
Workshop track - ICLR 2017

COMPACT EMBEDDING OF BINARY-CODED INPUTS
AND OUTPUTS USING BLOOM FILTERS

Joan Serrà & Alexandros Karatzoglou ∗

Telefónica Research
Pl. Ernest Lluch i Martı́n, 5
Barcelona, 08019, Spain
firstname.lastname@telefonica.com

ABSTRACT

The size of neural network models that deal with sparse inputs and outputs is of-
ten dominated by the dimensionality of those inputs and outputs. Large models
with high-dimensional inputs and outputs are difficult to train due to the limited
memory of graphical processing units, and difficult to deploy on mobile devices
with limited hardware. To address these difficulties, we propose Bloom embed-
dings, a compression technique that can be applied to the input and output of neu-
ral network models dealing with sparse high-dimensional binary-coded instances.
Bloom embeddings are computationally efficient, and do not seriously compro-
mise the accuracy of the model up to 1/5 compression ratios. In some cases, they
even improve over the original accuracy, with relative increases up to 12%. We
evaluate Bloom embeddings on 7 data sets and compare it against 4 alternative
methods, obtaining favorable results.

1 INTRODUCTION

The size of neural network models that deal with sparse inputs and outputs is often dominated by
the dimensionality of such inputs and outputs. This is the case, for instance, with recommender
systems, where high-dimensional sparse vectors, typically in the order from tens of thousands to
hundreds of millions, constitute both the input and the output of the model (e.g., Wu et al., 2016;
Hidasi et al., 2016; Cheng et al., 2016). This results in large models that present a number of
difficulties, both at training and prediction stages. Apart from training and prediction times, an
obvious bottleneck of such models is space: their size (and even performance) is hampered by the
physical memory of graphical processing units, and they are difficult to deploy on mobile devices
with limited hardware (cf. Han et al., 2016).

In this abstract, we introduce Bloom embeddings (BEs), an unsupervised embedding technique that
can be applied to both input and output layers of neural network models leveraging binary (one-hot
encoded) data. BEs are based on the idea of Bloom filters (Bloom, 1970), and therefore inherit part
of the theory developed around that idea (Blustein & El-Maazawi, 2002; Mitzenmacher & Upfal,
2005). A BE produces a lower-dimensionality binary embedding that can be easily mapped back to
the original instance. An interesting feature of BE is that the accuracy of the original model is not
compromised, provided that the embedding dimension is not too low. Furthermore, in some cases,
we show that training with embedded vectors can even increase prediction accuracy. BEs require
no changes to the core network structure nor to the model configuration, and work with a softmax
output, the most common output activation for binary-coded instances. As it is unsupervised, a BE
does not require any preliminary training. Moreover, it is a constant-time operation that can be ei-
ther performed on-the-fly, requiring no disk or memory space, or can be cached in random access
memory, occupying orders of magnitude less space than a typical embedding matrix. Lower dimen-
sionality of input/output vectors can result in faster training, and the mapping from the embedded
space to the original one should not add an overwhelming amount of time to the prediction stage.

∗An extended version of the paper was submitted to the main coference track: https://openreview.
net/forum?id=rkKCdAdgx.

1

https://openreview.net/forum?id=rkKCdAdgx
https://openreview.net/forum?id=rkKCdAdgx


Workshop track - ICLR 2017

2 RELATED WORK

A common unsupervised approach to embed high-dimensional inputs is the hashing trick (HT; Lang-
ford et al., 2007; Shi et al., 2009). A more elementary version of it (Ganchev & Dredze, 2008) can
be used at the outputs too by considering it as a special case of the proposed BE. A framework
providing both encoding and decoding strategies is error-correcting output codes (ECOC; Dietterich
& Bakiri, 1995), which can be adapted to class sets (Armano et al., 2012). The compressed sensing
approach of Hsu et al. (2009) builds on top of ECOC to reduce multi-label regression to binary re-
gression problems. Cissé et al. (2013) use Bloom filters for the same purpose, avoiding to tackle the
full output at once. Other data-dependent approaches rely on variants of singular value decomposi-
tion (SVD) or canonical correlation analysis (CCA). For instance, Chollet (2016) has successfully
applied an SVD approach to deal with binary-coded outputs for image classification.

From a more general perspective, reducing the space of (or compressing) neural network models is
an active research topic (e.g. Courbariaux et al., 2015; Han et al., 2016). However, these methods
typically do not focus on input layers and, to the best of our knowledge, none of them deals with
high-dimensional outputs. It is also worth noting that a number of techniques have been proposed to
efficiently deal with high-dimensional outputs, specially in the natural language processing domain
(e.g., hierarchical or adaptive softmax). Yet, as mentioned, the focus of these works is on speed, not
on space. The work of Vincent et al. (2015) focuses on both aspects of very large sparse outputs but,
to the best of our knowledge, cannot be applied to traditional softmax outputs.

