
Under review as a conference paper at ICLR 2017

GENERATIVE PARAGRAPH VECTOR

Ruqing Zhang, Jiafeng Guo, Yanyan Lan, Jun Xu& Xueqi Cheng
CAS Key Lab of Network Data Science and Technology
Institute of Computing Technology, Chinese Academy of Sciences
Beijing, China
zhangruqing@software.ict.ac.cn, {guojiafeng,lanyanyan,junxu,cxq}@ict.ac.cn

ABSTRACT

The recently introduced Paragraph Vector is an efficient method for learning high-
quality distributed representations for pieces of texts. However, an inherent lim-
itation of Paragraph Vector is lack of ability to infer distributed representations
for texts outside of the training set. To tackle this problem, we introduce a Gen-
erative Paragraph Vector, which can be viewed as a probabilistic extension of the
Distributed Bag of Words version of Paragraph Vector with a complete generative
process. With the ability to infer the distributed representations for unseen texts,
we can further incorporate text labels into the model and turn it into a supervised
version, namely Supervised Generative Paragraph Vector. In this way, we can
leverage the labels paired with the texts to guide the representation learning, and
employ the learned model for prediction tasks directly. Experiments on five text
classification benchmark collections show that both model architectures can yield
superior classification performance over the state-of-the-art counterparts.

1 INTRODUCTION

A central problem in many text based applications, e.g., sentiment classification (Pang & Lee, 2008),
question answering (Stefanie Tellex & Marton., 2003) and machine translation (I. Sutskever & Le,
2014), is how to capture the essential meaning of a piece of text in a fixed-length vector. Per-
haps the most popular fixed-length vector representations for texts is the bag-of-words (or bag-of-n-
grams) (Harris, 1954). Besides, probabilistic latent semantic indexing (PLSI) (Hofmann, 1999) and
latent Dirichlet allocation (LDA) (Blei & Jordan, 2003) are two widely adopted alternatives.

A recent paradigm in this direction is to use a distributed representation for texts (T. Mikolov &
Dean, 2013a). In particular, Le and Mikolov (Quoc Le, 2014; Andrew M.Dai, 2014) show that
their method, Paragraph Vector (PV), can capture text semantics in dense vectors and outperform
many existing representation models. Although PV is an efficient method for learning high-quality
distributed text representations, it suffers a similar problem as PLSI that it provides no model on text
vectors: it is unclear how to infer the distributed representations for texts outside of the training set
with the learned model (i.e., learned text and word vectors). Such a limitation largely restricts the
usage of the PV model, especially in those prediction focused scenarios.

Inspired by the completion and improvement of LDA over PLSI, we first introduce the Generative
Paragraph Vector (GPV) with a complete generation process for a corpus. Specifically, GPV can be
viewed as a probabilistic extension of the Distributed Bag of Words version of Paragraph Vector (PV-
DBOW), where the text vector is viewed as a hidden variable sampled from some prior distributions,
and the words within the text are then sampled from the softmax distribution given the text and word
vectors. With a complete generative process, we are able to infer the distributed representations
of new texts based on the learned model. Meanwhile, the prior distribution over text vectors also
acts as a regularization factor from the view of optimization, thus can lead to higher-quality text
representations.

More importantly, with the ability to infer the distributed representations for unseen texts, we now
can directly incorporate labels paired with the texts into the model to guide the representation learn-
ing, and turn the model into a supervised version, namely Supervised Generative Paragraph Vector
(SGPV). Note that supervision cannot be directly leveraged in the original PV model since it has no

1

Under review as a conference paper at ICLR 2017

generalization ability on new texts. By learning the SGPV model, we can directly employ SGPV
to predict labels for new texts. As we know, when the goal is prediction, fitting a supervised model
would be a better choice than learning a general purpose representations of texts in an unsupervised
way. We further show that SGPV can be easily extended to accommodate n-grams so that we can
take into account word order information, which is important in learning semantics of texts.

