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Abstract

With the increasingly broad deployment of federated learning (FL) systems in the real
world, it is critical but challenging to ensure fairness in FL, i.e. reasonably satisfactory
performances for each of the numerous diverse clients. In this work, we introduce and study
a new fairness notion in FL, called proportional fairness (PF), which is based on the relative
change of each client’s performance. From its connection with the bargaining games, we
propose PropFuair, a novel and easy-to-implement algorithm for finding proportionally fair
solutions in FL, and study its convergence properties. Through extensive experiments on
vision and language datasets, we demonstrate that PropFair can approximately find PF
solutions, and it achieves a good balance between the average performances of all clients
and of the worst 10% clients. Our code is available at https://github.com/huawei-noah/
Federated-Learning/tree/main/FairFL.

1 Introduction

Federated learning (FL, McMahan et al. 2017) has attracted an intensive amount of attention in recent years,
due to its great potential in real world applications such as IoT devices (Imteaj et al., 2021), healthcare (Xu
et al., 2021) and finance (Long et al., 2020). In FL, different clients collaboratively learn a global model that
presumably benefits all, without sharing the local data.

However, clients differ. Due to the heterogeneity of client objectives and resources, the benefit each client
receives may vary. How can we make sure each client is treated fairly in FL?

To answer this question, we first need to define what we mean by fairness. Similar to fairness in other fields
(Jain et al., 1984; Sen, 1986; Rawls, 1999; Barocas et al., 2017), in FL, there is no unified definition of fairness.
In social choice theory, two of the most popular definitions are utilitarianism and egalitarianism. The goal
of utilitarian fairness is to maximize the utility of the total society; while egalitarian fairness requires the
worst-off people to receive enough benefits. Coincidentally, they correspond to two of the fair FL algorithms:
Federated Averaging (FedAvg, McMahan et al. 2017) and Agnostic Federated Learning (AFL, Mohri et al.
2019). In FedAvg (AFL), we minimize the averaged (worst-case) loss function, respectively. Utilitarian and
egalitarian might be in conflict with each other: one could improve the worst-case clients, but better-off
clients would be degraded to a large extent.

To achieve some balance between utilitarian and egalitarian fairness, other notions of fairness have been
studied. Inspired by a-fairness from telecommunication (Mo & Walrand, 2000), Li et al. (2020c) proposed
g-Fair Federated Learning (¢-FFL). By replacing the client weights with the softmax function of the client
losses, Li et al. (2020a) proposed Tilted Empirical Risk Minimization (TERM). However, it remains vague
what type of balance these algorithms are trying to yield.
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In this work, we bring another fairness notion into the zoo of fair FL, called proportional fairness (PF, Kelly
1997). It also balances between utilitarian and egalitarian fairness, but is more intuitive. As a illustrative
example, suppose we only have two clients and if we can improve the performance of one client relatively
by 2% while decreasing another one by 1%, then the solution is more proportionally fair. In practice, this
view of relative change is quotidian. In stock market, people care more about how much they gain/lose
compared to the cost; in telecommunication, people worry about the data transmission speed compared to
the bandwidth. In a word, PF studies the relative change of each client, rather than the absolute change.

Under convexity, PF is equivalent to the Nash bargaining solution (NBS, Nash 1950), a well-known concept
from cooperative game theory. Based on the notion of PF and its related NBS, we propose a new FL
algorithm called PropFair. Our contributions are the following:

o With the utility perspective and Nash bargaining solutions, we propose a surrogate loss for achieving
proportionally fair FL. This provides new insights to fair FL and is distinct from existing literature
which uses the loss perspective for fairness (see Section 2).

e Theoretical guarantee: we prove the convergence of PropFair to a stationary point of our objec-
tive, under mild assumptions. This proof can generalize to any other FL algorithm in the unified
framework we propose.

e Empirical viability: we test our algorithm on several popular vision and language datasets, and
modern neural architectures. Our results show that PropFair not only approximately obtains pro-
portionally fair FL solutions, but also attains more favorable balance between the averaged and
worst-case performances.

o Compared to previous works (Mohri et al., 2019; Li et al., 2020c; 2021), we provide a comprehensive
benchmark for popular fair FL algorithms with systematic hyperparameter tuning. This could
facilitate future fairness research in FL.

Note that we mainly focus on fairness in federated learning. Perhaps more widely known and orthogonal to
fair FL, fairness has also been studied in general machine learning (Appendix F.3.3), such as demographic
parity (Dwork et al., 2012), equalized odds (Hardt et al., 2016) and calibration (Gebel, 2009). These
definitions require knowledge of sensitive attributes and true labels. Although it is possible to adapt these
fairness definitions into FL, by e.g., treating each sensitive attribute as a client, the adaptation may not
always be straightforward due to the unique challenge of privacy in FL. Such adaptation can be interesting
future work and we do not consider it here.

Notations. We use 0 to denote the model parameters, and ¢(0, (x,y)) to represent the prediction loss
of 8 on the sample (x,y). ¢s denotes the average prediction loss on batch S. For each client ¢, the data
distribution is D; and the expected loss of 8 on D; is f;. We denote f = (f1,..., fn) with n the number
of clients, and use p; as the linear weight of client i. Usually, we choose p; = n;/N with n; the number of
samples of client 7, and N the total number of samples across all clients. We use ® : R™ — R to denote the
scalarization of f and ¢ : R — R for some scalar function that operates on each f;. We denote A € R" as
the dual parameter, and A, as Kolmogorov’s generalized mean. The utilities of each client ¢ is u; € R whose
exact definition depends on the context, and w = (uq,...,u,) denotes the vector all client utilities. A more
complete notation table can be found in Appendix A.

2 A Unified Framework of Fair FL Algorithms

Suppose we have n clients, and a model parameterized by 0. Because of data heterogeneity, for each client
1 the data distribution D; is different. The corresponding loss function becomes:

fi(0) := Bz y)~p, [0, (x,y))], (2.1)
where ¢ is the prediction loss (such as cross entropy) of model 8 for each sample. The goal of FL is
essentially to learn a model @ that every element in the vector f = (fi,...,f,) is small, a.k.a. multi-

objective optimization (MOO, Jahn et al. 2009). Hu et al. (2022) took this approach and used Multiple
Gradient Descent Algorithm (MGDA) to find Pareto stationary points.
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Another popular approach to MOO is scalarization of f (Chapter 5, Jahn et al., 2009), by changing the
vector optimization to some scalar optimization: ming(® o f)(0) with ® : R"* — R. In this work, we mainly
focus on ® being a (additively) separable function:

meiani(gp 0 fi)(0), ¢:R—R. (2.2)

The linear weights p;’s are usually pre-defined and satisfy p; > 0,>,p; = 1. In FL, a usual choice of p;
is p; = n;/N with n; the number of samples for client i and N the total number of samples. Here ¢ is a
monotonically increasing function, since if any f; increases, the total loss should also increase.

