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Abstract

We introduce MLGym and MLGym-Bench, a new framework and bench-
mark for evaluating and developing LLM agents on AI research tasks. This
is the first Gym environment for machine learning (ML) tasks, enabling
research on reinforcement learning (RL) algorithms for training such agents.
MLGym-bench consists of 13 diverse and open-ended AI research tasks
from diverse domains such as computer vision, natural language process-
ing, reinforcement learning, and game theory. Solving these tasks requires
real-world AI research skills such as generating new ideas and hypotheses,
creating and processing data, implementing ML methods, training mod-
els, running experiments, analyzing the results, and iterating through this
process to improve on a given task. MLGym makes it easy to add new
tasks, integrate and evaluate models or agents, generate synthetic data at
scale, as well as develop new learning algorithms for training agents on AI
research tasks. We evaluate a number of frontier large language models
(LLMs) on MLGym-Bench and observe that they can improve on the given
baselines, usually by finding better hyperparameters, but do not generate
novel hypotheses, algorithms, architectures, or substantial improvements.
We open-source our source code1 for MLGym framework, and benchmark
to facilitate future research in advancing the AI research capabilities of LLM
agents.

1 Introduction

Accelerating scientific discovery has been a long-standing ambition in artificial intelligence
(AI) research, with early initiatives like the Oak Ridge Applied Artificial Intelligence Project
in 1979 (Team, 1985; Emrich et al., 1988; Johnson & Schaffer, 1994). More recent explorations
enabled by advances in foundation models (Achiam et al., 2023; Anthropic, 2024; Team et al.,
2024; Dubey et al., 2024) provide a proof-of-concept of a fully automated pipeline for end-to-
end paper generation (Lu et al., 2024). In the future, we envision AI Research Agents capable
of independently conducting literature search, generating scientific hypotheses, designing
experiments, implementing new methods, analyzing results, disseminating findings by
writing scientific papers, and applying this research in products, thus assisting with all
parts of the research process. Unlike traditional methods, LLM agents could reveal hidden
interdisciplinary relationships given their vast cross-domain knowledge, leading to novel
insights and solutions to open research problems. Machine learning (ML) research, with its

1https://github.com/facebookresearch/MLGym
⋄Work done during internship at GenAI at Meta.
♠Corresponding Authors. Email at dnathani@ucsb.edu or raileanu.roberta@gmail.com
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Figure 1: Diagram of MLGym, a unified framework for developing and evaluating LLM
agents on diverse open-ended AI research tasks.

emphasis on empirical validation and systematic experimentation in simulation, presents
an ideal testbed for exploring and improving the utlity of LLMs for advancing scientific
research.

However, the scientific method inherently relies on empirical validation, rigorous evaluation,
and standardized benchmarks to ensure the reliability and reproducibility of findings. While
significant progress has been made in developing AI agents for various domains (Yang et al.,
2024; Wu et al., 2024; Ma et al., 2024; Deng et al., 2023; Wang et al., 2023), we currently lack
comprehensive frameworks and benchmarks specifically designed to assess their capabilities
in conducting open-ended AI research in diverse domains. This absence of standardized
evaluation tools hinders our ability to objectively measure progress and identify areas for
improvement in this emerging field.

Recently, a number of papers have started to evaluate LLM agents on various SWE and ML
tasks; notable examples include SWE-Bench (Jimenez et al., 2023), SWE-agent (Yang et al.,
2024), ScienceAgentBench (Chen et al., 2024), SUPER (Bogin et al., 2024), MLE-Bench (Chan
et al., 2024), MLAgentBench (Huang et al., 2024), and RE-Bench (METR, 2024). However,
existing benchmarks for AI Research Agents either do not include open-ended research tasks,
or only cover a narrow range of research domains. In addition, existing frameworks are not
designed to enable research on different training algorithms for AI Research Agents such
as reinforcement learning, curriculum learning, or open-ended learning. Finally, current
frameworks do not allow flexible artifacts to be evaluated (e.g. different outputs of the
agent’s research such as a model, algorithm, or set of predictions).

In this paper, we introduce MLGym—the first Gym (Brockman et al., 2016) environment
for AI Research Agents and a unified framework designed to integrate diverse and open-
ended AI research tasks into a single platform for developing and evaluating LLM agents
on such tasks (see Figure 1 for a diagram of MLGym). Being a Gym environment, our
framework enables research on different training algorithms for AI Research Agents such
as reinforcement learning (RL), curriculum learning, and open-ended learning. We also
release MLGym-Bench, a curated set of 13 open-ended research tasks across computer
vision, natural language processing, reinforcement learning, and game theory.

MLGym flexibly evaluates various artifacts including CSV outputs, model weights, RL
algorithms, or game theory strategy code. We compare a number of frontier LLMs on
MLGym-Bench and propose an evaluation metric adapted from the optimization (Dolan
& Moré, 2002) and AutoML (Roberts et al., 2022a) literature to assess relative performance
across tasks. Finally, we introduce a hierarchical framework to categorize the capabilities of
AI agents for accelerating AI research (see section 3).
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Benchmark Gym Interface Algorithmic Tasks Open-Ended Research Flexible Artifacts Agentic Harness

MLGym (ours) ! ! ! ! !

MLE-Bench # # # # #

SWE-Bench/Agent # # # # !

MLAgentBench # # ! ! !

RE-Bench # # ! ! #

ScienceAgentBench # # # # #

Table 1: Comparison of MLGym with other related LLM agent frameworks and benchmarks.
Algorithmic Tasks refers to tasks that require coming up with new algorithms such as
game theory or SAT problems. Open-ended Research refers to the tasks that are not fully
solved by the research community and where multiple new solutions could be discovered
such as language modeling, game theory or SAT problems. Flexible Artifacts refers to
the ability to evaluate different research artifacts such as model weights, reinforcement
learning algorithms, or code capturing an agent’s strategy. Agentic Harness corresponds to
benchmarks that provide a default harness for evaluating agents.

2 Related Work

Table 1 shows a comparison between MLGym and MLGym-Bench with other related LLM
agent frameworks and benchmarks.

First, MLGym is the first framework for AI Research Agents that provides a Gym interface,
making it easy to integrate and train these agents using RL algoritms. MLGym-Bench is
also the first benchmark to include tasks that require research on algorithms in multiple
domains such as RL, game theory, or SAT.

Second, MLGym-Bench encompasses a wide range of open-ended AI research tasks, cov-
ering supervised learning, language modeling, reinforcement learning, game theory and
SAT. In contrast, SWE-Bench/SWE-Agent (Yang et al., 2024) focuses on solving Github
issues so the code changes either fix the code or not (as opposed to optmization tasks
with finer-grained metrics, such as a loss metric in a supervised learning problem). Sim-
ilarly, MLE-Bench (Chan et al., 2024) includes narrowly scoped machine learning tasks
from Kaggle competitions. While these tasks have a spectrum of quality levels, they tend
to be already solved by current state-of-the-art methods. On the other hand, MLAgent-
Bench (Huang et al., 2024) contains both ML-specialized tasks (regression, classification,
code speed improvements) and tasks focused on recent research challenges (e.g. CLRS
reasoning corpus (Veličković et al., 2022), BabyLM challenge (Warstadt et al., 2023)). RE-
bench (METR, 2024) also consists of broadly scoped ML engineering tasks which are hard
to saturate and reward increasingly sophisticated approaches. ScienceAgentBench (Chen
et al., 2024) incorporates data-driven scientific discovery tasks extracted from peer-reviewed
publications, but which are so specific that they resemble Kaggle competition rather than
open research questions.

Third, MLGym allows for flexible evaluation artifacts: it is sufficient to provide python
code that the agent can call to examine the quality of its current solution, such as a model
checkpoint or an RL algorithm. In contrast, MLE-Bench requires a CSV file to be submitted
for grading each question and SWE-Bench/Agent require evaluating a piece of code through
a collection of unit tests. MLAgentBench, RE-Bench and ScienceAgentBench provide Python
scripts to compute the evaluation scores.

Finally, MLGym enables easy evaluation of both models and agents. To facilitate model
evaluation, MLGym provides a default agentic harness that can be used out-of-the-box to
evaluate any base model. See Appendix E for a more extensive discussion of related work
on LLM agents for coding, data science, and scientific research.
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3 Capability Levels for AI Research Agents

We introduce a new framework for categorizing the capabilities of LLM agents at doing AI
research. This consists of six levels, each representing a distinct degree of autonomy and
scientific contribution .

Level 0: Reproduction At this level, LLM agents can reproduce existing research papers
either with or without access to the original code. This level demonstrates a basic under-
standing of the research domain and the ability to replicate established results.

Level 1: Baseline Improvement At Level 1, LLM agents can improve performance on a
benchmark given a baseline code that is not state-of-the-art (SOTA). This level indicates the
ability to analyze and optimize existing solutions, even if they are not the most advanced.
Level 2: SOTA Achievement At Level 2, LLM agents can achieve SOTA performance on
a benchmark given only a task description and access to the published literature before
the invention of the SOTA approach, but no access to the SOTA paper or code. This level
demonstrates the ability to come up with a solution to an open research problem which is
as good as the one found by humans.

Level 3: Novel Scientific Contribution At Level 3, LLM agents can make a novel scientific
contribution, such as coming up with a new method that establishes a new SOTA on multiple
benchmarks, and is worthy of publication at a top ML conference such as NeurIPS.

Level 4: Groundbreaking Scientific Contribution At Level 4, LLM agents can identify key
research questions, directions, solutions, and make a notable scientific contribution worthy
of being published as an oral or best paper award at a prestigious ML conference such as
NeurIPS.

Level 5: Long-Term Research Agenda At Level 5, LLM agents can pursue a long-term
research agenda, coming up with the research questions, directions, and solutions, continu-
ously producing scientific discoveries over the span of weeks, months, or years. LLMs at
this level should be capable of paradigm-shifting research breakthroughs worthy of prizes
such as Nobel or Turing.

By defining these capability levels, we provide a framework for evaluating frontier AI
Research Agents.

MLGym-Bench focuses on Level 1: Baseline Improvement of the categorisation defined
above.

4 MLGym

An LLM agent can perform ML research/development by interacting with a shell environ-
ment through a sequence of commands. Given a task description, some starter code and
access to its action and observation history, the LLM generates appropriate shell commands
to accomplish research objectives like generating ideas, processing data, implementing new
methods, training and evaluating models, analyzing the results, and reasoning about what
experiments to run next. The agent is iteratively prompted to take actions based on the task
description and execution feedback from previous commands, allowing it to develop and
self-refine the solutions in-context.