We evaluated our proposed models on five text classification benchmark datasets. For the unsuper-
vised GPV, we show that its superiority over the existing counterparts, such as bag-of-words, LDA,
PV and FastSent (Felix Hill, 2016). For the SGPV model, we take into comparison both traditional
supervised representation models, e.g. MNB (S. Wang, 2012), and a variety of state-of-the-art deep
neural models for text classification (Kim, 2014; N. Kalchbrenner, 2014; Socher & Potts, 2013; Irsoy
& Cardie, 2014). Again we show that the proposed SGPV can outperform the baseline methods by
a substantial margin, demonstrating it is a simple yet effective model.

The rest of the paper is organized as follows. We first review the related work in section 2 and briefly
describe PV in section 3. We then introduce the unsupervised generative model GPV and supervised
generative model SGPV in section 4 and section 5 respectively. Experimental results are shown in
section 6 and conclusions are made in section 7.

2 RELATED WORK

Many text based applications require the text input to be represented as a fixed-length feature vector.
The most common fixed-length representation is bag-of-words (BoW) (Harris, 1954). For example,
in the popular TF-IDF scheme (Salton & McGill, 1983), each document is represented by tfidf
values of a set of selected feature-words. However, the BoW representation often suffers from data
sparsity and high dimension. Meanwhile, due to the independent assumption between words, BoW
representation has very little sense about the semantics of the words.

To address this shortcoming, several dimensionality reduction methods have been proposed, such
as latent semantic indexing (LSI) (S. Deerwester & Harshman, 1990), Probabilistic latent semantic
indexing (PLSI) (Hofmann, 1999) and latent Dirichlet allocation (LDA) (Blei & Jordan, 2003). Both
PLSI and LDA have a good statistical foundation and proper generative model of the documents,
as compared with LSI which relies on a singular value decomposition over the term-document co-
occurrence matrix. In PLSI, each word is generated from a single topic, and different words in a
document may be generated from different topics. While PLSI makes great effect on probabilistic
modeling of documents, it is not clear how to assign probability to a document outside of the training
set with the learned model. To address this issue, LDA is proposed by introducing a complete gen-
erative process over the documents, and demonstrated as a state-of-the-art document representation
method. To further tackle the prediction task, Supervised LDA (David M.Blei, 2007) is developed
by jointly modeling the documents and the labels.

Recently, distributed models have been demonstrated as efficient methods to acquire semantic rep-
resentations of texts. A representative method is Word2Vec (Tomas Mikolov & Dean, 2013b), which
can learn meaningful word representations in an unsupervised way from large scale corpus. To
represent sentences or documents, a simple approach is then using a weighted average of all the
words. A more sophisticated approach is combing the word vectors in an order given by a parse
tree (Richard Socher & Ng, 2012). Later, Paragraph Vector (PV) (Quoc Le, 2014) is introduced to
directly learn the distributed representations of sentences and documents. There are two variants in
PV, namely the Distributed Memory Model of Paragraph Vector (PV-DM) and the Distributed Bag
of Words version of Paragraph Vector (PV-DBOW), based on two different model architectures.
Although PV is a simple yet effective distributed model on sentences and documents, it suffers a
similar problem as PLSI that it provides no model on text vectors: it is unclear how to infer the
distributed representations for texts outside of the training set with the learned model.

Besides these unsupervised representation learning methods, there have been many supervised deep
models with directly learn sentence or document representations for the prediction tasks. Recursive
Neural Network (RecursiveNN) (Richard Socher & Ng, 2012) has been proven to be efficient in
terms of constructing sentence representations. Recurrent Neural Network (RNN) (Ilya Sutskever &
Hinton, 2011) can be viewed as an extremely deep neural network with weight sharing across time.
Convolution Neural Network (CNN) (Kim, 2014) can fairly determine discriminative phrases in a

2

Under review as a conference paper at ICLR 2017

. . .
the cat
sat on. . .

cat sat onthe

dn

wni+1 wni+2 wni+3wni

· · · · · ·

Projection

Figure 1: Distributed Bag of Words version of paragraph vectors. The paragraph vector is used to
predict the words in a small window (“the”, “cat”, “sat” and “on”).

text with a max-pooling layer. However, these deep models are usually quite complex and thus the
training would be time-consuming on large corpus.