In order to properly locate proportional fairness in the fairness literature, we first review existing fairness
definitions that have been applied to FL. In the following subsections, we show that different choices of scalar
function ¢ lead to different fair FL algorithms with their respective fairness principles.

2.1 Utilitarianism
The simplest choice of ¢ would be the identity function, ¢(f;) = f;:

i = iJi(0), with p; > - ; i = 1. .
min F(0) ;p £i(0), with p; > 0 pre-defined, and zi:p 1 (2.3)

This corresponds to the first FL algorithm, Federated Averaging (FedAvg, McMahan et al. 2017). Combined
with eq. 2.1, the objective eq. 2.3 is equivalent to centralized training with all the client samples in one place.

From a fairness perspective, eq. 2.3 can be called utilitarianism, which can be traced back to at least Bentham
(1780). From a utilitarian perspective, a solution @ is fair if it maximizes an average of the client utilities.
(Here we treat client 4’s utility u; as —f;. In general, u; € R is some value client i wishes to maximize.)

2.2 Egalitarianism (Maximin Criterion)

In contrast to FedAvg, Agnostic Federated Learning (AFL, Mohri et al. 2019) does not assume a pre-defined
weight for each client, but aims to minimize the worst convex combination:

minmaprifi(O), with 1"p =1, and p > 0. (2.4)
o P =

Note that p € R™ is a vector on the probability simplex. An equivalent formulation is:
moin max f;(0). (2.5)
K3

In other words, we minimize the worst-case client loss. In social choice, this corresponds to the egalitarian rule
(or more specifically, the maximin criterion, see Rawls 1974). In MOQO, this corresponds to ®(f) = max; f;
(above eq. 2.2). There is one important caveat of AFL worth mentioning: the generalization. In practice,
each client loss f; is in fact the expected loss on the empirical distribution 131-, ie.,

J0) =, 5006, .) (2.6)

In FL, some clients may have few samples and the empirical estimate fz may not faithfully reflect the
underlying distribution. If such a client happens to be the worst-case client, then AFL would suffer from
defective generalization. We provide a concrete example in Appendix C, and this phenomenon has also been
observed in our experiments.

2.3 «-Fairness

Last but not least, we may slightly modify the function ¢ in FedAvg to be o(f;) = fiqﬂ/(q +1):

1
mgin i1 Zpifiqﬂ(e), with p; > 0 pre-defined, and zi:pi =1. (2.7)

%
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This is called g-Fair Federated Learning (¢-FFL, Li et al. 2020c), and ¢ > 0 is required. If ¢ = 0, then
we retrieve FedAvg; if ¢ — oo, then the client who has the largest loss f; will be emphasized more, which
corresponds to AFL. In general, ¢-FFL interpolates between the two. From a fairness perspective, ¢-FFL
can relate to a-fairness (Mo & Walrand, 2000), a popular concept from the field of communication. Suppose
each client has utility u; € R and w = (ug,...,u,) € U C R"™, with U the feasible set of client utilities, then
a-fairness associates with the following problem:

log u; if =1,

2.8
ul"*/(1—a) ifa>0and a# 1. (28)

. . 1 _ > —
rgg&(;ngﬁa(ui), with pre-defined p; > 0 and ¢, (u;) {

¢-FFL modifies the a-fairness with two changes: (1) take @ = —¢q, and allow « < 0; (2) replace u; with the
loss f;. Therefore, ¢-FFL is an analogy of a-fairness. However, the objective eq. 2.7 misses the important
case with a = 1, also known as proportional fairness (PF, Kelly et al. 1998), which we will study in § 3. Note
that the formulation eq. 2.7 is not fit for studying PF, since if we take ¢ — —1 (corresponding to a = 1),
then we obtain ), p; log f;, which need not be convex even when each f; is (see also § 3.1.1).

2.4 Dual View of Fair FL Algorithms

In this subsection, we show that many existing fair FL algorithms can be treated in a surprisingly unified
way. In fact, eq. 2.2 is equivalent to minimizing the Kolmogorov’s generalized mean (Kolmogorov, 1930):

Ay (£(0)) =" (me(ﬁ@))) : (2.9)

Examples include o(f;) = f; (FedAvg), o(fi) = &' (¢-FFL, ¢ > 0) and o(f;) = exp(af;) (o > 0). The
last choice is known as Tilted Empirical Risk Minimization (TERM, Li et al. 2020a).

We can now supply a dual view of the aforementioned FL algorithms that is perhaps more revealing. Con-
cretely, let ¢ be (strictly) increasing, convex and thrice differentiable. Then, the generalized mean function
A, is convex iff —¢’/¢" is convex (Theorem 1, Ben-Tal & Teboulle, 1986). Applying the convex conjugate
of A, we obtain the equivalent problem:

meinAw(f(G = mlnmaXZ)\ fi(@ (A), AL(A) = Sl}pATf - AL(f), (2.10)

where A% () is the conver conjugate of A,. Note that f > 0 and thus we require A > 0. Under strong
duality, we may find the optimal dual variable A*, with which our fair FL algorithms are essentially FedAvg
with the fine-tuned weighting vector A*.

Constraints of A. Solving the convex conjugate A7, often gives additional constraints on A. For example,

for FedAvg we can find that A% (A) = 0 if A; = p; for all i € [n] and A7,(X) = oo otherwise. For p(f;) = fart
we obtain the conjugate function corresponding to ¢-FFL:

AL(N) =0, if A>0and > p; VINTY/? <1 and oo otherwise. (2.11)
Bringing eq. 2.11 into eq. 2.10 and using Holder’s inequality we obtain the maximizer \; o p; f{. Similarly,
we can derive the convex conjugate of TERM (Li et al., 2020a) as:

A Ai
AL(A) = ; El log p—: if A>0,A"1 =1, and oo otherwise. (2.12)
The maximizer is achieved at \; o p;e®/i. In other words, TERM gives a higher weight to clients with worse
losses. Detailed derivations of the convex conjugates can be found in Appendix E.

In Table 1, we summarize all the algorithms we have discussed, including their motivating principles, objec-
tives as well as the constraints of A induced by A7,. Although the fair FL algorithms are motivated from
different principles, most of them achieve a balance between utilitarianism and egalitarianism, thus allowing
us to compare them on the same ground (§ 5).
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Table 1: Different fairness concepts and their corresponding FL algorithms. f; is the loss function for the
i*? client. The requirement of X can be found in § 2.4 and § 3.2. We defer the description and the dual view
of PropFair to § 3.