The MLGym framework provides a unified framework for evaluating and developing agents
and models for AI research tasks. We take inspiration from long existing field of RL and build
a GYM (Brockman et al., 2016) environment that can execute shell commands in a local docker
machine shell. MLGym provides access to four core components: Agents, Environment,
Datasets, and Tasks. MLGym’s modular design allows one to easily utilize and extend the
library. For example, researchers can easily implement other agentic harnesses to improve
performance, they can expand the environment by adding more tools for an agent, add more
datasets within a given task (e.g., if the task is image classification they could add ImageNet
in addition to Cifar-10), and they can even add more tasks to the MLGym benchmark. Below,
we discuss each component in detail.
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4.1 Agents

The Agent class provided by MLGym acts as a wrapper around a base LLM and provides
functionality for integrating various base models, history processors, and cost management.
Moreover, unlike other frameworks (Huang et al., 2024; Yang et al., 2024), MLGym separates
the agent from the environment, allowing for easy integration of external agents. This also
enables one to fairly compare different base models given the same agentic harness without
the need of implementing their own agentic orchestration.

The agent is expected to take the history of all prior observations and actions as input and
return the next action to take. The provided action is then passed to the environment, which
executes the command and returns the next observation based on the command output.
The agent can execute any BASH COMMAND in the environment. In addition, it has access
to a set of tools (i.e., bash scripts such as editing a file) that it can use similarly to any
other bash command. MLGym provides an agent adapted from SWE-Agent (Yang et al.,
2024) as a default agentic harness. We describe the design and configuration of the tools
in subsection 4.5. The full system prompt used can be found in subsection D.1.

4.2 Environment

MLGym environments are designed as Gymnasium (gym) environments (Towers et al.,
2024). The environment component is responsible for initializing a shell environment in a
local docker machine, with all the required tools, installing task-specific python dependencies,
copying all the necessary data and code in a separate agent workspace and managing
interactions between the LLM agent and the system. Moreover, to support open-ended
research tasks and make the environment safe and flexible, MLGym environment also
manages permissions for various files and directories. Specifically, when running in a
docker container, due to various security concerns associated with using a root user, we
create a non-root user named ”agent” and set the appropriate permissions for the working
directory.

In this work, we make a conscious decision to decouple tools and ACI as defined in
SWE-Agent (Yang et al., 2024)2. Note that this ensures that the agent and environment
are not tightly coupled, allowing for easier implementation of other agentic architectures.
Practically, this means that when the environment is initialized, it also initializes the tools in
the working environment and a tool documentation is prepared which can be added to the
LLM agent’s prompt. More details about the tools are provided in subsection 4.5.

4.3 Datasets

MLGym provides a simple abstraction for defining datasets through configuration files. It
supports both locally stored and Hugging Face datasets. We decouple the dataset definition
from the task definition, so that a single dataset can be used in multiple tasks. Similarly, a
single task can have more than one dataset so that the agent’s code can be evaluated across
all of them to demonstrate the generality of the implemented method.

Moreover, if the dataset files are stored locally, the environment automatically copies the
relevant files to the agent workspace with read-only permissions. This ensures that the
agent cannot change the dataset files, which is important for reproducibility and cheating
prevention.

If the dataset is stored in Hugging Face, the agent is given the dataset URL through the
starter code or in the prompt and asked to utilize it. Note that if the LLM agent fails to
follow instructions or uses a different dataset, the evaluation code will not work or result in
performance issues.

2As of the latest release, SWE-Agent also decouples tools/ACI from the agent.
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4.4 Tasks

We provide an easy abstraction to define any ML research task using configuration files.
Each task can incorporate one or more datasets, custom evaluation scripts (with read-only
access), task-specific conda environment, optional starter code, training timeouts, and
memory management settings. This provides a flexible framework for defining diverse
open-ended ML research tasks covering a wide range of difficulty. For example, one can
define an easier version of a task by providing a baseline code and a harder version by
providing no starter code or one with bugs, thus creating a natural curriculum.

Evaluation is a critical component for any ML task. Every task requires a different evaluation
protocol; thus, Kaggle-style evaluation as done in MLE-Bench (Chan et al., 2024) where
the agent is expected to submit a CSV file with model predictions for a set of inputs is not
feasible for every problem. For example, in reinforcement learning settings, the evaluation
artifact is a set of models trained on a set of pre-defined random seeds, which is then used
to get a mean reward across a set of environment seeds. Similarly for Game Theoretic tasks,
it can be a Python file with a strategy function which will be evaluated against a fixed set of
strategy functions. Since we aim to evaluate the agent on open-ended and diverse tasks, it
is not possible to convert all submissions to a CSV format with model predictions for a set
of inputs. To ensure extensibility to such open-ended tasks, the task definition is expected
to provide an evaluation script and submission artifact instructions. The LLM agent can
then be prompted to follow the submission instructions and write the appropriate code.
Moreover, the evaluation script is read-only for the LM agent, so while it can inspect the
evaluation format, it cannot modify the script to change the evaluation logic.

Existing works such as Huang et al. (2024); METR (2024); Chen et al. (2024) also use a script
based evaluation approach, whereas MLE-Bench (Chan et al., 2024) uses a Kaggle style
evaluation.

Our design decisions for the Agent, Environment, Dataset, and Tasks aim to reduce overhead
for developers and researchers, and enhance reproducibility in this newly emerging area.

4.5 Tools and ACI

Augmenting LLM agents with the ability of using external tools is a critical component for
making progress on knowledge-intensive tasks. In this work, we extend the ACI (agent-
computer interface) first introduced in SWE-Agent (Yang et al., 2024) with some additional
features required for an ML research agent. Specifically, we extend the commands for
search, navigation, file viewer, file editor and context management with our permission
management system and introduce new commands for literature search and a memory
module. For example, if the agent tries to open a file without read permission, the file
viewer tool will generate textual feedback for the agent. Similarly, if agent tries to edit the
evaluation script (which is marked as read-only), the edit tools will output a feedback string
instead of failing silently. Literature search and the ability to maintain a experimental log in
it’s memory are crucial for the agent to surpass SOTA solutions on open-ended research
tasks.

Similar to SWE-Agent, tools are defined as bash or python scripts and are made available as
bash commands in the environment.

All tool documentation is provided to the agent in the system prompt. See Table 2 for a short
description of the available tools and Appendix B for more details. For all the experiments
presented in this paper, the agent only uses the SWE-Agent tools and validation command.

5 MLGym-Bench

The primary motivation behind our benchmark is to challenge models across different
aspects of machine learning, including data handling, model architecture, and strategic
decision-making. By incorporating tasks from data science, game theory, computer vision,
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Category Tool Arguments Documentation

SWE-Agent Tools

Search search dir < search term > [< dir >] searches for the search term in all files in dir
search file < search term > [< file >] searches for the search term in the given file

find file < f ile name > [< dir >] finds all the files with the given name in dir

File Viewer open < path > [< line number >] opens the given file and goes to the line number
goto < line number > moves the window to show the line number

scroll down moves the window down 1000 lines
scroll up moves the window up 1000 lines

File editing create < filename > creates a new file
insert < line number < text to add > inserts the given text at line number in the open file
edit < start line >:< end line < replacement text > replaces the given lines with the given text in the open file

Evaluation validate validates the current submission file and returns the metrics on the test set
submit submits the current code and terminates the session

Extended Tools

Literature Search literature search < query > [< num results >] query Semantic Scholar API for papers with attached PDFs
parse pdf url < url > downloads and extracts the contents of a PDF given a URL

Memory Module memory write < content str > save important results, configs or findings to memory
memory read < query str > retrieve top-2 elements from memory most similar to a query

Table 2: List of tools available to agents. Required arguments are enclosed in <> and
optional arguments are in [].

natural language processing, and reinforcement learning, the benchmark aims to provide a
varied and comprehensive agent evaluation testbed.

The tasks included in the benchmark are carefully selected to represent real-world chal-
lenges, ensuring that models are tested on their ability to generalize and perform effectively
across various scenarios. Each task is accompanied by standardized evaluation scripts and
baseline implementations, providing a clear reference point for performance assessment
and comparison.

The benchmark suite is structured into four main categories, each focusing on a specific do-
main of machine learning: Data Science, Game Theory, Computer Vision, Natural Language
Processing, and Reinforcement Learning. See Appendix A for a detailed description of all
the tasks.

6 Experimental Setup

For our experiments, we utilize a SWE-Agent (Yang et al., 2024) setup adapted specifically
for the MLGym environment (see Appendix D). We use the SWE-Agent Tools as described
in Table 2.

We evaluate a number of frontier LLMs for our experiments, GPT-4o, o3-mini, o1-preview,
Gemini 1.5 Pro, Gemini 2.0 Flash, Gemini 2.5 Pro, Claude-3.5-sonnet-20241022 (re-
ferred to as Claude-3.5-sonnet in the paper), Claude-3.7-Sonnet, Llama3.1-405b-instruct,
Llama4-Scout, Llama4-Maverick and DeepSeek-R1. All the models are used with
temperature=0.0 and top-p=0.95, with the exception of o1-preview and o3-mini, which
doesn’t support changing the decoding parameters and has a default temperature=1.0.

A single agent run is limited to 50 steps (i.e. interactions with the environment) or $4 API
cost limit, whichever occurs first, after which the agent is terminated and the last codebase
state is autosubmitted. Moreover, to control the runtime of the agent and prevent it from
simply increasing the number of parameters in the model, we set a task specific timeout for
the training commands that can be found in Table 9.

7 Evaluation

In order to compare agents on MLGym, we aggregate the scores of each method—an agent
architecture paired with a backbone model—across our tasks. Rather than naive averaging
of scores or rankings which can lead to unfair comparisons, we employ performance profile
curves (Dolan & Moré, 2002; Tu et al., 2022; Roberts et al., 2022b) and the area under these
curves referred to as AUP scores (Roberts et al., 2022a; Dahl et al., 2023). These metrics
capture relative performance gains across both methods and tasks and were originally
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developed in the optimization and AutoML communities. Next, we define performance
profiles, the AUP score, and the details of their usage within MLGym.

7.1 Performance Profiles and AUP Scores

For a given method m, its performance profile curve is defined as

ρm(τ) =
1
|T|

∣∣{t ∈ T : log10 rt,m ≤ τ
}∣∣ rt,m =

ℓt,m

min{ℓt,m : m ∈ M} (1)

where M is the set of all methods, P is the set of tasks, ℓt,m is the performance metric for a
method m on task t, and rt,m is a quantity called the performance ratio.

This definition assumes that the performance metric for each task, ℓp,· is better if lower—
see subsection 7.2 for how to adapt it. Performance profiles are parameterized by a threshold,
τ, on the distance between the method m and the best scoring methods on each of the tasks.
At a given threshold τ, performance profiles compute the proportion of tasks for which the
method m is within τ of the best method for each task.

In order to derive a final score for each method m ∈ M, we compute the AUP score as

AUPm =
∫ τmax

1
ρm(τ)dτ, (2)

where τmax is the minimum τ for which ρm(τ) = 1 for all m ∈ M.