3 APPROACH

Given an instance x with dimensionality d that is binary-coded, that is xi ∈ {0, 1}, and sparse, such
that

∑d
i=1 xi = c� d, we represent it as a set p = {pi}ci=1, where pi ∈ N≤d is the position of such

elements in x. For every set p, we generate an embedded instance u of dimensionality m < d by
first setting all m components to 0 and then iteratively assigning

uHj(pi) = 1 (1)

for every element pi, i = 1, . . . c, and every projection Hj , j = 1, . . . k. Projections Hj correspond
to a set of k independent hash functions H = {Hi}ki=1, each of which with a range from 1 to m,
ideally distributing the projected elements uniformly at random (Mitzenmacher & Upfal, 2005).

To recover a probability-based ranking of the d elements at the output of the model, we assume
a softmax activation and compute a probability vector v̂ = [v̂1, . . . v̂m] that, at training time, is
compared to the binary embedding v of the ground truth y. At prediction time, we can understand
v̂ as a k-way factorization of every element ŷi of our prediction ŷ. Then, following the idea of
Bloom filters, if yi maps to vi and v̂i = 0, we can confirm that that element is definitely not in
the output of the model (Blustein & El-Maazawi, 2002). Otherwise, if v̂i is relatively large, we
want the likelihood of that element to reflect that. Specifically, given an element position qi from q
representing y (analogously to p and x), we can compute the negative log-likelihood

L(qi) = −
k∑

j=1

log
(
v̂Hj(qi)

)
, (2)

and assign outputs ŷi = L(qi). Note that iterating Eq. 2 for i = 1, . . . d defines a ranking over
the elements in ŷ, which is the most common way to define (and evaluate) sparse high-dimensional
outputs. From there, if needed, a probability distribution can be recovered by re-normalization.

4 RESULTS

We study the performance of BEs on 7 different publicly-available data sets which comprise a mix
of recommender systems and language modeling tasks: Movielens (ML), Penn Treebank (PTB),
CADE web directory, Million song data set (MSD), Amazon book reviews (AMZ), Book crossing
(BC), and YooChoose RecSys challenge (YC). For each data set, we select an appropriate baseline
neural network architecture. We experiment with both feed-forward (autoencoder-like) and recurrent
networks, carefully selecting their parameters and configuration to match the literature results.

2



Workshop track - ICLR 2017

0.0 0.2 0.4 0.6 0.8 1.0
m/d

0.0

0.2

0.4

0.6

0.8

1.0

1.2

S
i/
S

0

ML

PTB

CADE

MSD

AMZ

BC

YC

Baseline

Figure 1: Score ratios Si/S0 as a function of dimensionality ratio m/d using k = 4. Qualitatively
similar plots are observed for other values of k.

For every task, we compute a baseline score S0, corresponding to running the plain neural network
model without any embedding. To compare the performance across different tasks using different
evaluation measures, we report the performance of the i-th task with respect to its baseline score,
Si/S0. Similarly, to compare across different data dimensionalities, we report the ratio of embed-
ding dimensionality m with respect to the original dimensionality d of the task, m/d.

To assess the performance of BE, we plot the performance ratio Si/S0 as a function of the em-
bedding ratio m/d (Fig. 1). Firstly, we observe that score ratios approach 1 as m approaches d,
indicating that the introduction of BE does not degrade the original score of the Baseline when the
embedding dimension m is comparable to the original dimension d. Secondly, we observe that the
lower the dimensionality ratio, the lower the score ratio. This is to be expected, as one cannot embed
sets of elements with their intrinsic dimensionality to an infinitesimally small m. Importantly, the
reduction of Si/S0 should not be linear with m/d, but should maximize Si for low m (thus getting
curves close to the top left corner of Fig. 1). We see that BE fulfills this requirement. In general, we
can reduce the size of inputs and outputs 5 times (m/d = 0.2) and still maintain more than 92% of
the value of the original score.

An additional observation is worth noting: we find that BE can improve the scores over the Baseline
for a number of tasks. That is the case for 3 out of the 7 considered tasks: MSD with m/d ≥ 0.3,
AMZ with m/d ≥ 0.2, and BC with 0.3 ≤ m/d ≤ 0.6. The fact that an embedding performs better
than the original Baseline has been observed for a few other methods in some specific tasks (Lang-
ford et al., 2007; Chollet, 2016). Here, depending on the task and the embedding dimension, relative
increases go from 1 to 12%. We hypothesize that, in the case of BE, such increases come from hav-
ing k times more active elements in the ground truth output (Sec. 3). With that, a better estimation
of the gradient may be computed (larger errors that propagate back to the rest of the network).