3 PARAGRAPH VECTOR

Since our model can be viewed as a probabilistic extension of the PV-DBOW model with a complete
generative process, we first briefly review the PV-DBOW model for reference.

In PV-DBOW, each text is mapped to a unique paragraph vector and each word is mapped to a
unique word vector in a continuous space. The paragraph vector is used to predict target words
randomly sampled from the paragraph as shown in Figure 1. More formally, Let D={d1, . . . ,dN}
denote a corpus of N texts, where each text dn = (wn1 , w

n
2 , . . . , w

n
ln

), n ∈ 1, 2, . . . , N is an ln-
length word sequence over the word vocabulary V of size M . Each text d ∈ D and each word
w ∈ V is associated with a vector ~d ∈ RK and ~w ∈ RK , respectively, where K is the embedding
dimensionality. The predictive objective of the PV-DBOW for each word wnl ∈ dn is defined by the
softmax function

p(wni |dn) =
exp(~wni · ~dn)∑
w′∈V exp(~w′ · ~dn)

(1)

The PV-DBOW model can be efficiently trained using the stochastic gradient descent (Rumelhart &
Williams, 1986) with negative sampling (T. Mikolov & Dean, 2013a).

As compared with traditional topic models, e.g. PLSI and LDA, PV-DBOW conveys the following
merits. Firstly, PV-DBOW using negative sampling can be interpretated as a matrix factorization
over the words-by-texts co-occurrence matrix with shifted-PMI values (Omer Levy & Ramat-Gan,
2015). In this way, more discriminative information (i.e., PMI) can be modeled in PV as compared
with the generative topic models which learn over the words-by-texts co-occurrence matrix with raw
frequency values. Secondly, PV-DBOW does not have the explicit “topic” layer and allows words
automatically clustered according to their co-occurrence patterns during the learning process. In this
way, PV-DBOW can potentially learn much finer topics than traditional topic models given the same
hidden dimensionality of texts. However, a major problem with PV-DBOW is that it provides no
model on text vectors: it is unclear how to infer the distributed representations for unseen texts.

4 GENERATIVE PARAGRAPH VECTOR

In this section, we introduce the GPV model in detail. Overall, GPV is a generative probabilistic
model for a corpus. We assume that for each text, a latent paragraph vector is first sampled from
some prior distributions, and the words within the text are then generated from the normalized
exponential (i.e. softmax) distribution given the paragraph vector and word vectors. In our work,
multivariate normal distribution is employed as the prior distribution for paragraph vectors. It could

3

Under review as a conference paper at ICLR 2017

µ

N

N

µ

n

iw

ny

n

iw

nd
U

nl

W W

nd nl

Figure 2: (Left) A graphical model representation of Generative Paragraph Vector (GPV). (The
boxes are “plates” representing replicates; a shaded node is an observed variable; an unshaded node
is a hidden variable.) (Right) Graphical model representation of Supervised Generative Paragraph
Vector (SGPV).

be replaced by other prior distributions and we will leave this as our future work. The specific
generative process is as follows:

For each text dn ∈D, n = 1, 2, . . . , N :

(a) Draw paragraph vector ~dn ∼ N (µ,Σ)

(b) For each word wni ∈ dn, i = 1, 2, . . . , ln :

Draw word wni ∼ softmax(~dn ·W)i

where W denotes a k ×M word embedding matrix with W∗j = ~wj , and softmax(~dn ·W)i is the
softmax function defined the same as in Equation (1). Figure 2 (Left) provides the graphical model
of this generative process. Note that GPV differs from PV-DBOW in that the paragraph vector is a
hidden variable generated from some prior distribution, which allows us to infer the paragraph vector
over future texts given the learned model. Based on the above generative process, the probability of
the whole corpus can be written as follows:

p(D)=

N∏
n=1

∫
p(~dn|µ,Σ)