7.2 Usage in MLGym

In the context of MLGym, a method is defined as a combination of an agent scaffolding
and a backbone model. We adapt performance profiles and AUP scores to handle various
edge cases introduced by our MLGym tasks. Metric Direction Handling: for metrics where
higher values are better (e.g., accuracy, R2), we invert the performance ratio calculation
and use the maximum score instead of the minimum: rt,m =

max{ℓt,m :m∈M}
ℓt,m

. Infeasible
Method: in order to be counted as a feasible method, an agent should produce at least one
valid solution and beat the baseline, methods must outperform the baseline. Methods that
don’t produce any valid solution or underperform are marked as Infeasible. The score of an
infeasible method is set to (1 + ε)× rt,mbaseline , where rt,mbaseline is the score obtained by the
baseline method on task t. We set the value of ε = 0.05.

We report the metrics across 4 independent runs for each model on each task. Finally, since
the LLM agent can use the validate command to check the performance without ending
the run, we maintain two separate sets of performance profiles and AUP scores for each
model. Best Submission Profiles, ρbs

m (τ)@4, are computed using the best final submission
across 4 runs. A submission is classified as a final submission in two cases: if the agent uses
the submit command, or if the agent terminates without submitting and the last codebase
state is used to evaluate performance. Best Attempt Profiles, ρba

m (τ)@4, which are computed
using the best attempt across 4 runs. Any valid call to the validate command is considered
an attempt.

The resulting AUP scores provide complementary information. AUPbs
m @4 indicates the

model’s ability to consistently submit its best attempt as the final solution. Note that to do
this, the LLM agent has to be able to keep an internal state of the best attempt and recover
from any mistakes made after the best attempt was made. AUPba

m @4 captures the model’s
exploration capability and is an indicator of the ceiling of the model’s performance.

Apart from the AUP scores and performance profiles, we also report the raw performance
scores for each model on each task. Similar to performance profiles, we categorize the raw
scores in two sets: Best Submission@4 and Best Attempt@4.
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Figure 2: Performance profiles comparing Best Attempt@4 and Best Submission@4 across
all models and tasks. The x-axis shows the performance ratio threshold τ and the y-axis
shows the fraction of tasks where a model achieves performance within τ of the best model.

Model Best Attempt AUP@4 Best Submission AUP@4

GPT-4o 1.288 1.317
o3-mini 1.214 1.236
o1-preview 1.423 1.444
DeepSeek-R1 1.249 1.267
Llama3.1-405b-instruct 1.330 1.353
Llama4-Scout 1.267 1.288
Llama4-Maverick 1.303 1.330
Claude-3.5-Sonnet 1.426 1.419
Claude-3.7-Sonnet 1.350 1.378
Gemini-1.5-Pro 1.420 1.405
Gemini-2.0-Flash 1.374 1.385
Gemini-2.5-Pro 1.419 1.445

Table 3: AUP@4 scores for the best attempt and best submission across all models. Best
scores are highlighted in blue .

8 Results

8.1 AUP Scores and Performance Profiles

As detailed in section 7, we evaluate the performance of each model with the SWE-Agent
scaffolding using Performance Profiles and Area Under the Performance Profile (AUP)
scores. Figure 2 and Table 4 show the performance profiles and AUP scores, respectively,
for the Best Attempt and Best Submission for all models.

In our experiments, we found that Claude-3.5-Sonnet and Gemini-2.5-Pro are the best-
performing models on aggregate across our set of tasks for Best Attempt and Best Submis-
sion, respectively, with o1-preview and Gemini-1.5-Pro being close behind. See subsec-
tion C.1 for the performance scores of each model on each task.

8.2 Computational Cost

As discussed in Kapoor et al. (2024), it is important to also consider the pareto curve of
performance vs cost for a more comprehensive evaluation of AI agents. Figure 3 shows the
Best Attempt AUP@4 vs Average Cost for all models.

According to results discussed in subsection 8.1, OpenAI O1-Preview is the one of the
best-performing models. However, it is also the most computationally expensive by a
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Figure 3: Best Attempt AUP@4 vs cost for all models. The x-axis shows the API cost in USD
and the y-axis shows the AUP@4 score.

wide margin. In contrast, Gemini-2.5-Pro and Claude-3.5-Sonnet are much more cost-
effective while surpassing O1-Preview performance. Gemini-1.5-Pro also shows impressive
performance while being the most cost-effective.

Gemini-1.5-Pro is cheaper than both GPT-4o and Llama-3.1-405b-Instruct and provides
massive performance gains relative to them. GPT-4o is one of the cheapest models to run
but performs significantly worse than the top models, Claude-3.5-Sonnet, Gemini-2.5-Pro,
and OpenAI O1-Preview. It is important to note that while DeepSeek-R1 and o3-mini are
the cheapest models according to this plot, 5 shows that these two models have the highest
rate of failures, thus likely terminating the runs early. Overall, Gemini series of models
strikes the best balance between performance and cost on MLGym-Bench, being one of the
cheapest models to run (approximately 9× cheaper than O1) while achieving at least 98% of
Gemini-2.5-Pro’s AUP (which is the top performing model).

For details on API pricing, tokens spent, and context length please consult Table 10. See sub-
section C.3 for an analysis of the agent behavior.

9 Conclusions

This paper presents MLGYM and MLGym-Bench as initial steps toward building robust,
flexible, and transparent LLM agents for AI research. As the field continues to evolve,
improvements in long-context reasoning, better agent architectures, training and inference
algorithms, as well as richer evaluation methodologies will be essential to fully harness
LLMs’ potential for scientific discovery, in general and for AI research in particular. By
fostering collaboration among researchers in machine learning, scientific computing, and
diverse application domains, we can move closer to a future where AI-driven agents
meaningfully accelerate scientific research, all while maintaining verifiability, reproducibility,
and integrity in scientific discovery. See Appendix G and Appendix H for more detailed
discussions of the limitations and ethical considerations of our work, respectively.
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A MLGym-Bench Tasks

Below we describe each of the tasks in MLGym-Bench.

A.1 Data Science

House Price Prediction (Kaggle, 2016) In the House Price Prediction task, the goal is to
predict housing prices using the Kaggle House Price dataset. This task evaluates models
based on their ability to accurately predict prices from various features, using RMSE and R2
as performance metrics. The baseline for this task is a simple Ridge Regression model with
minimal feature engineering.

A.2 3-SAT

3-SAT (Cook, 1971) In the 3-SAT task, the LLM agent is given a DPLL code and is prompted
to optimize the variable selection heuristic. The associated DPLL code is stored in a read-
only file, and the agent can inspect it to structure its heuristic function code, however, it
cannot modify it. A simple random selection heuristic is used as a baseline and starter code
for the LLM agent. The performance is measured by the total wall-clock time taken to solve
a set of 100 generated 3-SAT instances. The instances are genereted using the algorithm
described in Selsam et al. (2018).

A.3 Game Theory

We consider several tasks related to making strategic choices in iterated games, considering
multiple well-known games. Specifically, we consider the task of producing code for a
strategy for playing in a repeated two-player game. In each such task we provide an
opponent strategy, in the form of an opponent bot for playing the game, and ask the agent
to produce code for a strategy for best-responding to this opponent, i.e. provide code for
a strategy that maximizes the score against that opponent. We very briefly review game
theory terminology, with various textbooks covering this topic in more detail (Fudenberg &
Tirole, 1991).

In a two-player normal form game G, players select actions simultaneously, with the
outcome determined by the choices of both players. Let A1 = {a1

1, . . . , a1
k} be the (pure)

strategies available to player 1 and let A2 = {a2
1, . . . , a2

m} be the strategies available to player
2. Denote the set of strategy profiles, consisting of a strategy choice for both players as
A = A1 × A2. The utility of the players depends on the actions selected by both for them, i.e.
the payoffs are u : A → Rn, where u(a) = (u1(a), u2(a)) for a ∈ A, and where each player i
tries to maximize their individual utility ui. A mixed strategy is a probability distribution ∆
over pure strategies. Given a mixed strategy profile σ = (σ1, σ2) the expected utility of ui of
player i is ui(σ1, σ2) = ∑(a1,a2)∈A σ1(a1)σ2(a2)ui(a1, a2).

A repeated game consists of k rounds in which the players play the same underlying normal
form game. The history at the j + 1’th round consists of the actions (pure strategies) chosen
by both players in each of the rounds 1 to j. We denote by H the set of all possible such
histories, so a strategy in a repeated game is a function ai : H → ∆(A), i.e. a function that
takes the history of actions chosen in the previous round and provides a distribution over
the actions the agents would take in the next round. In our tasks, a strategy in the repeated
game is expressed as a piece of code that takes in the history (actions of both players in the
previous rounds), and outputs an action for the next round (where the code may make some
random choices, hence yielding a distribution over the selected next round actions). Given
an opponent strategy a2, the goal of our agent is to produce a strategy that best responds to
the opponent and produces a the maximal payoff, i.e arg maxa1 u1(a1, a2). Note that in this
equation a2 is a given opponent strategy expressed as a piece of code that takes the history
over the previous rounds and selects an action for the next round (possibly making some
random choices), and that the goal of an agent is to produce a1 as a piece of code capturing
the strategy of the first player. The agent optimization goal is selecting the code a1 so as to
maximize player 1’s expected payoff u1 against the fixed opponent a2.
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We consider the repeated version of prominent games, which we briefly discuss here:
iterated Prisoner’s Dilemma (Flood, 1958; Fudenberg & Tirole, 1991; Axelrod, 1980), Battle of
the Sexes (Cooper et al., 1989; Luce & Raiffa, 2012) and Colonel Blotto (Roberson, 2006). As
our goals was to highlight how our agent framework could be used to solve game theoretic
tasks, rather than providing a rigorous evaluation and analysis of many game theoretic
environments, we only included few games. However, additional games could easily be
added in.

Prisonner’s Dilemma (Axelrod, 1980). In this game, two players each have two options:
cooperate or defect. When both cooperate, they receive a moderate reward. If one defects
while the other cooperates, the defector gets a high reward while the cooperator gets a
low payoff. If both defect, they both receive a low payoff. Due to the structure of payoffs,
although mutual cooperation yields the best collective outcome, individual incentives
often push towards defection. We included a repeated game, consisting of k = 20 rounds
of the game. In the repeated version, players remember previous interactions and can
adjust their strategies based on the history consisting of the past outcomes. Repeating the
stage game multiple times allows for the development of trust and cooperation, as players
recognize that consistent cooperation can lead to better long-term benefits than short-term
defection (Axelrod, 1980). As our opponent strategy we provided a simple model which
randomizes between cooperation, defection, or actions chosen based only on the last round
of the interaction.

Battle of Sexes (Cooper et al., 1989). This is a simple game illustrating coordination chal-
lenges between two participants with different preferences. In the game, two participants
have to agree on a venue (for instance where to go to spend an evening). There are two
possible venues, and both players would rather make the same choice rather than making
different choices. The strategic dilemma arises because as each player wants to coordinate
their choice with the other, but they have a different ranking over the venues (one prefers
the first venue and the other prefers the second venue). Similarly to the iterated Prisoner’s
Dilemma, we have used a repeated game with k = 20 rounds and used a simple opponent
that makes random choices using the information from the last round.

