Army Day

Nearest tokens: [“vehicles”, “Fahrzeug”, “territories”, “flag”, “chemical”, “replies”, “migrants”, “parliament”, “bikes”,

“militari”, “equipment”, “République”, “troops”, “clothing”, “gear”, “prisoners”, “machinery”, “tribe”, “vorgesehen”]

Nearest Tokens w/o CLIP Pretraining: [ “împreună”, “RAM”, “ened”, “troupe”, “Compet”, “sie”, “own”, “RGB”,

“Ha”,“operation”, “arbeit”, “enforcement”, “Cor”, “EU”, “LCD”, “countries”, “SO”, “institu”, “grief”, “limbi”,

“default”, “16”, “raum”, “haunt”, “unanimous”]

Manual Caption:Parlament Wien Austria, Vienna, Austrian Parliament Building

Nearest Tokens: [“Schloss”, “funds”, “Statut”, “furniture”, “Albany”, “structure”, “palace”, “Capitol”, “statute”, “locul”,

“headquarters”, “occupie”, “structures”, “legislature”, “cinéma”, “legislation”, “governmental”, “Argentin”,“vederea”]

Nearest Tokens w/o CLIP Pretraining: [ “militari”, “reset”, “Ton”, “shrine”, “commands”, “hi”, “împreună”, “Achtung”,

“genug”, “shake”, “RAM”, “iconic”, “committed”, “département”, “colo”, “Hi”, “Sammlung”, “pop”, “1951”, “ban”,

“russia”, “Color”, “vivid”, “HM”, “arbeit”, “default”]

Manual Caption: Green Corn Dance at Tesuque Indian Pueblo near Santa Fe, New Mexico File name: 06 10 015670

Nearest Tokens: [“parametri”, “damaged”, “members”, “Feuer”, “muddy”, “potentiel”, “membres”, “statutory”, “aires”,

“monetary”, “pun”, “Chemical”, “bookstore”, “Donna”, “tari”, “elemente”, “lawmakers”, “IN”, “bankruptcy”, “tomato”,

“chemical”, “materiale”, “banks”, “souvent”, “graphical”, “paper”, “vorgesehen”]

Nearest Tokens w/o CLIP Pretraining: [ “immediate”,“OR”, “ammunition”, “comune”, “cartoon”, “LAR”, “SO”, “LED”,

“sign”, “Sin”, “unanimous”, “entière”, “auftrag”, “historischen”, “concise”, “Arbeits”, “obligaţi”, “gray”, “vivid”, “Hi”,

“enforcement”, “part”, “UD”, “He”, “suffisamment”, “ened”, “agencies”, “EU”, “charged”, “commune”, “clown”]

Table 10: The Nearest Tokens of Image Features. We randomly select five image documents, encode these image
features using the visual module of MARVEL and MARVEL w/o CLIP Pretraining, and then show the nearest
tokens of the encoded image features. The tokens related to the semantics of the image document are highlighted.

MM dataset. These examples show that the anchor-940

document pairs are of high quality. Thus we can941

use them to build an evaluation benchmark for942

multi-modal retrieval.943

A.5 Effectiveness of Image Features944

We show some case studies in Table 10 to show945

the effectiveness of the visual understanding mod-946

ule by verbalizing the semantics of encoded image947

features using word tokens.948

We randomly select five image documents of949

different topics and represent the encoded image950

feature with some tokens to verbalize the image se-951

mantics. Specifically, we first use the visual plugin952

modules of MARVEL and MARVEL w/o CLIP953

Pretraining to encode the image features. Then, to954

show the semantics of the encoded image features,955

we utilize cosine similarity to find the k-NN tokens956

for each encoded image feature. Finally, we utilize957

the token with the highest score to represent the 958

semantics of the encoded image features. 959

Overall, compared with the MARVEL w/o CLIP 960

Pretraining model, MARVEL learns more effec- 961

tive representations for image documents. These 962

representations are closer to the word tokens asso- 963

ciated with the semantics of the image documents. 964

It demonstrates that MARVEL has the ability to 965

better adapt the visual understanding module to 966

dense retrievers. 967

For the first two examples, MARVEL w/o CLIP 968

Pretraing learns more similar representations for 969

both image documents. The related word tokens of 970

these image documents contain lots of same tokens, 971

such as “7,000”, “Hi”, and “RAM”, which are unre- 972

lated to the semantics of the image documents. On 973

the contrary, our MARVEL model can learn more 974

similar semantics to both image documents. Specif- 975
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Model Modality WebQA ClueWeb22-MM
MRR@10 NDCG@10 Rec@100 MRR@10 NDCG@10 Rec@100