∏
wn

i ∈dn

p(wni |W, ~dn)d~dn

To learn the model, direct maximum likelihood estimation is not tractable due to non-closed form of
the integral. We approximate this learning problem by using MAP estimates for ~dn, which can be
formulated as follows:

(µ∗,Σ∗,W ∗) = arg max
µ,Σ,W

∏
p(d̂n|µ,Σ)

∏
wn

i ∈dn

p(wni |W, d̂n)

where d̂n denotes the MAP estimate of ~dn for dn, (µ∗,Σ∗,W ∗) denotes the optimal solution. Note
that for computational simplicity, in this work we fixed µ as a zero vector and Σ as a identity matrix.
In this way, all the free parameters to be learned in our model are word embedding matrix W . By
taking the logarithm and applying the negative sampling idea to approximate the softmax function,
we obtain the final learning problem

L=

N∑
n=1

(
−1

2
||d̂n||2+

∑
wn

i ∈dn

(
log σ(~wni ·d̂n)+k·Ew′∼Pnw

log σ(− ~w′ · d̂n)
))

where σ(x) = 1/(1 + exp(−x)), k is the number of “negative” samples, w′ denotes the sampled
word and Pnw denotes the distribution of negative word samples. As we can see from the final
objective function, the prior distribution over paragraph vectors actually act as a regularization term.
From the view of optimization, such regularization term could constrain the learning space and
usually produces better paragraph vectors.

4

Under review as a conference paper at ICLR 2017

For optimization, we use coordinate ascent, which first optimizes the word vectors W while leaving
the MAP estimates (d̂) fixed. Then we find the new MAP estimate for each document while leaving
the word vectors fixed, and continue this process until convergence. To accelerate the learning, we
adopt a similar stochastic learning framework as in PV which iteratively updates W and estimates ~d
by randomly sampling text and word pairs.

At prediction time, given a new text, we perform an inference step to compute the paragraph vector
for the input text. In this step, we freeze the vector representations of each word, and apply the same
MAP estimation process of ~d as in the learning phase. With the inferred paragraph vector of the test
text, we can feed it to other prediction models for different applications.

5 SUPERVISED GENERATIVE PARAGRAPH VECTOR

With the ability to infer the distributed representations for unseen texts, we now can incorporate
the labels paired with the texts into the model to guide the representation learning, and turn the
model into a more powerful supervised version directly towards prediction tasks. Specifically, we
introduce an additional label generation process into GPV to accommodate text labels, and obtain
the Supervised Generative Paragraph Vector (SGPV) model. Formally, in SGPV, the n-th text dn
and the corresponding class label yn ∈ {1, 2, . . . , C} arise from the following generative process:

For each text dn ∈D, n = 1, 2, . . . , N :

(a) Draw paragraph vector ~dn ∼ N (µ,Σ)

(b) For each word wni ∈ dn, i = 1, 2, . . . , ln :

Draw word wni ∼ softmax(~dn ·W)i

(c) Draw label yn|~dn, U, b ∼ softmax(U · ~dn+b)

where U is a C ×K matrix for a dataset with C output labels, and b is a bias term.

The graphical model of the above generative process is depicted in Figure 2 (Right). SGPV defines
the probability of the whole corpus as follows

p(D)=

N∏
n=1

∫
p(~dn|µ,Σ)

(∏
wn

i ∈dn

p(wni |W, ~dn)
)
p(yn|~dn, U, b)d~dn

We adopt a similar learning process as GPV to estimate the model parameters. Since the SGPV
includes the complete generative process of both paragraphs and labels, we can directly leverage
it to predict the labels of new texts. Specifically, at prediction time, given all the learned model
parameters, we conduct an inference step to infer the paragraph vector as well as the label using
MAP estimate over the test text.

The above SGPV may have limited modeling ability on text representation since it mainly relies
on uni-grams. As we know, word order information is often critical in capturing the meaning of
texts. For example, “machine learning” and “learning machine” are totally different in meaning
with the same words. There has been a variety of deep models using complex architectures such as
convolution layers or recurrent structures to help capture such order information at the expense of
large computational cost.