Colonel Blotto Game (Roberson, 2006). This game is a model of strategic allocation of limited
resources under competition. Two players (“Colonels”) must simultaneously distribute
their resources (such as troops) over several alternative locations (“battlefields”). The
player who allocates more resources to a battlefield wins that battlefield. The overall
winner is the player who wins the most battlefields. The key challenge arises from the
fact that players must make their allocations without knowing how their opponent will
distribute their resources. This yields an environment where players try and anticipate their
opponent’s moves to decide how to best allocate their own resources in order to maximize
their chances of winning. A key insight from the game is the importance of diversification
and unpredictability: it is harder to exploit an opponent who spreads resources across
multiple battlefields and varies their strategy. Our target opponent used a very simple
random allocation rule (re-normalizing to the overall budget of resources).

It is important to note that in all the game theoretic tasks, the agent is allowed to look at
the opponent’s strategy, and thus these tasks measure code understanding and the LLM’s
capabilities to exploit the opponent’s strategy. In the future, we plan to add tasks where
the opponent’s strategy is not provided to the agent, and agent is pitted against multiple
opponents in a round robin fashion, similar to the setup used in Axelrod’s original Prisoner’s
Dilemma tournament.

A.4 Computer Vision

Image Classification (CIFAR-10) (Krizhevsky et al., 2009) The Image Classification CIFAR-
10 task involves classifying images into one of ten classes using the CIFAR-10 dataset. This
task tests the ability of models to learn visual patterns and features, with a baseline accuracy
of 49.71% encouraging improvements

3https://www.kaggle.com/datasets/yasserh/housing-prices-dataset
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Problem Setting Domain Task Dataset/Environment

Supervised Learning Data Science Regression House Price Prediction3

Supervised Learning Computer Vision Image Classification CIFAR-10 (Krizhevsky et al., 2009)
Supervised Learning Computer Vision Image Classification Fashion MNIST (Xiao et al., 2017)
Supervised Learning Computer Vision Image Captioning MS-COCO (Lin et al., 2014)

Supervised Learning Natural Language Processing Natural Language Inference MNLI (Williams et al., 2018)
Self-Supervised Learning Natural Language Processing Language Modeling FineWeb (Penedo et al., 2024)

Reinforcement Learning Reinforcement Learning MetaMaze Navigation Gymnax (Lange, 2022)
Reinforcement Learning Reinforcement Learning MountainCar Continuous Gymnax (Lange, 2022)
Reinforcement Learning Reinforcement Learning Breakout MinAtar Gymnax (Lange, 2022)

Algorithmic Reasoning Computer Science 3-SAT Randomly Generated (Selsam et al., 2018)

Algorithmic Reasoning Game Theory Prisonner’s Dilemma N/A
Algorithmic Reasoning Game Theory Battle of Sexes N/A
Algorithmic Reasoning Game Theory Colonel Blotto N/A

Table 4: List of tasks included in MLGym-Bench along with their respective problem setting,
domain, and datasets.

Image Classification (Fashion MNIST) (Xiao et al., 2017) The Image Classification Fashion
MNIST task involves classifying fashion items into predefined categories using the Fashion
MNIST dataset. The agent is provided with a simple two layer CNN as a baseline and it has
to optimize for the accuracy on the test set. The agent can optimize the model architecture
and the hyper-parameters for the training.

Image captioning (MS-COCO) (Lin et al., 2014) For the image captioning task, the agent has
to write the modeling code and come up with a good architecture and training setup for the
image-text pairs in the MS-COCO dataset. We provide a baseline code for training to the
agent which uses an image encoder and text decoder. We use the MS-COCO training and
validation sets after removing all images containing humans. The agent has to optimize for
the BLEU scores (Papineni et al., 2002) computed over the model-generated captions and
ground truth captions for a given image.

A.5 Natural Language Processing

For language, we test the agent’s ability to understand and modify training setup for both
Natural Language Understanding (NLU) and Natural Language Generation (NLG) as
detailed below.

Natural Language Inference (Williams et al., 2018) In this task, the agent starts from a pre-
trained BERT model (Devlin, 2018) and we provide the baseline code to fine-tune on the
training set of the MNLI benchmark to the agent. The agent is expected to come up with
good hyper-parameters and fine-tuning strategy to optimize the test set accuracy on MNLI.

Language Modeling (Jordan et al., 2024) In the Language Modeling task, the agent is expected
to train a language model for next token prediction using a smaller version of the FineWeb
(Penedo et al., 2024) dataset. The LLM Agent is provided with the dataset and the NanoGPT
(Jordan et al., 2024) codebase as a baseline and starting point. We use version #8 from
modded-nanogpt4 as the starting point. The training and validation sets contain 1.773B and
100M tokens, respectively. The perfomance metric is the perplexity of the trained model on
the validation set.

A.6 Reinforcement Learning

MetaMaze Navigation (Miconi et al., 2020) The MetaMaze Navigation task simulates a
grid-world environment where agents must navigate using local observations and reach the
goal location.

Mountain Car Continuous (Brockman et al., 2016) We use the continuous version of the
Mountain Car environment introduced in Brockman et al. (2016), where the task is to learn
a policy that drives a car up a steep hill in a continuous control environment.

4https://github.com/KellerJordan/modded-nanogpt
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Breakout MinAtar (Young & Tian, 2019) The Breakout MinAtar task involves playing the
arcade game Breakout in a simulated environment. This environment was introduced
in Young & Tian (2019) and is a popular benchmark for evaluating reinforcement learning
agents.

For all the RL tasks, we use the environments from the Gymnax library (Lange, 2022) and
the PPO algorithm from Gymnax-blines5 as a baseline and starting code for the LLM agent.

B MLGym Tools

Validation and Submit We provide two commands to the agent to validate the submission
and submit the results. Both the validate and submit commands are used to run the
evaluation script and give the agent feedback on its current score on the test set. However,
while the submit command is a terminal action, i.e., the agent’s trajectory is terminated, and
the evaluation script is executed to log the final scores, the validate command can be used
as many times as needed during the run to get the current performance on the test set.

Addition of a validation command helps the agent to continuously improve its performance
on the test set.

Literature Search and PDF Parser We provide the agent with two tools to find and extract
knowledge from external sources. The Literature Search tool allows the agent to query the
Semantic Scholar API to find research papers about a given query that have open-access
PDFs available, and the PDF Parsing tool allows the agent to download PDFs and convert
them into a text-based representation. The paper contents can be stored in the context
window as well as the Memory Module for longer-term tasks. Combined, these two tools
allow the agent to find and analyze research papers as part of its workflow. See Table 2 for
more information about these tools and how they are called.

Memory Module - Research Logs We introduce the Memory Module for MLGym, an
important tool to improve the performance of agents on long-horizon AI research tasks.
The Memory Module enables the agent to persistently store critical findings and successful
training configurations using a structured memory system, overcoming the challenge of
limited context retention in long tasks. During our experiments, we observed that when the
agent has access to the memory module, it can retrieve the best training configuration from
memory and continue to iterate on it (see Figure 11 and Figure 12). Without the memory
module, the agent’s trajectory can become longer than the model’s context length, thus not
being able to retrieve the best configuration, effectively forgetting older experiments and
only being able to locally iterate on recent configurations.

The module is equipped with two core functions: memory write and memory read. The
memory write function allows the agent to store key insights and effective configurations
by saving text data along with its corresponding embeddings and tags in JSON format.
In contrast, the memory read method retrieves the top-k most relevant stored entries based
on cosine similarity with a given query, allowing the agent to review past knowledge and
iterate from previously successful configurations.

Empirical results demonstrate the positive impact of the Memory Module on long-horizon
tasks. Agents equipped with the Memory Module were able to sustain progress over
extended sequences of trials, reusing optimal configurations and findings to achieve superior
results compared to agents limited by fixed context windows. To further enhance its
capabilities, we added the state of the memory to the system prompt (memory tags and
number of records) so that the agent is aware of the type of data stored. Tags from a memory
record are extracted by identifying the 3-gram most closely matching to the memory record.

This module significantly reduces the limitations of constrained context length, allowing
agents to operate effectively in long experimental settings. However, it is an early version
and there are many ways to improve the module. For example, one possible direction
would be to introduce a more structured memory format, such as hierarchical or relational

5https://github.com/RobertTLange/gymnax-blines
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Task Metric Baseline DeepSeek-R1 Claude-3.5-Sonnet Claude-3.7-Sonnet Gemini-1.5-Pro Gemini-2.0-Flash Gemini-2.5-Pro

House Price Prediction R2 Score 0.88 ∞ 0.921 ∞ 0.914 0.91 0.9
3-SAT Heuristic Wall-Clock Time (s) 16.158 12.612 15.728 14.677 14.36 12.383 13.207
CIFAR-10 Accuracy 0.497 ∞ 0.895 0.886 0.84 0.76 0.856
Fashion MNIST Accuracy 0.783 ∞ 0.945 0.942 0.916 0.902 0.907
MS-COCO BLEU Score 0.279 0.28 0.298 0.317 0.131 0.327 0.284
Language Modeling Validation Loss 4.673 ∞ 4.476 ∞ 4.166 4.687 ∞
MNLI Validation Accuracy 0.525 0.834 0.830 ∞ 0.838 0.838 0.842
Battle of Sexes Average Reward 1.023 1.024 1.442 1.443 1.443 1.445 1.442
Prisoners Dilemma Average Reward 2.372 2.421 2.567 2.38 2.63 2.534 2.633
Blotto Average Reward -0.248 0.025 0.576 0.246 0.249 0.25 0.176
Breakout Average Score 48.817 57.977 35.017 22.515 71.389 36.376 59.77
Meta Maze Average Return 15.734 17.3 48.562 22.825 27.859 20.278 48.428
Mountain Car Continuous Average Reward 33.794 −∞ ∞ ∞ 74.737 36.794 69.99

Table 5: Best Attempt@4 scores for Gemini, Claude, and DeepSeek models. Best scores
across all models are highlighted in blue . Note: ∞ indicates that the model was not able to
produce even a single valid solution for submission or validation.

Task Metric Baseline GPT-4o o3-mini o1-preview Llama3.1-405b Llama4-Scout Llama4-Maverick

House Price Prediction R2 Score 0.88 0.895 ∞ 0.931 0.908 0.892 0.903
3-SAT Heuristic Wall-Clock Time (s) 16.158 13.676 14.244 13.652 13.793 11.894 12.626
CIFAR-10 Accuracy 0.497 0.733 0.1 0.857 0.548 0.499 0.716
Fashion MNIST Accuracy 0.783 0.927 ∞ 0.92 0.876 0.922 0.896
MS-COCO BLEU Score 0.279 0.176 ∞ 0.135 0.294 ∞ 0.473
Language Modeling Validation Loss 4.673 4.361 ∞ 3.966 ∞ ∞ ∞
MNLI Validation Accuracy 0.525 0.819 ∞ 0.836 0.777 0.836 0.833
Battle of Sexes Average Reward 1.023 1.149 1.15 1.444 1.261 1.442 1.442
Prisoners Dilemma Average Reward 2.372 2.6 2.386 2.629 2.632 2.634 2.421
Blotto Average Reward -0.248 0.047 -0.244 0.248 0.043 0.023 0.037
Breakout Average Score 48.817 0.0 ∞ 63.518 58.87 56.5 42.338
Meta Maze Average Return 15.734 7.823 ∞ 34.986 26.744 0.703 7.877
Mountain Car Continuous Average Reward 33.794 9.137 ∞ 61.277 71.726 ∞ −∞

Table 6: Best Attempt@4 scores for Llama and OpenAI models. Best scores across all models
are highlighted in blue . Note: ∞ indicates that the model was not able to produce even a single
valid solution for submission or validation.

models, allowing for precise storage and retrieval of information and enabling more complex
reasoning over stored knowledge. Another is to incorporate memory operations directly
into the model’s training or fine-tuning process to allow the agent to natively utilize stored
knowledge for improved performance. Or using a sub-agent that will automatically manage
the memory by selecting important insights, removing unnecessary entries, and updating
the memory. Each of these directions would require extensive experimentation and rigorous
testing to ensure robustness and scalability.