FL algorithm Principle Objective Constraints of A
FedAvg Utilitarian >.ipifi i =i
AFL Egalitarian max; f; A>0,1"A<1
¢-FFL a-fairness > pifatt Xi xpiff, A>0
TERM n/a > piecd X x piefi X>0,1TA=1
PropFair Proportional —3}’, pilog(M — f;) A o< 725, [L;(Ai/pi)? =1

3 Adapting Proportional Fairness to FL

Now we study how to add the missing piece mentioned in Section 2.3 to FL: proportional fairness. From a
utility perspective, eq. 2.8 with a = 1 reduces to:

i 1 ., with p; > -defi ;= 1. 1
max zi:pl og u;, with p; > 0 pre-defined, and zi:pz (3.1)

Note that we now specify the domain of u to be U C R, . The objective in eq. 3.1 is sometimes known as
the Nash product (up to logarithmic transformation), and the maximizer u* is also called the Nash bargaining
solution (NBS, Nash 1950). Axiomatic characterizations of the Nash bargaining solution are well-known, for
instance by the following four axioms: Pareto optimality, symmetry, scale equivariance and monotonicity
(e.g., Maschler et al., 2020, Theorem 16.35). Moreover, Figure 1 gives an illustration of the NBS. Among all
the solutions that maximize the total utility, the Nash bargaining solution achieves equal utility for the two
players, and the largest worst-case utility.

The first-order optimality condition (Bertsekas, 1997) of eq. 3.1 can be written as:
(u—u*,VZpﬂoguf)ﬁO, for any u € U, (3.2)
i=1
resulting in the following definition of proportional fairness (Kelly et al., 1998):

Uy — U
ur

u* € U is proportionally fair if Zpi <0, for any u € U. (3.3)

Intuitively, (u; — u})/u} is the relative utility gain for player ¢ given its utility switched from u} to u;. PF
simply states that at the solution u*, the average relative utility cannot be improved. For instance, for two
players with p; = ps = 1/2 we have:

* *
U Ul U2 —Up

3.4
= = (3.9
which says that if by deviating from the optimal solution (uj,u}), player 2 could gain p percentage more in
terms of utility, then player 1 will have to lose a percentage at least as large as p.

The Nash bargaining solution is equivalent to the PF solution according to the following proposition:

Proposition 3.1 (equivalence, e.g. Kelly 1997; Boche & Schubert 2009). For any conver set U € R},
a point uw € U is the Nash bargaining solution iff it is proportionally fair. If U is non-convex, then a PF
solution, when exists, is a Nash bargaining solution.

A PF solution, whenever exists, is a Nash bargaining solution over /. While the converse also holds if i/ is
convex, for nonconvex U, PF solutions may not exist. In contrast, NBS always exists if U is compact, and
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(5]

1 uyue = 0.25

u* = (0.5,0.5)

|
U+ us =1
1

0 0.5 1

uy

Figure 1: Figure inspired by Nash (1950). U: the feasible set of utilities. Blue line: maximizers of the total
utility, on which the Nash bargaining solution u* stands out as the fairest.

thus we solve eq. 3.1 as a necessary condition of PF. From Jensen’s inequality, we can show that:
Zpi log u; < logZpiui. (3.5)
i i

In other words, solving the NBS yields a lower bound of the averaged utility. On the other hand, if any of
the utilities is close to zero, then the left hand side of eq. 3.5 would decrease to —oo. Therefore, the NBS
does not yield extremely undesirable performance for any client. In a nutshell, the NBS achieves a balance
between maximizing the average and the worst-case utilities.

3.1 The PropFair algorithm for federated learning

In order to realize proportional fairness in FL, we need to solve eq. 3.1. With parametrization of u;, the
utility set U becomes the set of all possible choices of (u1(0),...,u,(0)), and our goal is to find a global
model 8 to solve eq. 3.1:

mgxzi:pi log u;(0). (3.6)

3.1.1 What is the right choice of utilities?

One immediate question is: how do we define these utilities in FL? Ideally, the utility should be the test
accuracy, which is unfortunately not amenable to optimize. Instead, we could use the training loss f;. There
are a few alternatives:

+ Replace u; with f; as done in ¢-FFL, and minimize the aggregate loss, ). p; log f;;
+ Replace u; with f; as done in ¢-FFL, and maximize the aggregate utility, >, p; log f;;
o Choose u; = M — f;, and maximize ), p; log(M — f;), with M some hyperparameter to be determined.

The first approach will encourage the client losses to be even more disparate. For instance, suppose p; =

Py = %, and then (f1, f2) = (%, %) has smaller product than (f1, f2) = (%, %) The second approach is not
a choice either as it is at odds with minimizing client losses. Therefore, we are left with the third option.
By contrast, for any M > 1 and p; = ps = 1/2, one can show that (f1, f2) = (3, 3) always gives a better

solution than (f1, f2) = (3, 2). The resulting objective becomes:

meinﬂ(H) = — ;pi log(M — £:(0)). (3.7)

3.1.2 Huberization

However, the objective eq. 3.7 also raises issues: what if M — f; is small and blows up the gradient, or
even worse, what if M — f; is negative and the logarithm does not make sense at all? Inspired by Huber’s
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Algorithm 1: PropFair

1 Input: global epoch T, client number n, loss function f; for client ¢, number of samples n; for client 4,
initial global model 8y, local step number K;, baseline M, threshold €, p; = n;/N, batch size m,
learning rate n

2 fortin0,1...7T —1do

randomly select C; C [n]

Bt(z()) =60, forieCy, N = Ziec, n;

for i in C; do // in parallel

j =1, draw K; mini-batches of samples from client %

for S; in the K; batches do

fi7%(8) = —logg(M — Ls,(60))

10 0.) 0| — vV fIE(0) ), j e j+1
11| Oy =D e, pz‘@t(f;(i

12 Output: global model 67

o N o ook~ W

©

approach of robust estimation (Huber, 1964), we propose a “huberized” version of eq. 3.7:

log(M —t), ift <M —,

3.8
loge—L(t—M+e), ift > M —e. (3:8)

min — Zpi logq(M — fi(8)), with logiy(M —t) := {
Essentially, logq (M —t) is a robust C! extension of log(M —t) from [0, M — €] to R: its linear part ensures
that at ¢t = M — ¢, both the value and the derivative are continuous. If any f; is close or greater than M,
then eq. 3.8 switches from logarithm to its linear version. Based on eq. 3.8 we propose Algorithm 1 called
PropFair. It modifies FedAvg (McMahan et al., 2017) with a simple drop-in replacement, by replacing the
loss of each batch (% with log( (M — ¢%(8)). This allows easy adaptation of PropFair with minimal change
into any of the current FL platforms, such as Flower (Beutel et al., 2020) and Tensorflow Federated.! Also
note that in Algorithm 1 we average over the batch before the composition with logyj. This order cannot be
switched since otherwise the local variance will be m times larger (see eq. B.52).