Here we propose to extend SGPV by introducing an additional generative process for n-grams, so
that we can incorporate the word order information into the model and meanwhile keep its simplicity
in learning. We name this extension as SGPV-ngram. Here we take the generative process of SGPV-
bigram as an example.

For each text dn ∈D, n = 1, 2, . . . , N :

(a) Draw paragraph vector ~dn ∼ N (µ,Σ)

(b) For each word wni ∈ dn, i = 1, 2, . . . , ln :

Draw word wni ∼ softmax(~dn ·W)i

5

Under review as a conference paper at ICLR 2017

(c) For each bigram gni ∈ dn, i = 1, 2, . . . , sn :

Draw bigram gni ∼ softmax(~dn ·G)i

(d) Draw label yn|~dn, U, b ∼ softmax(U · ~dn+b)

where G denotes a K × S bigram embedding matrix with G∗j = ~gj , and S denotes the size of
bigram vocabulary. The joint probability over the whole corpus is then defined as

p(D)=

N∏
n=1

∫
p(~dn|µ,Σ)

(∏
wn

i ∈dn

p(wni |W, ~dn)
)(∏
gni ∈dn

p(gni |G, ~dn)
)
p(yn|~dn, U, b)d~dn

6 EXPERIMENTS

In this section, we introduce the experimental settings and empirical results on a set of text classi-
fication tasks.

6.1 DATASET AND EXPERIMENTAL SETUP

We made use of five publicly available benchmark datasets in comparison.

TREC: The TREC Question Classification dataset (Li & Roth, 2002)1 which consists of 5, 452 train
questions and 500 test questions. The goal is to classify a question into 6 different types depending
on the answer they seek for.

Subj: Subjectivity dataset (Pang & Lee, 2004) which contains 5, 000 subjective instances and 5, 000
objective instances. The task is to classify a sentence as being subjective or objective.

MR: Movie reviews (Pang & Lee, 2005) 2 with one sentence per review. There are 5, 331 positive
sentences and 5, 331 negative sentences. The objective is to classify each review into positive or
negative category.

SST-1: Stanford Sentiment Treebank (Socher & Potts, 2013) 3. SST-1 is provided with train/dev/test
splits of size 8, 544/1, 101/2, 210. It is a fine-grained classification over five classes: very negative,
negative, neutral, positive, and very positive.

SST-2: SST-2 is the same as SST-1 but with neutral reviews removed. We use the standard
train/dev/test splits of size 6, 920/872/1, 821 for the binary classification task.

Preprocessing steps were applied to all datasets: words were lowercased, non-English characters
and stop words occurrence in the training set are removed. For fair comparison with other published
results, we use the default train/test split for TREC, SST-1 and SST-2 datasets. Since explicit split
of train/test is not provided by subj and MR datasets, we use 10-fold cross-validation instead.

In our model, text and word vectors are randomly initialized with values uniformly distributed in the
range of [-0.5, +0.5]. Following the practice in (Tomas Mikolov & Dean, 2013b) , we set the noise
distributions for context and words as pnw(w) ∝ #(w)0.75. We adopt the same linear learning rate
strategy where the initial learning rate of our models is 0.025. For unsupervised methods, we use
support vector machines (SVM) 4 as the classifier.

6.2 BASELINES

We adopted both unsupervised and supervised methods on text representation as baselines.

6.2.1 UNSUPERVISED BASELINES

Bag-of-word-TFIDF and Bag-of-bigram-TFIDF. In the bag-of-word-TFIDF scheme (Salton &
McGill, 1983) , each text is represented as the tf-idf value of chosen feature-words. The bag-of-

1http://cogcomp.cs.illinois.edu/Data/QA/QC/
2https://www.cs.cornell.edu/people/pabo/movie-review-data/
3http://nlp.stanford.edu/sentiment/
4http://www.csie.ntu.edu.tw/˜cjlin/libsvm/

6

http://cogcomp.cs.illinois.edu/Data/QA/QC/
https://www.cs.cornell.edu/people/pabo/movie-review-data/
http://nlp.stanford.edu/sentiment/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Under review as a conference paper at ICLR 2017

bigram-TFIDF model is constructed by selecting the most frequent unigrams and bigrams from the
training subset. We use the vanilla TFIDF in the gensim library5.