C Additional Results and Analysis

C.1 Raw Performance Scores

To compare the performance of each model on each task, we also report aggregate metrics
over 4 runs with different seeds, namely the Best Attempt@4 and Best Submission@4 in
Table 5, Table 6 and Table 7, Table 8 respectively.

While Gemini-2.5-Pro is not dominant in most tasks, it beats out all the other models on
aggregated scores due to the consistently being one of the top-performing models. Gemini-
1.5-Pro, Claude-3.5-Sonnet, o1-preview, and Llama4 models occasionally taking the lead, it
is consistently in the top-performing models for most tasks and thus takes the top spot in
the AUP scores and performance profiles. This shows that the performance profile is a good
metric to compare the performance of different models on a set of tasks with a diverse set of
metrics.

Surprisingly, o3-mini struggles on most tasks while being one of the advanced models, but it
is not the only one. Except for o1-preview, Gemini-1.5-Pro, and Gemini-2.0-Flash, all models
fail to produce any valid submission on at least one task.
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Task Metric Baseline DeepSeek-R1 Claude-3.5-Sonnet Claude-3.7-Sonnet Gemini-1.5-Pro Gemini-2.0-Flash Gemini-2.5-Pro

House Price Prediction R2 Score 0.88 13.075 0.912 ∞ 0.908 0.91 0.9
3-SAT Heuristic Wall-Clock Time (s) 16.158 13.075 15.728 14.677 14.36 12.604 13.326
CIFAR-10 Accuracy 0.497 ∞ 0.894 0.886 0.758 0.76 0.856
Fashion MNIST Accuracy 0.783 ∞ 0.945 0.939 0.916 0.902 0.907
MS-COCO BLEU Score 0.279 0.28 0.125 0.317 0.131 0.327 0.284
Language Modeling Validation Loss 4.673 ∞ 4.476 ∞ 4.166 4.687 ∞
MNLI Validation Accuracy 0.525 0.834 0.830 ∞ 0.838 0.838 0.839
Battle of Sexes Average Reward 1.023 1.024 1.439 1.442 1.443 1.44 1.442
Prisoners Dilemma Average Reward 2.372 2.371 2.563 2.38 2.63 2.435 2.632
Blotto Average Reward -0.248 0.02 0.228 0.241 0.088 0.245 0.174
Breakout Average Score 48.817 57.977 17.735 22.515 71.389 36.376 59.77
Meta Maze Average Return 15.734 17.3 48.562 22.825 22.889 1.553 45.741
Mountain Car Continuous Average Reward 33.794 −∞ ∞ ∞ 74.588 -0.055 69.99

Table 7: Best Submission@4 scores for Gemini, Claude, and DeepSeek models. Best scores
across all models are highlighted in blue . Note: ∞ indicates that the model was not able to
produce even a single valid solution for submission or validation.

Task Metric Baseline GPT-4o o3-mini o1-preview Llama3.1-405b Llama4-Scout Llama4-Maverick

House Price Prediction R2 Score 0.88 0.895 ∞ 0.931 0.908 0.878 0.903
3-SAT Heuristic Wall-Clock Time (s) 16.158 13.676 14.244 13.83 13.936 11.894 12.846
CIFAR-10 Accuracy 0.497 0.733 0.1 0.854 0.528 0.499 0.716
Fashion MNIST Accuracy 0.783 0.927 ∞ 0.906 0.876 0.922 0.896
MS-COCO BLEU Score 0.279 0.111 ∞ 0.135 0.294 ∞ 0.473
Language Modeling Validation Loss 4.673 4.361 ∞ 3.966 ∞ ∞ ∞
MNLI Validation Accuracy 0.525 0.819 ∞ 0.836 0.777 0.836 0.833
Battle of Sexes Average Reward 1.023 1.144 1.131 1.439 1.256 1.442 1.439
Prisoners Dilemma Average Reward 2.372 2.582 2.386 2.571 2.562 2.634 2.383
Blotto Average Reward -0.248 0.047 -0.244 0.247 0.041 0.019 0.037
Breakout Average Score 48.817 0.0 ∞ 63.518 58.87 56.5 42.338
Meta Maze Average Return 15.734 7.823 ∞ 34.986 26.744 0.703 7.688
Mountain Car Continuous Average Reward 33.794 9.137 ∞ 52.73 71.726 ∞ −∞

Table 8: Best Submission@4 scores for Llama and OpenAI models. Best scores across all
models are highlighted in blue . Note: ∞ indicates that the model was not able to produce even a
single valid solution for submission or validation.

Task Training Timeout GPUs/Agents Average Agent Runtime Baseline Runtime (mins)

CIFAR-10 30m 1 4h 15
Battle of Sexes 30m 0 30m 5
Prisoners Dilemma 30m 0 30m 5
Blotto 30m 0 30m 5
House Price Prediction 30m 1 1.5h 10
Fashion MNIST 30m 1 2h 10
MS-COCO 40m 1 5h 7
MNLI 40m 1 2h 22
Language Modeling 40m 2 4h 20
Breakout 30m 2 2h 15
Mountain Car Continuous 30m 2 2h 15
Meta Maze 30m 2 2h 15
3-SAT Heuristic 30m 0 30m 5

Table 9: Computational resources required for each task in MLGYM-BENCH.

C.2 Computational Cost

Table 9 lists the resources needed to run the agent on each task in MLGym-Bench. Each
task has a set Training Timeout, which is used as the time limit for any python commands.
Specifically, it is used to prevent the agent from continuously scaling the model parameters.
Average agent runtime and Baseline runtime show the wall clock time for each agent run
and the provided baseline code, respectively.

Table 10 lists the average input and output tokens and associated pricing for each model
across all tasks in MLGym-Bench. We report the model pricing as listed by their respective
providers. Llama Model pricings are taken from Together AI.

Gemini-1.5-Pro charges 2X for using the long-context capabilities, i.e for input and output
exceeding 128K tokens. However, in our experiments, we do not observe Gemini using the
long-context capabilities, so the final price is reported based on the normal pricing.

7https://www.together.ai/pricing
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Avg. Usage Pricing
Model Input Output Input Output Context Length Avg. Cost

Llama3.1-405b-instruct∗ 300607 2451 3.50 3.50 128k $1.06
Llama4-Scout∗ 221452 2327 3.50 3.50 128k $0.04
Llama4-Maverick∗ 156464 1908 3.50 3.50 128k $0.04
DeepSeek-R1 397939 8583 0.50 2.19 64k $0.24
Claude-3.5-Sonnet 718254 12481 3.00 15.0 200k $2.34
Claude-3.7-Sonnet 433895 15823 3.00 15.0 200k $1.54
Gemini-1.5-Pro 254279 1428 1.25 5.00 2M $0.32
Gemini-2.0-Flash-Thinking 264775 3346 0.10 0.40 1M $0.03
Gemini-2.5-Pro 430141 15513 1.25 5.00 2M $0.69
GPT-4o 254186 2404 2.50 10.0 128k $0.66
o3-mini 14747 2624 1.00 4.00 128k $0.03
OpenAI o1 365643 59397 15.0 60.0 128k $9.05

Table 10: Model pricing, token usage, context length, and average cost details. Model Pricing
is in USD per 1M tokens. Average Cost is in USD per run. ∗Llama3.1: FP8 endpoint by
Together7

C.3 Agent Behavior Analysis

C.3.1 Failure Mode Analysis

In this section we analyze the failure modes of our agents on MLGym-Bench tasks, using
three key perspectives: termination error distribution, failed or incomplete run rates, and
task-specific failure patterns. We collect trajectories across 13 tasks and 12 models with 4
different seeds. This results in a total of 624 trajectories with 48 and 52 trajectories for each
task and model, respectively.

Termination Errors Figure 4 shows the distribution of different causes for termination
encountered by each model during task execution, as indicated by the first word of the
error message. We categorize the errors into the following types: context length exceeded,
evaluation error, file permission error, cost limit exceeded, format error, and
runtime error.

First, we observe that almost all models encounter Evaluation Error and is generally the
most frequent final error, accounting for 75% of all termination errors. Evaluation Error is
generally triggered by missing submission artefacts or incorrect submission format at the
last step or when the submit command is issued.

Llama4-Maverick, o1-preview, GPT-4o, and Gemini-1.5-Pro demonstrate superior error
handling capabilities with the lowest overall error rates. However, it is interesting to note
that the Gemini family of models are the most cost-effective model across all tasks, but still
encounters the Cost Limit error most frequently among all models.

Failed and Incomplete Runs The failed and incomplete run analysis in Figure 5 reveals
significant variations in model reliability. If an agent run fails with a termination error
without producing any valid intermediate submission, we mark it as failed. Whereas, if
the run fails with a termination error but produces a valid intermediate submission i.e.,
at least one score on the test set is obtained, we mark it as incomplete. Note that the
model’s submission does not have to beat the baseline to be considered a valid intermediate
submission. We are not interested in the performance of the model’s submission here,
but rather the ability of the agent to produce a valid submission by following the given
instructions.

o3-mini exhibits the highest failure rate, while Llama4-Maverick and Gemini-1.5-Pro achieve
the best completion rates. While Claude-3.5-Sonnet and Gemini-2.5-Pro are among the top-
performing models across all tasks (subsection 8.1), they comparatively have a high failure
rate. Another interesting observation is that OpenAI O1-Preview has a high incompletion
rate rate, but it often produces at least one valid solution for all tasks.
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Figure 4: Termination Error Distribution by
model. The size of the bars corresponds to
the number of times each model triggered
an exit status.
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Figure 5: Number of Failed and Incomplete
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Figure 6: Number of Failed and Incomplete runs per task. The criteria for marking a run as
incomplete or failed is described in subsubsection C.3.1

Figure 6 shows the failed and incomplete runs on each task to understand the difficulty
distribution of tasks. Language Modeling and all Reinforcement Learning tasks (Meta Maze,
Mountain Car Continuous and Breakout) prove the most challenging, with the highest
failure rates. Whereas, Prisoner’s Dilemma and Battle of Sexes show the lowest failure rates,
with all models producing atleast one valid intermediate solution.