MARVEL-ANCE
Text 64.72 58.88 90.26 71.73 75.40 92.29
Image 66.12 67.49 95.12 77.57 81.34 96.50
Multi 65.15 62.95 92.40 55.19 62.83 93.16

w/o Image Caption
Text 64.67 58.30 89.49 69.75 73.32 90.60
Image 3.85 4.32 24.81 18.26 20.65 45.07
Multi 33.70 30.83 56.45 37.29 40.74 64.26

w/o Image Feature
Text 63.42 57.95 90.27 71.17 74.78 91.57
Image 64.32 65.42 94.15 76.83 80.60 95.88
Multi 63.60 61.43 91.99 54.98 62.64 92.60

Table 11: Additional Ablation Study Results on MARVEL-ANCE.

ically, MARVEL verbalizes the first image docu-976

ment using the words “brightness”, “resident” and977

“store”, which are related to the image description978

of “Bourbon Street”. And MARVEL also learns979

the semantics of “animals”, “wildlife” and “crea-980

tures” of the second image document. The next two981

instances show the effectiveness of MARVEL in982

learning more fine-grained semantics of the image983

documents by verbalizing the image documents984

with more related words, such as “militari”, “vehi-985

cle”, “flag”, “legislatur”, and “government”. All986

these cases illustrate our visual module pretraining987

strategy’s important role in improving MARVEL’s988

visual understanding ability.989

Even though our visual module pretraining990

method shows its effectiveness, the last case shows991

the limitation of existing CLIP based models. The992

image document describes the semantics of “Green993

Corn Dance”, which is still hard to comprehend by994

the visual understanding module.995

A.6 Additional Ablation Studies on MARVEL996

We conduct additional ablation studies to explore997

the role of image captions and image features in998

the multi-modal retrieval task.999

As shown in Table 11, the relevance modeling1000

between queries and image documents heavily de-1001

pends on the image caption, which is also observed1002

in previous work (Liu et al., 2023b). The image1003

features contribute to approximately 1% improve-1004

ments in the image retrieval task, demonstrating1005

the effectiveness of image features in helping the1006

model better understand the image documents.1007

A.7 Case Studies1008

In Figure 4, we show two cases from WebQA1009

and ClueWeb22-MM to study the multi-modal re-1010

trieval effectiveness of MARVEL. The top 5 doc-1011

uments retrieved by UniVL-DR, MARVEL-DPR,1012

and MARVEL-ANCE are presented.1013

For the first case, UniVL-DR conducts shallow 1014

keyword matching and returns text documents that 1015

are related to “animal” and “Peace” mentioned in 1016

the query, which are unrelated to the query. MAR- 1017

VEL can better understand that “Peace and Plenty” 1018

is a famous painting and retrieve more related im- 1019

ages and text documents for users. In the second 1020

case, UniVL-DR, MARVEL-DPR, and MARVEL- 1021

ANCE all return images or text documents related 1022

to “promotion ideas”. Notable, MARVEL can bet- 1023

ter understand the user’s question and return the 1024

modal that the user expects. MARVEL-ANCE 1025

introduces a variety of sales promotion strategies 1026

rather than matching on “promotion” keywords. It 1027

shows the effectiveness of MARVEL in better fus- 1028

ing the retrieval results from different modalities, 1029

which thrives on universal multi-modal document 1030

encoding. 1031
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(a) Top5 Multi-modal Documents Retrieved from WebQA.

(b) Top5 Multi-modal Documents Retrieved from Clueweb22-MM.

Figure 4: Case Studies. We present two cases from WebQA and ClueWeb22-MM and show the top5 retrieved multi-
modal documents. The ground-truth documents and related content are highlighted in red and blue respectively.
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