We also compared the performance of BE against 4 different state-of-the-art methods (Sec. 2): HT,
ECOC, SVD, and CCA. To do so, we selected two different embedding ratios m/d for each of the
7 tasks and computed the performance ratio Si/S0, resulting in 14 ‘test points’ for every method.
The results of BE were very encouraging, as it statistically significantly outperformed all the state-
of-the-art methods in 10 of the test points (5 out of the 7 tasks). SVD and CCA each won on one
of the remaining tasks. Nonetheless, we should notice that these approaches introduce a separate
degree of supervised learning by exploiting pairwise element co-occurrences. In contrast, BE does
not require any learning. It is also faster, as we only have to compute k hashes, instead of performing
some kind of SVD decomposition on a potentially high-dimensional matrix. Computing a BE is an
O(ck) operation, where c� d (see above) and k ≤ 5 in all our experiments. Recovering the original
ranking is an O(dk) operation, thus only adding O(k) overhead over non-BE operation. Overall,
BEs are a fast operation that scales to large sparse data sets.

3



Workshop track - ICLR 2017

REFERENCES

G. Armano, C. Chira, and N. Hatami. Error-correcting output codes for multi-label text categoriza-
tion. In Proc. of the Italian Information Retrieval Conf. (IIR), pp. 26–37, 2012.

B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Communications of the
ACM, 13(7):422–426, 1970.

J. Blustein and A. El-Maazawi. Bloom filters – a tutorial, analysis, and survey. Technical report,
Faculty of Computer Science, Dalhousie University, Halifax, Canada, 2002. URL https://
www.cs.dal.ca/research/techreports/cs-2002-10.

H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye, G. Anderson, G. Corrado,
W. Chai, M. Ispir, R. Anil, Z. Haque, L. Hong, V. Jain, X. Liu, and H. Shah. Wide & deep learning
for recommender systems. In Proc. of the Workshop on Deep Learning for Recommender Systems
(DLRS), pp. 7–10, 2016.

F. Chollet. Information-theoretic label embeddings for large-scale image classification. ArXiv:
1607.05691, 2016.

M. Cissé, N. Usunier, T. Artières, and P. Gallinari. Robust Bloom filters for large multilabel clas-
sification tasks. In Advances in Neural Information Processing Systems (NIPS), pp. 1851–1859.
2013.

M. Courbariaux, Y. Bengio, and J.-P. David. BinaryConnect: training deep neural networks with
binary weights during propagations. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and
R. Garnett (eds.), Advances in Neural Information Processing Systems (NIPS), pp. 3123–3131.
2015.

T. G. Dietterich and G. Bakiri. Solving multiclass learning problems via error-correcting output
codes. Journal of Artificial Intelligence Research, 2:263–286, 1995.

K. Ganchev and M. Dredze. Small statistical models by random feature mixing. In ACL Workshop
on Mobile Language Processing (MLP), pp. 19–20, 2008.

S. Han, H. Mao, and W. J. Dally. Deep compression: compressing deep neural networks with
pruning, trained quantization and Huffman coding. In Proc. of the Int. Conf. on Learning Repre-
sentations (ICLR), 2016.

B. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk. Session-based recommendations with recur-
rent neural networks. In Proc. of the Int. Conf. on Learning Representations (ICLR), 2016. URL
https://arxiv.org/abs/1511.06939.

D. J. Hsu, S. M. Kakade, J. Langford, and T. Zhang. Multi-label prediction via compressed sensing.
In Y. Bengio, D. Schuurmans, J. D. Lafferty, C. K. I. Williams, and A. Culotta (eds.), Advances
in Neural Information Processing Systems (NIPS), volume 22, pp. 772–780. 2009.

J. Langford, L. Li, and A. Strehl. Vowpal wabbit online learning project. Technical report, 2007.
URL http://hunch.net/?p=309.

M. Mitzenmacher and E. Upfal. Probability and computing: randomized algorithms and probabilis-
tic analysis. Cambridge University Press, Cambridge, UK, 2005.

Q. Shi, J. Petterson, G. Dror, J. Langford, A. Smola, and S. V. N. Vishwanathan. Hash kernels for
structured data. Journal of Machine Learning Research, 10:2615–2637, 2009.

P. Vincent, A. Brébisson, and X. Bouthilier. Efficient exact gradient update for training deep net-
works with very large sparse targets. In Advances in Neural Information Processing Systems
(NIPS), pp. 1108–1116. 2015.

Y. Wu, C. DuBois, A. X. Zheng, and M. Ester. Collaborative denoising auto-encoders for top-n
recommender systems. In Proc. of the ACM Int. Conf. on Web Search and Data Mining (WSDM),
pp. 153–162, 2016.

4

https://www.cs.dal.ca/research/techreports/cs-2002-10
https://www.cs.dal.ca/research/techreports/cs-2002-10
https://arxiv.org/abs/1511.06939
http://hunch.net/?p=309

	Introduction
	Related work
	Approach
	Results