These failure patterns align with the raw performance scores in Table 5, Table 6 and Table 7,
Table 8, where we observe that tasks requiring complex architectural decisions (Language
Modeling) or complex algorithms (Breakout, Meta Maze and Mountain Car Continuous).
Traditional supervised learning tasks are handled more reliably across models, while the
more advanced models demonstrate better error handling and completion rates overall.

C.3.2 Action Analysis

In this section, we analyze the overall action distribution, as well as across models and
trajectory steps. To analyze the action distribution effectively, we group the actions according
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Figure 7: Action distribution across all runs.
We group the actions into categories follow-
ing the grouping defined in Table 2 and sub-
subsection C.3.2.
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Figure 8: Action distribution for each model.
We group the actions into categories follow-
ing the grouping defined in Table 2 and sub-
subsection C.3.2.

to categories defined in Table 2: Edit , View , Search , Validate and Submit . We treat
validate and submit as two separate categories.

Additionally, we have two open-ended categories: Python and Bash . All the actions that
match the regex patterns python.*, deepspeed.*, torchrun.* are considered as Python ac-
tions. These actions usually correspond to the agent attempting to run a model evaluation
or training script. All other actions are grouped under Bash category, i.e. are considered as
open-ended bash commands.

Overall Action Distribution Figure 7 shows the action distribution across all runs. File
commands such as Edit and View are one of the most frequently used commands with
Edit accounting for 50% of the total actions. Whereas, Search commands are rarely used,
accounting for only 1% of the total actions.

This distribution suggests that models spend a significant portion of their time in an itera-
tive development cycle of editing and viewing files. Additionally, we observe a trend of
regular experimental evaluation and periodic validation of solution by the frequent use of
Python and Validate commands.

Per-Model Action Distribution Figure 8 shows the action distribution for each model. GPT-
4o takes the least number of actions overall, indicating that the model either errors out or
submits too early without reaching an optimal solution. This is consistent with the failure
analysis shown in Figure 5.

Among the best-performing models, Claude-3.5-Sonnet and OpenAI O1-Preview perform
the most number of actions within a run, while Gemini-1.5-Pro performs the least number
of actions. Consistent with the cost analysis discussed in subsection 8.2, Gemini-1.5-Pro’s
lower trajectory length contributes to it being the most cost-effective model.

Per-Step Action Distribution Figure 9 illustrates the distribution of actions taken by agents
across trajectory steps. Initially, Bash commands are predominant, indicating that agents
start by checking and setting up their environment with basic commands such as ls, pwd, cd
etc. As the steps progress, Edit actions become the most frequent, reflecting the agents’ focus
on modifying and refining code. This is complemented by a consistent use of View com-
mands, suggesting a pattern of iterative development where agents frequently review their
changes.

Python and Validate commands are used steadily throughout, which indicates an iterative
cycle of experiments and evaluation. Submit actions are sparse, typically appearing towards
the end of the process, aligning with the finalization of tasks. However, we can observe the
Submit action being used as soon as Step 5, which indicates that some models submit their
solution too early and likely fail to reach an optimal solution to beat other models.

Interestingly, Search commands are rarely used, suggesting that agents might benefit from
improved search strategies to enhance efficiency while editing code.
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Figure 9: Action distribution for each step. We group the actions into categories following
the grouping defined in Table 2 and subsubsection C.3.2.
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Figure 10: Action Distribution for each task. We group the actions into categories following
the grouping defined in Table 2 and subsubsection C.3.2.

Overall, our analysis highlights a structured approach where agents begin with getting
familiar with the environment and the task, conduct multiple iterations of experiments and
validation, and conclude with and submission.

Figure Figure 10 shows the action distribution on each task. The bars represent the sum of
all the actions taken by all models on a particular task. We notice that RL tasks have the
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higest action count, while Game Theoretic tasks have the lowest action count. Algorithmic
Tasks such as 3-SAT and Game Theory (Blotto, Prisonner’s Dilemma and Battle of Sexes)
also have the highest amount of validation actions, signifying a quick experimental cycle.
Similarly, all RL tasks have the most complex codebases among all MLGym-Bench tasks
and thus agent extensively use the View commands.

C.4 Memory Utilization

Figure 11 and Figure 12 show the agent using the memory module to store and retrieve
specific experimental results and use them to submit the best possible model.

Figure 11: Example of retrieving the best training configuration from memory and restarting
exploration from it.

D SWE-Agent Configuration

SWE-Agent follows a simple ReAct-style thought and action loop (Yao et al., 2023), where the
agent is prompted with the ACI documentation, the task and dataset description, as well as
lightweight generic instructions to act as a ML researcher. The agent is configured to use a
single command per step, and is not allowed to use any interactive session commands (e.g.,
python REPL, vim). We discuss several key configuration settings of SWE-Agent below.

Window Size: Window Size parameter restricts the number of lines shown to the agent
for viewer commands. The environment uses a window size of 1000 lines with an overlap
of 2 lines, allowing the agent to effectively navigate and edit large files while maintaining
context.

Context Management: A History Processor maintains the System Prompt, 1st User Message
with Task Instructions, and a rolling window with the five most recent interactions (action
and observation), helping the agent maintain context about the most recent interactions
while keeping the input size manageable.
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Figure 12: Example of retrieving the best training configuration from memory and restarting
exploration from it.

Action Parser: The Action Parser parses the agent’s output into a structured format. We
prompt the agent to output a Discussion and a single command enclosed in ‘‘‘ and wait
for a response from the shell before continuing with more discussion and commands.

Output Format

You need to format your output using two fields; discussion and command.
Your output should always include _one_ discussion and _one_ command
field EXACTLY as in the following example:

DISCUSSION
First I'll start by using ls to see what files are in the current
directory. Then maybe we can look at some relevant files to see what
they look like.

```
ls -a
```

Command Interface: The environment provides a set of specialized commands beyond stan-
dard bash operations, including file navigation commands (goto, scroll up, scroll down),
file editing commands (edit, insert) with linting support, file and directory search com-
mands (search file, search dir, find file), and evaluation commands (validate, submit).
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D.1 Prompt Templates

System Prompt

SETTING: You are an autonomous Machine Learning Researcher, and you're
working directly in the command line with a special interface.

The special interface consists of a file editor that shows you {WINDOW}
lines of a file at a time.
In addition to typical bash commands, you can also use the following
commands to help you navigate and edit files.

COMMANDS:
{command_docs}

Please note that THE EDIT and INSERT COMMANDS REQUIRES PROPER
INDENTATION.
If you'd like to add the line ' print(x)' you must fully write that out,
with all those spaces before the code! Indentation is important and code
that is not indented correctly will fail and require fixing before it
can be run.

RESPONSE FORMAT:
Your shell prompt is formatted as follows:
(Open file: <path>) <cwd> \$

You need to format your output using two fields; discussion and command.
Your output should always include _one_ discussion and _one_ command
field EXACTLY as in the following example:
DISCUSSION
First I'll start by using ls to see what files are in the current
directory. Then maybe we can look at some relevant files to see what
they look like.
```
ls -a
```

You should only include a *SINGLE* command in the command section and
then wait for a response from the shell before continuing with more
discussion and commands. Everything you include in the DISCUSSION
section will be saved for future reference. Please do not include any
DISCUSSION after your action.
If you'd like to issue two commands at once, PLEASE DO NOT DO THAT!
Please instead first submit just the first command, and then after
receiving a response you'll be able to issue the second command.
You're free to use any other bash commands you want (e.g. find, grep,
cat, ls, cd) in addition to the special commands listed above.
However, the environment does NOT support interactive session commands
(e.g. python, vim), so please do not invoke them.
Your goal is to achieve the best possible score, not just to submit your
first working solution. Consider strategies like validating your answer
using the `validate` command, manually spot-checking predictions,
building custom validation sets and grading functions, and comparing
different algorithms.
Once you have exhausted all possible solutions and cannot make progress,
you can submit your final solution by using `submit` command.
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IMPORTANT TIPS:
1. Always start by trying to understand the baseline script if
available. This will give you an idea of one possible solution for the
task and the baseline scores that you have to beat.

2. If you run a command and it doesn't work, try running a different
command. A command that did not work once will not work the second time
unless you modify it!

3. If you open a file and need to get to an area around a specific line
that is not in the first {WINDOW} lines, don't just use the scroll_down
command multiple times. Instead, use the goto <line_number> command.
It's much quicker.

4. Always make sure to look at the currently open file and the current
working directory (which appears right after the currently open file).
The currently open file might be in a different directory than the
working directory! Note that some commands, such as 'create', open
files, so they might change the current open file.

5. When editing files, it is easy to accidentally specify a wrong line
number or to write code with incorrect indentation. Always check the
code after you issue an edit to make sure that it reflects what you
wanted to accomplish. If it didn't, issue another command to fix it.

6. You have a limited number of actions/steps you can take in the
environment. The current step and remaining number of steps will given
after every action. Use the remaining steps wisely. If you only have few
remaining steps, it is better to submit a working solution then to keep
trying.

7. Your each action should take less than {training_timeout} seconds to
complete. If your action doesn't finish within the time limit, it will
be interrupted.

8. Validating your solution often, will give you a good idea of your
progress so far and you will be able to adapt your strategy. Do not run
the evaluation file on your own, use the `validate` function instead. If
you run evaluation file yourself, your results won't be logged.

Command Docs We prepare command docs based on the YAML heredoc included in tool
scripts. In this work, we use SWE-Agent tools as described in Table 2 and the documentation
for the tools are given below.