Remark. When M — oo and f;(0) is small compared to M, the loss function for client ¢ becomes:

(0
f;og(ﬂ) = —log(M — f;(0)) = —log M + f]\(4)
Thus, FedAvg can be regarded as a first-order approximation of PropFair. We utilize this approximation in
our implementation. Another way to obtain FedAvg is to take e = M and thus log (M —t) always uses the
linear branch. In contrast, if € — 0, then eq. 3.8 becomes more similar to eq. 3.7.

3.2 Dual view of PropFair

With the dual view from Section 2.4, we can also treat PropFair as minimizing a weighted combination of
loss functions (plus constants), similar to other fair FL algorithms. Note that if ¢(f;) = —log(M — f;) in
eq. 2.9, then we have PropFair (see Table 1):

Proposition 3.2 (dual view of PropFair). The generalized mean eq. 2.9 for PropFair can be written as:

AL(f) = max ATF—MAT1-1), (3.9)
A>0.[ [, (xi/pi)ri>1

Ppi
Solving the inner mazimization of eq. 2.10 gives [[;_, (%) =1 and \; x M’ff_ .

Similar to TERM/¢-FFL, PropFair puts a larger weight on worse-off clients with a larger loss.
Thttps://www.tensorflow.org/federated
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4 The optimization side of PropFair

In this section, we discuss the convexity of our PropFair objective and show the convergence guarantee of
Algorithm 1. This gives formal fairness guarantee for our algorithm, and potentially for the convergence of
many others in the scalarization class, eq. 2.2. For simplicity we only study the case when f; < M — ¢ for
all 4.

4.1 Convexity of the PropFair objective

Convexity is an important and desirable property in optimization (Boyd & Vandenberghe, 2004). With
convexity, every stationary point is optimal (Bertsekas, 1997). From the composition rule, if f; is convex
for each client i, then M — f; is concave, and thus ), p;log(M — f;(0)) is concave as well (e.g., Boyd &
Vandenberghe, 2004). In other words, for convex losses, our optimization problem eq. 3.7 is still convex as
we are maximizing over concave functions. Moreover, our PropFair objective is convex even when f;’s are
not. For example, this could happen if f;(8) = M — exp(6' A;0) and each A; is a positive definite matrix.
In fact, it suffices to require each M — f; to be log-concave (Boyd & Vandenberghe, 2004).

4.2 Adaptive learning rate and curvature

Denote o(t) = —log(M — t). We can compute the 15*- and 2"d-order derivatives of ¢ o f;:

(M — f)V2f + (VE)V )T
(M — f;)? '

This equation tells us that at each local gradient step, the gradient V(¢ o f;) has the same direction as
V fi, and the only difference is the step size. Compared to FedAvg, PropFair automatically has an adaptive
learning rate for each client. When the local client loss function f; is small, the learning rate is smaller; when
fi is large, the learning rate is larger. This agrees with our intuition that to achieve fairness, a worse-off
client should be allowed to take a more aggressive step, while a better-off client moves more slowly to “wait
for” other clients.

In the Hessian V2(p o f;), an additional positive semi-definite (p.s.d.) term (V£;)(Vf;)" is added. Thus,
V2(p o f;) can be p.s.d. even if the original Hessian V2 f; is not. Moreover, the denominator (M — f;)? has
a similar effect of coordinating the curvatures of various clients as in the gradients.

Vi
M—fi

Vipo fi) = V(o fi) = (4.1)

4.3 Convergence results

Let us now formally prove the convergence of PropFair by bounding its progress, using standard assumptions
(Liet al., 2019; Reddi et al., 2020) such as Lipschitz smoothness and bounded variance. Every norm discussed
in this subsection is Euclidean (including the proofs in Appendix B).

In fact, PropFair can be treated as an easy variant of FedAvg, with the local objective f; replaced with filog.
Therefore, we just need to prove the convergence of FedAvg and the convergence of PropFair would follow

similarly. In general, similar results also hold for objectives in the form of eq. 2.2.

Let us state the assumptions first. Since in practice we use stochastic gradient descent (SGD) for training,
we consider the effect of mini-batches. We also assume that the (local) variance of mini-batches and the
(global) variance among clients are bounded.

Assumption 4.1 (Lipschitz smoothness and bounded variances). Each function f; is L-Lipschitz
smooth, i.e., for any 0,0’ € R? and any i € [n], we have ||V f;(0) —V f;(0")|| < L||@ —0'||; For anyi,j € [n],
fi = f; is o-Lipschitz continuous and E g,y ~p, [|VEL(O, (2,y)) — V£i(0)|? < o2 VO € RY.

Following the notations of Reddi et al. (2020), we use 02 and o2 to denote the global and local variances for
client 7. This assumption allows us to obtain the convergence result for FedAvg (see Algorithm 2). For easy
reference, we include FedAvg (McMahan et al., 2017) in Algorithm 2, whose goal is to optimize the overall
performance. At each round, each client takes local SGD steps to minimize the loss function based on the
client data. Afterwards, the server computes a weighted average of the parameters of these participating
clients, and shares this average among them. Note that for client i, the number of local steps is K; with
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Algorithm 2: FedAvg

Input: global epoch T, client number n, loss function f;, number of samples n; for client 4, initial
global model 6y, local step number K; for client 4, batch size m, learning rate n, p; = n;/N
fortin0,1...T—1do
randomly select C; C [n]
0\ =0, forieC,y N=3cc n
for i in C; do // in parallel

L starting from Bt(i), take K; local SGD steps on f; to find 9&21

| O = Ziect pigt(fizl
Output: global model 81

learning rate 7. In line 3 of Algorithm 2, if C; = [n] then we call it full participation, otherwise it is called
partial participation. We prove the following convergence result of FedAvg. Note that we defined F in eq. 2.3,
and m is the batch size.

Theorem 4.2 (FedAvg). Given Assumption 4.1, assume that the local learning rate satisfies nK; < é for
any i € [n] and

1 1
s L\/24(e -2)2 ) K

Running Algorithm 2 for T global epochs we have:

(4.2)

12 Fy— F*
i E|VEF 2 < g
ocrip, BIVE@I" < (11u9>n< T )

with p = Y, piK; for full participation and p = min; K; for partial participation, Fy = F(0y), F* =
ming F(0) the optimal value, and

2
4

i Lno? i o
Wy =l SO K? (G ) 4 (e 2rrt 3 oRE (T GKirf?)] = (P ).
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Our result is quite general: we allow for both full and partial participation; multiple and heterogeneous local
steps; and non-uniform aggregation with weight p;. The variance term ¥, decreases with smaller local steps
K;, which agrees with our intuition that each K; should be as small as possible given the communication
constraint. Moreover, to minimize ||p||* we should take p; = 1/n for each client i, which means if the samples
are more evenly distributed across clients, the error is smaller. In presence of convexity, we can see that
FedAvg converges to a neighborhood of the optimal solution, and the size of the neighborhood is controlled
by the heterogeneity of clients and the variance of mini-batches. When we have the global variance term
o = 0, our result reduces to the standard result of stochastic gradient descent (e.g., Ghadimi & Lan 2013),
since we have

12 Fy— F*
(=90 T

min 1IE||VF(0t)||2 <

0<t<T

+O(n),

and by taking n = O(1/V/T), we obtain ming<i<7_1 E|VF(8,)|? = O(1/VT).