LSI (S. Deerwester & Harshman, 1990) and LDA (Blei & Jordan, 2003). LSI maps both texts
and words to lower-dimensional representations in a so-called latent semantic space using SVD
decomposition. In LDA, each word within a text is modeled as a finite mixture over an underlying
set of topics. We use the vanilla LSI and LDA in the gensim library with topic number set as 100.

cBow (Tomas Mikolov & Dean, 2013b). Continuous Bag-Of-Words model. We use average pooling
as the global pooling mechanism to compose a sentence vector from a set of word vectors.

PV (Quoc Le, 2014). Paragraph Vector is an unsupervised model to learn distributed representations
of words and paragraphs.

FastSent (Felix Hill, 2016). In FastSent, given a simple representation of some sentence in context,
the model attempts to predict adjacent sentences.

Note that unlike LDA and GPV, LSI, cBow, and FastSent cannot infer the representations of unseen
texts. Therefore, these four models need to fold-in all the test data to learn representations together
with training data, which makes it not efficient in practice.

6.2.2 SUPERVISED BASELINES

NBSVM and MNB (S. Wang, 2012). Naive Bayes SVM and Multinomial Naive Bayes with uni-
grams and bi-grams.

DAN (Mohit Iyyer & III, 2015). Deep averaging network uses average word vectors as the input
and applies multiple neural layers to learn text representation under supervision.

CNN-multichannel (Kim, 2014). CNN-multichannel employs convolutional neural network for
sentence modeling.

DCNN (N. Kalchbrenner, 2014). DCNN uses a convolutional architecture that replaces wide con-
volutional layers with dynamic pooling layers.

MV-RNN (Richard Socher & Ng, 2012). Matrix-Vector RNN represents every word and longer
phrase in a parse tree as both a vector and a matrix.

DRNN (Irsoy & Cardie, 2014). Deep Recursive Neural Networks is constructed by stacking multiple
recursive layers.

Dependency Tree-LSTM (Kai Sheng Tai & Manning, 2015). The Dependency Tree-LSTM based
on LSTM structure uses dependency parses of each sentence.

6.3 PERFORMANCE OF GENERATIVE PARAGRAPH VECTOR

We first evaluate the GPV model by comparing with the unsupervised baselines on the TREC, Subj
and MR datasets. As shown in table 1, GPV works better than PV over the three tasks. It demon-
strates the benefits of introducing a prior distribution (i.e., regularization) over the paragraph vectors.
Moreover, GPV can also outperform almost all the baselines on three tasks except Bow-TFIDF and
Bigram-TFIDF on the TREC collection. The results show that for unsupervised text representation,
bag-of-words representation is quite simple yet powerful which can beat many embedding models.
Meanwhile, by using a complete generative process to infer the paragraph vectors, our model can
achieve the state-of-the-art performance among the embedding based models.

6.4 PERFORMANCE OF SUPERVISED GENERATIVE PARAGRAPH VECTOR

We compare SGPV model to supervised baselines on all the five classification tasks. Empirical res-
ults are shown in Table 2. We can see that SGPV achieves comparable performance against other
deep learning models. Note that SGPV is much simpler than these deep models with significantly
less parameters and no complex structures. Moreover, deep models with convolutional layers or re-
current structures can potentially capture compositional semantics (e.g., phrases), while SGPV only

5http://radimrehurek.com/gensim/

7

http://radimrehurek.com/gensim/

Under review as a conference paper at ICLR 2017

Table 1: Performance Comparison of Unsupervised Representation Models.