Command Docs

open:
docstring: opens the file at the given path in the editor. If
line_number is provided, the window will be move to include that
line
signature: open "<path>" [<line_number>]
arguments:

- path (string) [required]: the path to the file to open
- line_number (integer) [optional]: the line number to move
the window to (if not provided, the window will start
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at the top of the file)

goto:
docstring: moves the window to show <line_number>
signature: goto <line_number>
arguments:

- line_number (integer) [required]: the line number
to move the window to

scroll_down:
docstring: moves the window down 1000 lines
signature: scroll_down

scroll_up:
docstring: moves the window down 1000 lines
signature: scroll_up

create:
docstring: creates and opens a new file with the given name
signature: create <filename>
arguments:

- filename (string) [required]: the name of the
file to create

search_dir:
docstring: searches for search_term in all files in dir.
If dir is not provided, searches in the current
directory
signature: search_dir <search_term> [<dir>]
arguments:

- search_term (string) [required]: the term to search for
- dir (string) [optional]: the directory to search in (if
not provided, searches in the current directory)

search_file:
docstring: searches for search_term in file. If file is not
provided, searches in the current open file
signature: search_file <search_term> [<file>]
arguments:
- search_term (string) [required]: the term to search for
- file (string) [optional]: the file to search in (if not
provided, searches in the current open file)

find_file:
docstring: finds all files with the given name in dir. If dir is
not provided, searches in the current directory
signature: find_file <file_name> [<dir>]
arguments:

- file_name (string) [required]: the name of the file
to search for
- dir (string) [optional]: the directory to search in
(if not provided, searches in the current directory)

edit:
docstring: replaces lines <start_line> through <end_line>
(inclusive) with the given text in the open file. The replacement
text is terminated by a line with only end_of_edit on it. All of
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the <replacement text> will be entered, so make sure your
indentation is formatted properly. Python files will be
checked for syntax errors after the edit. If the system
detects a syntax error, the edit will not be executed.
Simply try to edit the file again, but make sure to read
the error message and modify the edit command you issue
accordingly. Issuing the same command a second time will
just lead to the same error message again.
signature: edit <start_line>:<end_line> <replacement_text>
end_of_edit
arguments:

- start_line (integer) [required]: the line number to start
the edit at
- end_line (integer) [required]: the line number to end the
edit at (inclusive)
- replacement_text (string) [required]: the text to
replace the current selection with

insert:
docstring: inserts the given text after the specified line
number in the open file. The text to insert is terminated
by a line with only end_of_insert on it. All of the
<text_to_add> will be entered, so make sure your
indentation is formatted properly. Python files will be
checked for syntax errors after the insertion. If the
system detects a syntax error, the insertion will not be
executed. Simply try to insert again, but make sure to
read the error message and modify the insert command you
issue accordingly.
signature: insert <line_number> <text_to_add>
end_of_insert
arguments:

- line_number (integer) [required]: the line number
after which to insert the text
- text_to_add (string) [required]: the text to insert
after the specified line

submit:
docstring: submits your current code and terminates the
session
signature: submit

validate:
docstring: validates your current submission file and
returns the metrics on test set
signature: validate

Task Template The task template is populated with task and dataset description and is
used as the first User Message to the model.

Task Template

We're currently solving the following task. Here's the task description:

TASK DESCRIPTION:
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{description}

INSTRUCTIONS:
Now, you're going to train a model to improve performance on this task.
Your terminal session has started and you're in the workspace root
directory. You can use any bash commands or the special interface to
help you. Edit all the file you need or create a new training script.
Remember, YOU CAN ONLY ENTER ONE COMMAND AT A TIME. You should always
wait for feedback after every command.
When you're satisfied with all of the changes you have made, you can run
your code. Your code should produce a valid submission artefact. Please
follow the instructions in SUBMISSION FORMAT section above and adhere to
the guidelines provided for generating submission artefacts. You can
also look at the `evaluate.py` provided to you to see if you are
following the correct format and naming scheme for your submission
artefacts.

Note however that you cannot use any interactive session commands (e.g.
python, vim) in this environment, but you can write scripts and run
them. E.g. you can write a python script and then run it with `python
<script_name>.py`.

NOTE ABOUT THE EDIT AND INSERT COMMANDs: Indentation really matters!
When editing a file, make sure to insert appropriate indentation before
each line!

(Current Step: {current_step}, Remaining Steps: {remaining_steps})
(Open file: {open_file})
(Current directory: {working_dir})
bash-\$

Next Step Templates These templates are used to prompt the agent for the next action
generation. Next Step Template is used when the previous agent command results in an ob-
servation/output from the MLGym environment. Whereas, Next Step No Output Template
is used when the agent command did not generate any output from the environment. The
templates is populated with the following variables:

• Observation: Observation from the environment. This is only populated in the
Next Step Template.

• Current Step: Current step number for the agent

• Remaining Steps: Remaining steps for the agent before the code is autosubmitted.

• Open File: Currently open file. The agent can only edit/insert content in the
currently opened file.

• Working Dir: Current directory for the agent. Equivalent to pwd in a Linux shell.

Next Step Template

{observation}
(Current Step: {current_step}, Remaining Steps: {remaining_steps})
(Open file: {open_file})
(Current directory: {working_dir})
bash-\$
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Next Step No Output Template

Your command ran successfully and did not produce any output.
(Current Step: {current_step}, Remaining Steps: {remaining_steps})
(Open file: {open_file})
(Current directory: {working_dir})
bash-\$

E Extended Related Work

E.1 LLM Agents

Research on tool-augmented LLMs (Schick et al., 2023) has inspired a new research agenda
of ”agentic” LLMs (Kaddour et al., 2023; Wang et al., 2024a), where LLMs interact with an
external environment. Existing work explores teaching LLMs to use tools or APIs (Schick
et al., 2023; Qin et al., 2023), navigate the web (Nakano et al., 2022; Deng et al., 2023; Zhou
et al., 2023), interface with operating systems (Wu et al., 2024), play games (Paglieri et al.,
2024; Wang et al., 2023), or interact with other simulated (Wang et al., 2024b; Lin et al.,
2023) or physical worlds (Zhang et al., 2024a). Evaluating agentic LLMs typically involves
designing controlled environments, providing suitable tools, defining tasks and goals, and
establishing quantitative metrics to measure the system’s performance.

Building on these directions, Yoran et al. (2024) introduce AssistantBench, emphasizing the
complexity of open-web navigation and showcasing how current systems struggle with
realistic, time-consuming tasks such as monitoring real-estate markets or identifying nearby
businesses. Meanwhile, Kapoor et al. (2024) highlight the importance of standardized
evaluation protocols that consider both accuracy and cost, warning against overfitting
and advocating for more reproducible benchmarks. Extending these concerns to multi-
dimensional environments, Liu et al. (2023) propose AgentBench—a suite of eight interactive
settings that test agents’ capacity for reasoning, decision-making, and long-term instruction
following. Similarly, Mialon et al. (2023) focus on holistic planning skills through GAIA, a
benchmark designed to assess performance on real-world questions requiring robust tool-
use and multimodal reasoning, revealing substantial gaps between human-level proficiency
and current LLMs. Finally, Trivedi et al. (2024) emphasize the necessity of sophisticated tool
integration with AppWorld, an interactive environment where agents must operate diverse
applications via APIs and generate complex code in an iterative fashion. Collectively, these
works underscore not only the breadth of agentic LLM capabilities but also the pressing
need for systematic, multifaceted benchmarks that capture complex tasks with verifiable
results and foster reproducible progress in the field. However, none of these works focuses
on evaluating or developing LLM agents for open-ended AI research tasks.

E.2 Agents for Software Engineering and Data Science

In line with the principle of reproducibility and verifiability, software engineering tasks
provide a testbed for LLM agents, where tasks can be tightly scoped and outcomes rigor-
ously measured. Recent work has explored how agents can tackle code-level challenges
in controlled settings that permit systematic evaluation. As discussed above, Yang et al.
(2024) introduce SWE-agent, which operates within a constrained agent-computer interface
to facilitate file creation, repository navigation, and code testing—thereby enhancing both
traceability and reproducibility on benchmarks such as SWE-bench and HumanEvalFix.
Similarly, Wang et al. (2024c) describe OpenHands, a platform that restricts agent interactions
to sandboxed environments for safer command execution and verifiable web browsing,
and in doing so provides a standardized foundation for benchmarking. Magentic-One
(Fourney et al., 2024) is another agentic system competent in software engineering but also
augmented with web navigation capabilities, as demonstrated by its strong performance on
the GAIA, AssistantBench and WebArena (Zhou et al., 2023) agentic benchmarks. On the
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other hand, Zhang et al. (2024b) achieve competitive perforemance on SWE-bench with
AutoCodeRover, which, unlike the agentic approaches, solves Github issues by combining
LLM-based programming with program representation as an abstract syntax tree.

Towards the goal of automating data science work, Li et al. (2024) introduce AutoKaggle,
a multi-agent human-assisting system, and Grosnit et al. (2024) present AgentK v1.0, an
end-to-end autonomous data science agent; both of these systems perform well on Kaggle
competition data. Still within the realm of data science work, Lei et al. (2024) build Spider 2.0,
a challenging benchmark and code agent framework for automating text-to-SQL workflows.
Going one step further, Cao et al. (2024) introduce Spider 2-V, an autonomous multimodal
agent coupled with a benchmark focusing on the automation of enterprise data science and
engineering workflows.

More search-oriented approaches include SWE-Search (Antoniades et al., 2024), a multi-
agent framework that marries Monte Carlo Tree Search (MCTS) with iterative refinement,
enabling agents to continuously evaluate and improve their approaches to repository-level
tasks. In a similar vein, Koh et al. (2024b) explore tree search for LLM agents and show that
equipping LLM agents with best-first search boosts performane for the WebArena and Visu-
alWebArena (Koh et al., 2024a) agentic benchmarks. Also on augmenting LLM agents with
search, Yu et al. (2025) propose MCTS-based test-time search and self-learning techniques
that yield better performance on VisualWebArena. Finally, Xia et al. (2024) demonstrate
that even relatively simple approaches can excel when thoroughly monitored: an ’agentless’
system follows a three-step process and outperforms more complex agent-based methods on
SWE-bench Lite, underscoring the value of constrained, verifiable environments in driving
reproducible gains for autonomous SWE agents.

E.3 Agents for Scientific Research

Controlled SWE contexts build the foundation for more complex automation while maintain-
ing a reproducible and verifiable approach. However, just the software foundations alone are
not sufficient to address the remaining gaps towards the goal of science acceleration. Going
from the limited environments and well-defined tasks with metrics towards a less-defined
area of open-ended questions, there are substantial efforts needed to boost the capabilities
of research agents. For instance, coming up with automatable criteria to gauge scientific
novelty or constructing theories inheriting the automated findings from heterogeneous
disciplines are examples of areas that could use more refinement and experimentation.

Nevertheless, the first steps on this path can be started now - in the field of ML research
and data science - since these areas represent for us a scientific playground with tasks
that are both well-defined and have formal criteria of verifiability (benchmarks and tests),
falsifiability (ablation studies and tests for data leakage, memorization, out of domain
generalization, etc) and reproducibility.

Data Science. Many recent works approach both classic data science tasks and real-life
repository-based tasks as a testbed for agents with a known test set and metrics. While
based on similar grounds, the works differ in the resulting levels of autonomy of the agents.
For instance, ML-Bench (Tang et al., 2024) focuses on explicit tasks within existing GitHub
repositories — evaluating agents in code-centric setups without delving into open-ended
objectives. By contrast, Data Interpreter (Hong et al., 2024) extends agent testing to broader
data science problems, spanning coding tasks, mathematical reasoning, and a limited
suite of open-ended applications (e.g., OCR, web search, and mini-game generation), thus
reflecting a more flexible approach to autonomy. The agentic benchmark SUPER (Bogin
et al., 2024) raises the bar by requiring the agent to formulate the task itself and iterate on
NLP-related data and tasks within research repositories, thereby emphasizing self-directed
problem-solving.

AI Research. The presence of models and simulations in machine learning itself inevitably
leads to the fact that this area also becomes the object of automation. Having an agent
formulating a task itself and approaching open-ended tasks naturally leads to automatic
agentic enhancement of the machine learning methods themselves. AutoML (Eggensperger
et al., 2019; Lindauer & Hutter, 2020; Tornede et al., 2023) and NAS (Elsken et al., 2019; Nasir
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et al., 2024) approaches have been previously paving the foundations of ML automation
within environments with built-in restrictions (an explicit set of methods, definition of the
search space and strategy), while the agentic approach can propose open-ended solutions
without said specifications.