We note that we are not the first to prove the convergence of FedAvg. For instance, Li et al. (2019) assumes
that each function f; is strongly convex and each client takes the same number of local steps; Karimireddy
et al. (2020) assumes the same number of local steps, gradient bounded similarity and uniform weights
p; = 1/n. These assumptions may not reflect the practical use of FedAvg. For example, usually each client
has a different number of samples and they may take different numbers of local updates. Moreover, for
neural networks, (global) strong convexity is usually not present. Compared to these results, we consider
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different local client steps, heterogeneous weights and partial participation in the non-convex case, which is
more realistic.

Based on Theorem 4.2, we can similarly prove the convergence of other FL algorithms which minimize eq. 2.2,
if there are some additional assumptions. For the PropFair algorithm, as an example, we need to additionally
assume the Lipschitzness and bounded variances for the client losses:

Assumption 4.3 (boundedness, Lipschitz continuity and bounded variances for client losses).
For any i € [n], 8 € R and any batch S; ~ D™ of m i.i.d. samples, we have:

1 M
</tls.(0) := — 0 < —
0 < éSZ( ) ‘Sz| Z(E,y)ESi f( 3(way)) =9 )

and for any 6,0 € RY, ||£:(0) — £:(0")|| < Lo||@ — 0'|| holds. We also assume that for any i,j € [n] and
0 € R”, || £(8) = [;(0)|* < 03 and E(z y)~p, (0, (z,y)) — f:(6)|* < of; hold.

we can obtain the convergence guarantee of PropFair to a neighborhood of some stationary point:

Theorem 4.4 (PropFair). Denote L= %(%ML + L3) and p; = - Given Assumptions 4.1 and 4.3,
assume that the local learning rate satisfies:

. . 1 1 1
e {félfr?] 6L si\/ = 2%, P K } ' )

By running Algorithm 1 for T global epochs we have:

12 o — T~
. 2 < 0
OSI,*,I£¥71EHV7T(90” = Aip—9m ( 7 + \I/0> ,

with pp =", p; K; for full participation and p = min; K; for partial participation, mo = m(8y), 7 = ming 7(0)
the optimal value, and

~ n =2 o ~2
B =l K2 (% +222) w16 -2 3okt (% 4 52))|
i=1 i=1

where 57 = 332 (9IM?0? +4L3o3 ;) and & = L (B0 +L20,).
Our Theorem 4.4 inherits similar advantages from Theorem 4.2. One major difference is that when 6 = 0,
one cannot retrieve the same rate of SGD. This is expected since each batch po g, is no longer an unbiased
estimator ¢ o f; due to the composition. Nevertheless, due to data heterogeneity in FL, the global variance
& is often large, in which case the local variance term G2/m in ¥, can be comparable to 62 by controlling
the batch size m.

5 Experiments

In this section, we verify properties of PropFair by answering the following questions: (1) can PropFair
achieve proportional fairness as in eq. 3.37 (2) what balance does PropFair achieve between the average and
worst-case performances? We report them separately in Section 5.2 and Section 5.3.

5.1 Experimental setup

We first give details on our datasets, models and hyperparameters, which are in accordance with existing
works. See Appendix D for additional experimental setup. A comprehensive survey of benchmarking FL
algorithms can be found in e.g. Caldas et al. (2018); He et al. (2020).

Datasets. We follow standard benchmark datasets as in the existing literature, including CIFAR-{10,
100} (Krizhevsky et al., 2009), TinyImageNet (Le & Yang, 2015) and Shakespeare (McMahan et al., 2017).

10
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Figure 2: The relative improvement/deterioration (u; — u})/u} of the test accuracy u; of each client i of
other baseline algorithms compared to PropFair. The dataset is CIFAR-~10. The (weighted) average of the
relative changes for FedAvg, AFL, ¢-FFL and TERM are respectively: —2.21%, —1.32%, —12.95%, —1.79%.
We choose the hyperparameters based on Table 4 in Appendix D.

For vision datasets (CIFAR-{10, 100} /TinyImageNet), the task is image classification, and following Wang
et al. (2019b) we use Dirichlet allocation to split the dataset into different clients. For the language dataset
(Shakespeare), the task is next-character prediction. We use the default realistic partition based on different
users. We first partition the dataset into different clients, and further split each client dataset into its own
training and test sets. This reflects the real scenario, where each client evaluates the performance by itself.

Models, optimizer and loss function. For vision datasets we use ResNet-18 (He et al., 2016) with
Group Normalization (Wu & He, 2018). As discussed by Hsieh et al. (2020), Group Normalization (with
num_groups=2) works better than batch normalization, especially in the federated settings. For the Shake-
speare dataset, we use LSTM (Hochreiter & Schmidhuber, 1997). We find the best learning rates through
grid search (see Appendix D).

Other hyperparameters. We implement full participation and one local epoch throughout (with many
local steps for each client). Due to data heterogeneity, the number of local steps K; for each client i varies.
For CIFAR-{10, 100} we partition the data into 10 clients; for TinylmageNet/Shakespeare we choose 20
clients.

Evaluation metrics. We validate proportional fairness eq. 3.3 of our PropFair algorithm, where we treat
each u; as the test accuracy of client i. To show that PropFair achieves a proper balance between utilitarian
and egalitarian fairness, we use the average and the worst 10% test accuracies. These are standard fairness
metrics used in the literature (e.g. Li et al., 2020a;c). In Appendix D we also present other standard metrics
such as standard deviation and worst 20%.

5.2 Verification of proportional fairness

In this subsection, we show that PropFair can, to some extent, achieve proportional fairness as defined in
eq. 3.3. We treat u; as the test accuracy of client ¢, and compute

Yop it (5.1

Uu-

with p; = n;/N and u* := (u],...,u’) the test accuracies obtained by the PropFair model. Although we
cannot verify eq. 5.1 for every u, we can at least validate the negativity for some competitive u’s, of, e.g.,
models learned by other fair FL algorithms.