Model TREC Subj MR

BoW-TFIDF 97.2 89.8 76.7

Bigram-TFIDF 97.6 90.9 76.1

LSI 88 85.4 64.2

LDA 81.3 71 61.6

cBow (Han Zhao & Poupart, 2015) 87.3 91.3 77.2

PV (Han Zhao & Poupart, 2015) 91.8 90.5 74.8

FastSent (Felix Hill, 2016) 76.8 88.7 70.8

GPV 93 91.7 77.9

relies on uni-gram. In this sense, SGPV is quite effective in learning text representation. Mean-
while, if we take Table 1 into consideration, it is not surprising to see that SGPV can consistently
outperform GPV on all the three classification tasks. This also demonstrates that it is more effect-
ive to directly fit supervised representation models than to learn a general purpose representation in
prediction scenarios.

By introducing bi-grams, SGPV-bigram can outperform all the other deep models on four tasks.
In particular, the improvements of SGPV-bigram over other baselines are significant on SST-1 and
SST-2. These results again demonstrated the effectiveness of our proposed SGPV model on text
representations. It also shows the importance of word order information in modeling text semantics.

Table 2: Performance Comparison of Supervised Representation Models.

Model SST-1 SST-2 TREC Subj MR

NBSVM (S. Wang, 2012) - - - 93.2 79.4

MNB (S. Wang, 2012) - - - 93.6 79

DAN (Mohit Iyyer & III, 2015) 47.7 86.3 - - -

CNN-multichannel (Kim, 2014) 47.4 88.1 92.2 93.2 81.1

DCNN (N. Kalchbrenner, 2014) 48.5 86.8 93 - -

MV-RNN (Richard Socher & Ng, 2012) 44.4 82.9 - - 79

DRNN (Irsoy & Cardie, 2014) 49.8 86.6 - - -

Dependency Tree-LSTM (Kai Sheng Tai & Manning, 2015) 48.4 85.7 - - -

SGPV 44.6 86.3 93.2 92.4 79.2

SGPV-bigram 55.9 91.8 95.8 93.6 79.8

7 CONCLUSIONS

In this paper, we introduce GPV and SGPV for learning distributed representations for pieces of
texts. With a complete generative process, our models are able to infer vector representations as
well as labels over unseen texts. Our models keep as simple as PV models, and thus can be effi-
ciently learned over large scale text corpus. Even with such simple structures, both GPV and SGPV
can produce state-of-the-art results as compared with existing baselines, especially those complex
deep models. For future work, we may consider other probabilistic distributions for both paragraph
vectors and word vectors.

8

Under review as a conference paper at ICLR 2017

REFERENCES

Quoc V.Le Andrew M.Dai, Christopher Olah. Document embedding with paragraph vectors. In
Deep learning and Representation Learning Workshop. 2014.

Ng A. Blei, D. and M. Jordan. Latent dirichlet allocation. Journal of Machine Learning Research,
3:993–1022, 2003.

Jon D.McAuliffe David M.Blei. Supervised topic models. In Proceedings of Advances in Neural
Information Processing Systems. 2007.

Anna Korhone Felix Hill, Kyunghyun Cho. Learning distributed representations of sentences from
unlabelled data. arXiv preprint arXiv:1602.03483, 2016.

Zhengdong Lu Han Zhao and Pascal Poupart. Self-adaptive hierarchical sentence model. In IJCAI.
2015.

Zellig. Harris. Distributional structure. Word, 1954.

T. Hofmann. Probabilistic latent semantic indexing. In Proceedings of the Twenty-Second Annual
International SIGIR Conference. 1999.

O. Vinyals I. Sutskever and Q. V. Le. Sequence to sequence learning with neural networks. In
Proceedings of Advances in Neural Information Processing Systems. 2014.

James Martens Ilya Sutskever and Geoffrey E Hinton. Generating text with recurrent neural net-
works. In Proceedings of the 28th International Conference on Machine Learning. 2011.

Ozan Irsoy and Claire Cardie. Deep recursive neural networks for compositionality in language. In
Proceedings of the Advances in Neural Information Processing Systems. 2014.

Richard Socher Kai Sheng Tai and Christopher D Manning. Improved semantic representations
from tree-structured long short-term memory networks. In Proceedings of the Association for
Computational Linguistics. 2015.