For example, MLAgentBench (Huang et al., 2024) consists of an environment for agents to
solve 13 complex tasks ranging from improving image classification to language modeling,
with the current state-of-the-art LLMs achieving 0% success rate for the most difficult of
these tasks. The proposed pipelines for agents in the environment include designing and
running experiments, analyzing the results, and iterating towards improving the defined
metrics. Similarly, RE-Bench (Research Engineering Benchmark) (METR, 2024) is a set
of 7 diverse and challenging ML tasks with the methodological addition of real human
experts involvement and progress comparison: timed sessions for ML experts vs LLM
agents. Authors state that the best agents achieve a score 4x higher than human experts
when both are given a total time budget of 2 hours per environment. However, humans
currently display better returns to increased time budgets, narrowly exceeding the top AI
agent scores given an 8-hour budget, and achieving 2x the score of the top agent when
both are given 32 total hours. MLE-bench (Chan et al., 2024) focuses on Kaggle tasks as a
source for agentic evaluations. Agents are evaluated across well-defined metrics, datasets,
and real competition result distribution. The attempts are limited to 24 hours. However,
in contrast with MLGYM, all these works contain a more narrow set of domains that do
not assess algorithmic reasoning capabilities. Moreover, some of them do not provide a
standardized agentic harness to allow for model evaluation, but they vary both the harnesses
(also known as scaffolds) and the LLMs when comparing performances. While our work
focuses on creating an evaluation framework with objective and standardized evaluation
metrics, other recent works focus on developing an agentic harness for the more subjective
task of generating papers based on end-to-end experimental cycles (Lu et al., 2024).

Scientific Discovery. Several recent works have approached scientific automation with
LLM agents targeting the process of scientific discovery. DiscoveryWorld (Jansen et al.,
2024) is a benchmark for scientific agents being evaluated in a game-like virtual discovery
environment. 120 tasks require an agent to form hypotheses, design and run experiments,
analyze results, and act on conclusions – for areas like proteomics, chemistry, archeology,
physics, agriculture, rocket science, linguistics, or epidemiology. The custom simulation
engine only supports a limited list of objects and 14 possible actions. A distinctive feature of
the work is also that it focuses on general discovery skills rather than task-specific solution,
and the assessment, space of objects and actions is common to all scientific domains.

ScienceAgentBench (Chen et al., 2024), however, approaches differently the similar task of
creating a discovery-based agentic benchmark: the tasks are based on 44 cherry-picked peer-
reviewed publications that include data-driven discovery tasks with well-defined metrics.
The scientific areas covered include bioinformatics, computational chemistry, geographical
information science, and neuroscience yielding 102 tasks of various types, such as data
processing, modeling or visualization. Each task is defined by Python-based evaluation
environment, end result metrics and intermediate evaluation criteria. Special metrics control
data contamination and agent shortcut issues. Comparing different baselines, including
pure LLMs with prompting, authors state that execution feedback is necessary for agents to
generate useful solutions.

The idea of execution feedback and iterative improvement for research tasks has been pro-
posed in ResearchAgent (Baek et al., 2024). Agentic concept-based approach with literature-
based discovery shows great improvement for end-to-end iterative solution generation, also
supported by knowledge-based vs random facts ablations. The agent is evaluated solely
with subjective human preference annotation and automatic human preference evals. While
covering structured aspects of end-to-end experimental pipeline (problem clarity, feasibility,
significance, relevance, originality, method generalizability, innovativeness, experiment
reproducibility, validity, etc), relying solely on human judgment without supporting it with
objective metrics is insufficient, as Si et al. (2024) shows.
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F Multi-Agent Research Evaluation

MLGym’s modular architecture extends naturally to evaluate decomposed AI research
systems where specialized agents collaborate on complex research tasks. Rather than
relying on a single monolithic agent, this multi-agent approach divides the research process
across specialized components: a literature review agent that synthesizes prior work, a
hypothesis evaluation agent that assesses research directions, and an implementation agent
that handles coding and experimentation.

F.1 Architectural Support for Specialized Agent Coordination

The framework’s BaseAgent class and ToolHandler system provide the foundation for orches-
trating multiple specialized agents. Each agent can be configured with distinct capabilities
through the AgentConfig system, enabling role-specific tool access and behavioral patterns.
For instance, a literature review agent could be equipped with the literature search tool
for querying research databases, while an implementation agent would have access to code
editing and execution tools.

The MLGymEnv environment serves as the coordination layer, managing inter-agent com-
munication and maintaining shared workspace state. The environment’s container-based
execution ensures that all agents operate within the same computational context while
maintaining clear separation of responsibilities.

F.2 Evaluation Challenges in Decomposed Research

Evaluating multi-agent research systems presents unique challenges compared to single-
agent approaches. The framework must assess not only the final research outcome but
also the quality of intermediate products: literature synthesis, hypothesis formation, and
implementation decisions. This requires developing evaluation metrics that capture:

Inter-agent Communication Quality: Measuring how effectively agents share insights, with
successful handoffs requiring clear problem formulation from the research agent, actionable
hypotheses from the evaluation agent, and interpretable results from the coding agent.

Specialization vs. Integration Trade-offs: Assessing whether task decomposition improves
overall research quality compared to generalist approaches, particularly in scenarios where
domain expertise significantly impacts research outcomes.

Coordination Overhead: Quantifying the computational and temporal costs of multi-agent
coordination against potential improvements in research quality and reliability.

F.3 Framework Extensions for Multi-Agent Assessment

MLGym’s task evaluation system can be extended to support multi-agent research assess-
ment through several mechanisms:

Phase-specific Evaluation: The framework’s AbstractMLTask interface can be enhanced to
evaluate intermediate research products, such as literature summaries, hypothesis rankings,
and implementation quality, providing detailed feedback on each specialist’s contribution.

Collaborative Trajectory Analysis: The existing trajectory logging system can be expanded
to capture inter-agent interactions, enabling analysis of communication patterns, decision
dependencies, and collaborative problem-solving strategies.

Comparative Benchmarking: The standardized task interface allows for direct compari-
son between single-agent and multi-agent approaches across the same research problems,
providing empirical evidence for the effectiveness of research decomposition.
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F.4 Research Applications and Future Directions

This multi-agent evaluation capability enables investigation of fundamental questions in AI
research automation: optimal task decomposition strategies, effective agent specialization
patterns, and the scalability of collaborative AI research systems. By providing a stan-
dardized framework for evaluating decomposed research approaches, MLGym facilitates
systematic study of how to best structure AI research teams and optimize the balance
between specialist expertise and integrated problem-solving.

The framework’s extensible design supports future enhancements such as dynamic agent
composition, adaptive specialization based on task requirements, and hierarchical coordina-
tion structures for complex, multi-stage research projects.

G Discussion and Limitations

Our findings highlight both the opportunities and ongoing challenges in leveraging large
language models (LLMs) as agents for scientific workflows. The proposed MLGym frame-
work and accompanying MLGym-Bench tasks demonstrate that modern LLM agents can
successfully tackle a diverse array of quantitative experiments, reflecting advanced skills
and domain adaptability. At the same time, our results reveal notable capability gaps, which
point to several avenues for improvement:

• Scaling beyond ML tasks To further evaluate the agent’s AI Research capabilities,
it is essential to scale up the evaluation framework to accommodate large-scale
domain-specific datasets, more complex tasks, as well as domains outside AI. This
will enable the community to assess the robustness and generalizability of different
methods, as well as identify potential limitations and areas for improvement.

• Interdisciplinary Ablations and Generalization Within the stage of method evalu-
ation, one approach is to test the solutions for generalization:

– automatically evaluating the applicability of a new method on different do-
mains . For example, new LLM architectures like Mamba (Gu & Dao, 2024)
could be automatically applied to data on DNA, chemical molecules, music
generation, etc.

– automatically running interdisciplinary and multidisciplinary ablations, where
we systematically remove or modify specific components of the proposed ML
system to assess their impact on performance. This will enable the community
to more quickly identify the most critical factors contributing to generalization
across different domains.

• Addressing Scientific Novelty While the agentic benchmarks have demonstrated
their effectiveness in evaluating complex tasks in different areas, it is essential to
acknowledge that proposed interdisciplinary extrapolation of methods is just one
aspect of the broader scientific understanding of ”novelty” and ”discovery” (Popper,
2005; Langley, 1987). It is not yet clear if the notion of scientific novelty can be
successfully automated or even formally defined in a form suitable for agents.
For many scientific disciplines, development may be uneven and depend on the
availability of open data, the development of the methods, metrics and definitions
used.

• Data Openness Imperative Finally, we emphasize the importance of data openness
in driving scientific progress. By making our representative ’corpus of the world’
widely accessible, including scientific artifacts, reproducible code, and domain-
specific data for modeling, we can facilitate collaboration and accelerate discovery.
This imperative is crucial for advancing our understanding of complex systems
and developing more effective solutions to real-world problems. Removing once
accessible resources that have entered LLM training from public access can have an
irreparable impact on the acceleration of scientific progress, as it becomes impossible
to identify sources of facts, and it is impossible to attribute the out-of-distribution
result from a scientific work from a hallucination or a completely new result.
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H Ethical Considerations

AI agents proficient in tackling open research challenges like those in our benchmark could
catalyze a remarkable acceleration in scientific advancement. This prospect is exhilarating
yet demands a meticulous comprehension of model progress to ensure responsible and
controlled deployment of such breakthroughs. MLGym-Bench, for instance, can serve as
a metric for model autonomy within OpenAI’s Preparedness Framework, autonomous
capabilities in Anthropic’s Responsible Scaling Policy, and ML R&D in Google DeepMind’s
Frontier Safety Framework.

Should AI agents become adept at autonomously conducting AI research, the positive
impacts could be multifaceted, encompassing accelerated scientific progress in healthcare,
climate science, and other domains, expedited safety and alignment research for models,
and economic growth spurred by the development of novel products. The ability of agents
to deliver high-quality research could signify a transformative stride in the economy.

Nonetheless, agents capable of executing open-ended AI research tasks, such as enhancing
their own training code, could augment the capabilities of cutting-edge models at a pace
outstripping human researchers. If innovations outpace our ability to comprehend their
ramifications, we risk developing models with catastrophic harm or misuse potential with-
out parallel advancements in securing, aligning, and controlling such models. We believe
a model proficient in solving a substantial portion of MLGym-Bench likely possesses the
capacity to execute numerous open-ended AI tasks. We are open-sourcing MLGym and
MLGym-Bench to foster understanding and research into the agentic capabilities of AI
Research Agents and promote transparency regarding acceleration risks in frontier AI labs.
In doing so, we acknowledge the limitations of MLGym-Bench and strongly encourage the
development of additional evaluations of automated AI research capabilities, particularly
those tailored to the workflow of researchers training frontier models.
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