5.2.1 CIFAR-10

We first compute eq. 5.1 where u* is the test accuracies obtained by PropFair and w is the test accuracies
found by one of the other fair FL algorithms, including FedAvg, AFL, ¢-FFL and TERM. Figure 2 shows
the relative changes of each client, (u; —u})/u}, from which we can see that compared to the solution found
by PropFair, for another fair FL solution, most clients are degraded by a large relative amount, and only a
few clients are improved by a small amount.
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Figure 3: The relative improvement/deterioration (u; —u})/u} of the test accuracy of each client i, pretrained
with PropFair and fine-tuned with another baseline. The dataset is CIFAR-100. The average of the relative
changes for FedAvg, AFL, ¢-FFL and TERM are respectively: —0.86%, +0.05%, —0.67%, —1.01%.
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Figure 4: The relative improvement/deterioration (u; — u})/u; of test accuracy of each client ¢, pretrained
with another baseline and fine-tuned with PropFair. The dataset is CIFAR-100. The average of the relative
changes over FedAvg, AFL, ¢-FFL and TERM are respectively: 10.88%, 13.93%, 11.58%, 8.67%.

5.2.2 CIFAR-100

In fact, we may compute eq. 5.1 with a stronger u. For CIFAR-100, we still treat u* as the test accuracies
obtained by PropFair. The difference is that we use u* as the initialization, and fine-tune with other fair
FL algorithms, to find w. If other fair FL algorithms cannot improve the proportional fairness of u*, then

eq. 5.1 should be negative. As we see in Figure 3, this result indeed holds approximately (except the slight
improvement for AFL).

By contrast, none of the baseline fair FL algorithms can achieve the same level of proportional fairness as
our PropFair. In Figure 4, we see that if we start from a model pretrained with a baseline fair FL algorithm,
and fine-tune with our Propfair, most client performances are improved, sometimes by a large margin.

5.3 Comparison between PropFair and existing fair FL algorithms on other metrics

In Figure 5, we compare PropFair with existing fair FL algorithms using the average and the worst 10% test
accuracies across clients, including FedAvg (McMahan et al., 2017), ¢-FFL (Li et al., 2020c), AFL (Mohri
et al., 2019) and TERM (Li et al., 2020a).

Average performance. From Figure 5 we can see that PropFair does not always yield the best average
performance, e.g., compared to ¢-FFL on TinylmageNet. This is expected, since maximizing the Nash
product does not necessarily give the best average performance. Nevertheless, PropFair remains competitive.
Somewhat surprisingly, FedAvg does not always achieve the best average performance, which might be due
to optimization issues (Pathak & Wainwright, 2020).

Worst 10% performance. We also compare the worst 10% performance of various fair FL algorithms. We
observe that PropFair achieves the state-of-the-art in terms of the worst 10% performance, across various
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Figure 5: Mean and worst 10% test accuracies for different algorithms. The accuracies are in percentage. (top
left): CIFAR-10; (top right): CIFAR-100; (bottom left): TinylmageNet; (bottom right): Shakespeare.
All subfigures share the same legends and axis labels.

vision and language datasets. This is within our expectation, since from eq. 3.5 and eq. 3.7 we can see that
low utility in any of the clients would result in a small Nash product.

Specifically, although AFL directly maximizes the worst-case loss function, it does not always achieve the
best worst-case performances (see Table 6 in Appendix D), especially for vision datasets. This might be due
to the generalization issue of AFL (see Appendix C).

6 Related Work in Fair FL

We review recent related work for fair federated learning. In additional to AFL (Mohri et al., 2019), ¢-FFL
(Li et al., 2020c) and TERM (Li et al., 2020a), there have been other approaches for fairness in FL. For
example, FedMGDA+ (Hu et al., 2022) defines fairness as achieving the Pareto frontier and they proposed
to use the MGDA algorithm. As another example, GIFAIR-FL (Yue et al., 2022) encourages the similarity
of the client losses by adding a regularization term of the pairwise ¢; distances. Last but not least, Ditto
(Li et al., 2021) proposed a personalization approach to obtain fairness and robustness. A comprehensive
recent survey of fairness in FL can be found in Shi et al. (2021), and we have included additional papers of
fairness (in FL and in general) in Appendix F.

7 Conclusions

Based on the necessity of considering relative changes, we introduce the concept of Proportional Fairness (PF)
into the field of federated learning (FL), which is deeply rooted in cooperative game theory. By showing the
connection between PF and the Nash bargaining solution, we propose PropFair that maximizes the product
of client utilities, where the total relative utility cannot be improved. This guarantees PropFair to have good
worst-case performance without sacrificing the total utility much. We verify proportional fairness and the
balance between utilitarian and egalitarian fairness in our extensive experiments. As we have shown, many
fair FL algorithms, including PropFair, can be unified using Kolmogorov’s generalized mean, the deeper
understanding of which may lead to future design of fair FL algorithms.
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Broader Impact Statement

With the wide deployment of federated learning, how to ensure fairness in FL algorithms has become a
major concern. In this work, we study proportional fairness in FL to make FL systems fairer and thus
more trustworthy. This could have important positive social impacts as well. We are not aware of potential
negative societal impacts yet but we welcome discussions on them.
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Notation Meaning
(7] model parameters
n the number of clients
m batch size
x € R4 raw input
y € [C] output label
n; the number of samples from client ¢
N=3%.n; the total number of samples from all clients
S; a batch of samples from client ¢
D; data distribution of client ¢
00, (x,y)) prediction loss (e.g. cross entropy) of model 8 on sample (x,y)
L, average loss over batch S,
fi expected loss over distribution D;
=1 vector of client losses
U; utility of client ¢
u=(ug,...,up) vector of client utilities
K; the number of local steps of client 4
Di pre-defined weight of each client 4, usually p; = n;/N
p=(p1,---,Pn) vector of client weights
d:R"—> R scalarization function of f
p:R—=R a scalar function that acts on each client loss f;
A, Kolmogorov’s generalized mean with scalar function ¢
A=A, ) dual parameter
n local learning rate
o? local variance on distribution ¢
o? global variance among clients
F=>.pifi objective of FedAvg
log (M —t) huberization of log(M — t), see eq. 3.8

™= =), pilogg(M —

fi) objective of PropFair

L Lipschitz constant of all V f;’s
e natural logarithm
R7 (strictly) positive orthant of R™

A Notations

We include a notation table for easy navigation. The reader can refer to Table 2 for quick access to the

notations.

Table 2: Notation table.
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B Proofs

Proposition 3.1 (equivalence, e.g. Kelly 1997; Boche & Schubert 2009). For any conver set U € R},
a point w € U is the Nash bargaining solution iff it is proportionally fair. If U is non-convex, then a PF
solution, when exists, is a Nash bargaining solution.