Yoon Kim. Convolutional neural networks for sentence classification. In Proceedings of Empirical
Methods in Natural Language Processing. 2014.

Xin Li and Dan Roth. Learning question classifiers. In Proceedings of the Annual Meeting of the
Association for Computational Linguistics. 2002.

Jordan Boyd-Graber Mohit Iyyer, Varun Manjunatha and Hal Daume III. Deep unordered compos-
ition rivals syntactic methods for text classification. In Proceedings of the 53rd Annual Meeting
of the Association for Computational Linguistics and the 7th International Joint Conference on
Natural Language Processing. 2015.

P. Blunsom N. Kalchbrenner, E. Grefenstette. A convolutional neural network for modelling sen-
tences. In Proceedings of the Association for Computational Linguistics. 2014.

Ido Dagan Omer Levy, Yoav Goldberg and Israel Ramat-Gan. Improving distributional similarity
with lessons learned from word embeddings. Transactions of the Association for Computational
Linguistics, 2015.

Bo Pang and Lillian Lee. A sentimental education: Sentiment analysis using subjectivity summar-
ization based on minimum cuts. In Proceedings of the Annual Meeting of the Association for
Computational Linguistics. 2004.

Bo Pang and Lillian Lee. Seeing stars: Exploiting class relationships for sentiment categorization
with respect to rating scales. In Proceedings of the Annual Meeting of the Association for Com-
putational Linguistics. 2005.

Bo Pang and Lillian Lee. Opinion mining and sentiment analysis. Foundations and trends in in-
formation retrieval, 2(1–2):1–135, 2008.

9

Under review as a conference paper at ICLR 2017

Tomas Mikolov Quoc Le. Distributed representations of sentences and documents. In Proceedings
of the 31st International Conference on Machine Learning. 2014.

Christopher D Manning Richard Socher, Brody Huval and Andrew Y Ng. Semantic compositionality
through recursive matrix-vector spaces. In Proceedings of the Joint Conference on Empirical
Methods in Natural Language Processing and Computational Natural Language Learning. 2012.

Hinton Geoffrey E Rumelhart, David E and Williams. Learning representations by back-propagating
errors. Nature, 323(6088):533–536, 1986.

G. W. Furnas Landauer. T. K. S. Deerwester, S. T. Dumais and R. Harshman. Indexing by latent
semantic analysis. Journal of the American Society for Information Science, 41, 1990.

C. Manning S. Wang. Baselines and bigrams: Simple, good sentiment and topic classification. In
Proceedings of the Annual Meeting of the Association for Computational Linguistics. 2012.

G. Salton and M. McGill. Introduction to Modern Information Retrieval. McGraw-Hill, 1983.

Alex Perelygin Jean Y Wu Jason Chuang Christopher D Manning Andrew Y Ng Socher, Richard and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment tree-
bank. In Proceedings of the Conference on Empirical Methods in Natural Language Processing.
2013.

Jimmy Lin Aaron Fernandes Stefanie Tellex, Boris Katz and Gregory Marton. Quantitative evalu-
ation of passage retrieval algorithms for question answering. In Proceedings of the 26th Annual
International ACM SIGIR Conference on Research and Development in Informaion Retrieval.
2003.

K. Chen G. S. Corrado T. Mikolov, I. Sutskever and J. Dean. Distributed representations of words
and phrases and their compositionality. In Proceedings of Advances in Neural Information Pro-
cessing Systems. 2013a.

Greg Corrado Tomas Mikolov, Kai Chen and Jeffrey Dean. Efficient estimation of word representa-
tions in vector space. arXiv:1301.3781, 2013b.

10

	Introduction
	Related Work
	Paragraph Vector
	Generative Paragraph Vector
	Supervised Generative Paragraph Vector
	Experiments
	Dataset And Experimental Setup
	Baselines
	Unsupervised Baselines
	supervised Baselines

	Performance of Generative Paragraph Vector
	Performance of Supervised Generative Paragraph Vector

	Conclusions