Proof. The Nash bargaining solution u* is equivalent to the maximum of the following:
n
i1 2 B.1
max ;pz 0g U; (B.1)

Since U is convex and Y ., p; logu; is concave in w, the necessary and sufficient optimality condition (e.g,.
Bertsekas, 1997) is:

<u—'tL*,VZpilog’;@)SO7 for any u € U, (B.2)
i=1

or equivalently, eq. 3.3. If U is non-convex, then the optimality condition eq. B.2 also holds for the convex
hull of U. Therefore, ©u* is a maximizer of Z?zl p;log u; in the convex hull of &/ and thus U. O

Theorem 4.2 (FedAvg). Given Assumption 4.1, assume that the local learning rate satisfies nK; < 6% for
any i € [n] and

1 1
"= L\/ 24—, P, KD

Running Algorithm 2 for T global epochs we have:

(4.2)

12 Fy—F*
. 2< 0
ogrtr%I:IFlAEHVF(et)H = (11lp—9)n < T +\IIU> '

with p = Y, piK; for full participation and p = min; K; for partial participation, Fy = F(6y), F* =
ming F(0) the optimal value, and

U, = n]p|?

S 2 L77(7i2 2 272 S 3 Uz'2 2
;Ki W—FU + (e —2)n°L ;Kz -+ +6K;0 ,p=(P1,--,Dn)-

m

Proof. We first assume full participation in the following theorem. The partial participation version is an

easy extension and we discuss it in the end. We use Ot(lj) to denote the model parameters of client i at global

epoch t and local step j. Due to the synchronization step, we have Of(z()) = 0,, the global model at step ¢, and

= i ng
9t+1 = Zpia,g;{ia bi = N’ (B3)
i=1

where K is the local number of steps of client i. We also have:

6\") = 6)") | —ng\’), for all j € [K]. (B.A4)
where gt(zj) = Vg (0151])_1) is an unbiased estimator of Vfi(ng;_l) for j € [K;], with S/ the j*" batch from
client 1. Combiniflg eq. B.3 and eq. B.4 we have:

n Ki .
O1=0—1> p; Y g\ (B.5)
i=1  j=1
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Part I Since each f; is L-Lipschitz smooth, so is their average F' = >, p; f;, from which we obtain that:

L
F(0141) < F(6;) +(VF(6:),0:11 — 0;) + §||9t+1 — 64, (B.6)

Plugging in eq. B.5 yields:

2
n K; n K;
i i L 2 K i
F(8,41) < F(8,) — <VF 6,), Z Zg;}>+g S el (B.7)
i=1  j=1 i=1 =1

From the identity gt(l]) = gt(]) VF(0,) + VF(6,), we write eq. B.7 as:

n K;
F(0,11) < F(6,) nzsz IVE @)1 —n <VF 6. > (g} - )> +
i=1 i=1 j=1
) 2
s > S (6l VEO)) + 3 n KB (B.8)
i=1 j=1 i=1

By further expanding the last term we have:

n K;

F(0,41) < F(6,) nzsz IVF @) n<VF 00, piy (g1 — VF<et>>>+
=1 =1 J=1

2
717 szz (9\") — VF(8,)) +<Zp1 ) IVE@6,)]* +

+ L? <sz‘K¢VF(9t), Zpi (gfzj) — VF(Bt))> ) (B.9)

i=1 i=1 j=1

For simplicity we use y as a shorthand for Y., p;K;. Grouping similar terms together gives:

FO0) < F0) - (1= 50 ) IV F 02

2
n K,;
(1~ L) <VF<et>,Zpi (9] — VF(0 > b szz VE@©)| - (B.10)
i=1  j=1
Taking the expectation on both sides and with Cauchy—Schwarz inequality, we have:
L
F6ui) < BFO) (1 50 ) BIVFO)]+
+ (1= Lnp)E |[[VE@)||-||> " pi Y (VA(6])_,) = VF(6:))]| | +
i=1  j=1
2
77 n K;
+—5 B Z Z — VF(6,))
Ln 1 9
< EF(6:) + 1- 7u + 50l = Lp) | E[IVE(6:)]"+
2 2
K3 ]‘ K3
g ZmZ (91 = VF(8:)|| +5n(1 — Lup)E szz Vi(0]) )~ VF(,))| ,

(B.11)
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where we used Egt 3 sz( ) ] 1) and the inequality ab < %(GQ +b?) in the second line. Let us now study
the two coefficients separately. From the assumption, 6nLK; < 1 for any ¢ € [n], and thus 6Lun < 1. Hence
we have:

Ln 1 ILn 1
—np (1 - u) + o0l = Lnp) < —n (u e LW)

2 2 2 2 2
11p—6 Ly
< _ —_i
=" < 2 2 )
11p—6
N TEE (B.12)
Therefore, eq. B.11 becomes:
2
1p—6 ) WY
F <EF — E|VF —_— F(
(0111) < EF(6:) 2 IVE(6,)] + z; z; —VE(0,))|| +
2
1 n K;
+5n(1 = L) B Z Z (Vfi(0 —VF(8))| . (B.13)
Part IT With the following identity:
gi) = VF©O.) = g1) = V1i(01)_1) + Vi(0[)_)) = VF(6,), (B.14)
the second last term of eq. B.11 can be simplified as:
2 . 2
E szz (g1) ~V£(6) )| +E > Z V81 )~ VEB) (B.15)

7=1 ] 1

(@) -

where we note that g; ; is an unbiased estimator of V fl(ngj) 1). We first bound the first term of eq. B.15:

n K;
B> n > (o) - Vi6l) )| <E sz — V18] H
i=1 =1
J . ;
< E|jp|® Z = VAo
Jj=1
K 2
< E|lp® ZK > |9l - Vsl |
j=1

”szZK ZEHQ Vi)

Ui
<|pl ZKEE, (B.16)
=1

where in the first line, we used triangle inequality; in the second and third lines, we used the Cauchy—Schwarz
inequality; in the fourth line we used the linearity of expectation; in the final line we note that given the last
part of Assumption 4.1, we have:

1 0'1-2
(w,wes Y (zy)es
(B.17)
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where we used the property that each (x,y) is an i.i.d. sample from D;, and that the estimation is unbiased
(by the definition of f;). Similarly we bound the second term of eq. B.15:

2
n K; n K; ) 2
B> p (Vi (81)_) = VF©O)|| <Ipl*Y K> E[VAiof) )~ VF@6) (B.18)
i=1 j=1 i=1  j=1
With the following identity:
Vi(0])_)) = VF(8,) = Vi(8])_,) = V£i(0:) + V£:(6:) — VF(6y), (B.19)
and taking the squared norm on both sides, we have:
IV £:(6") 1) = VEO)|* < 2|V £:(6)') 1) = V£:(00)* + 2|V £:(6,) — VF(8,)||?
< 2L2)6{)_, — 6,]* + 20, (B.20)
where we note that:
[V fi(0r) — VE(O)| = ||V fi(0:) — ijvfj (6:)
=D _pi(Vfi(6:) — V£;(61))
j=1
Zpg IV £i(6:) =V 1;(61)]|
<o, (B.21)

where in the third line we used the triangle inequality and in the last line we used Assumption 4.1. Plugging
eq. B.20 into eq. B.18 yields:

2

EY p: Y (VF(60)_)) — VF(8,)) <2||p\\22K202+2L2||pH2ZK Zmnew -6 (B.22)
i=1  j=1

Bringing eq. B.16 and eq. B.22 into eq. B.15 we write:

K;

n n K;
B[S 0 S (6~ VF©))| < lpl? ZK"‘( +20)+2L2|p||22f<izmn0§2 o
=1 j=1 i=1  j=1

n K,;*l
0k ZW( +zg)+zL2|p||QZKiZEneEf}—eth. (B.23)
i=1 §=0

Part IIT Now let us give an upper bound for E||0§ZJ) — 6;|>. From eq. B.23, we only need to focus on
K;>2and j=1,...,K; — 1 since 9,51()) = 0;. For j € [K; — 1], we have from eq. B.4:

El|6.") — 6,|> = El|6.")_, — 8, — ng")|
=E(6)_, — 6, — Vv f:(8{)_)) +nVfi(6)_}) —ngl")||?
=E|6))_, — 0, — nV (8} ;-_1>||2+1En IV£:0L) 1) — gt

. 2
= EIl6f)_, - 00 — 1V Li(Of) )| + 7> - (B.24)
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where in the third line we note that g

( )- is an unbiased estimator of V fl(B,SZJ 1) and in the last line we used
eq. B.17. The first term in the last hne above can be bounded as:
i i 1
B165) .~ 00—V A6 I < (1+ e ) EIBL) L — 60lP + 26 IV 461 )P
where we used [la+b? < (14 1)][al?
Since

(B.25)

(1+«)||b]|? for any vectors a, b with the same dimension and « > 0
VIi(6:)-) =

(V10,7 1) = V1i(80) + (Vi(6,) = VF(8:) + VF(8))
taking the squared norm on both sides we have (note that (a + b+ ¢)* < 3(
IV£(005 I < 31V (67

(B.26)
t,j— 1)

+ 0% + c2)):
V£i(00)]1 + 3|V fi(6:)

VE(0:)|* + 3| VF(8,)]?
<3120 — 0,2 + 30% + 3| VF(6,)|?

t,g—1

(B.27)
oV £:(6%)

where in the second line we used eq. B.21 and Assumption 4.1. Plugging eq. B.27 into eq. B.25 we find:
B0, — 00~ V10 I < (14 5 + 0K B0, — 0 + 6P + 6P EITF(0))

Combined with eq. B.24, we obtain

(B.28)
i o?
]E||0§J>. —6,* < <1 + + 6Km?L2> E||0w).71 —0:]* +n? (m + 6Ki02) + 6Kn*E||VEF(8,)|?

Recall that we assumed 1 < min{ gz }. For K; > 2 (note the assumption at the beginning of Part IIT)

2K; -1

have:

(B.29)

—— F 6K LR <1+
oK, —1 TUAmE st o

1 <14 1
6K, — K;’
Therefore, eq. B.29 becomes

(B.30)

2
E|6!) — 6, <1 + > JEHotJ L= 60+ <7n + 6Ki0’2) +6Kn*E|VF(8,)|?
We can treat {a; = IE)HOt(lJ) - 0tH2||}§(:i1_1

J
1+ 2) -1 2
El|6") — 6;]* < ( ) 2 (%L £ 6K02 ) + 6K 1P| VEF(8,)|2
t i—l n m i i t
K;

+
o2
1 +) -1 (772 (m + 6K2-02> + 6Km21EIIVF(0t)II2> :
Summing over j = 0,1,.

— 1 gives:
K;i—1

(B.31)

as a sequence. Unrolling this sequence and with ag = 0, we have

(B.32)
K; 2
S El6) - 6, < K? ((1 " ;) - 2> (772 (j; " 6&02) n 6Km2E||VF(et>||2)
§=0
< (e~ 22 (o (2L + oK) + oKaEIVF @)
(e —2) K n? (nj +6K;0% + 6KiIE|VF(0t)||2) (B.33)
where in the first line we used the geometric series formula 1+ ¢ +

g = qn —*; in the second line we
K;
used the fact that (1 + I%) < e for K; > 1, with e the natural logarithm

24



Published in Transactions on Machine Learning Research (01/2023)

Part IV We finally put things together and finish our proof. From eq. B.13 we have:

2
n K;
E|VF(6; H2+— Z > (9] —VF®6))| +
=1 j=1

2

11u—6
F(0,41) < EF(6,) — ’12

1
+ (1 = L) B szz VIil0F) 1) = VE(6,)
i=1 j=1

n K;

11p ol

= BF(0,) —n 4 CEIVE@,) \|2+— > Z ~ VA6 +
K; 2
Lp* 1 . N9 ) URe
+ (S5 g = L) ) B\ pi Y (Vfi(6,5 1) — VF(61)
i=1 =1

11— 6 Nl &
<EF(6,) - n—5—EIIVF(6)|* + ||p|PZKL+ B Z sz

11,u 6

<EF(6:) —

2 o2
BIVFO)1 + 212 Y k2

i=1
+ 5 | 20pP Y] K2o® 2L p|* Y K Y Ell6y), - 6
i=1 i=1 j=1

11p—6
12

E|[VF(0,)]” +6(c — 2)n° L||p||* Y KIE[VF (6, + ¥,

=1

<EF(6;) —

where in the third line we used eq. B.15; in the fifth line we used eq. B.16 and note that

L77 1 n Ln2 .
—_— — L == 4+ —
5 T o —Lnp) =5+ —-(1—p) <5

in the seventh line we used eq. B.22; and in the final line we used eq. B.33 and denoted

- Lno?
;@(2 o) 4 (e 2L2ZK3( +6KU)].

U, = npl?

Since we assumed:

1 1
77 S T n )
L \/24(6 = 2)[lpl2 (XL, K7
we have:

11p—6
12

- p—6 1 _ 11p—9
—6(e = 2)L2|Ip|* Y _ K > — o= = 2~

Therefore, eq. B.34 becomes:

11,u 9

F(0:41) <TEF(6;) — 12

E|VF(8,)|?+ ¥,

With some algebra we obtain:

11u 9

E||VF(6,)[* < E[F(6:) = F(8;11)] + Vo
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Summing both sides over t =0,...,7 — 1 and dividing by 7', we have:

p—91 2 F(80) — F*
B ZEHVF )" < ——F——+ ¥, (B.A1)
which gives:
12 F(6,) — F*
E|VF 2 < ] B.42
i EIVF@)1? < o (HOE ) (B.42)

with F™* = ming F'(0) the optimal value.

Finally, for the partial participation, it suffices to replace the client set {1,...,n} with its subset. Note
that after this substitution, the new variance term satisfies ¥/ < W, since this term increases with more
participants, and eq. B.38 still holds since we subtract a smaller term with partial participation. We also
need to modify eq. B.38 so we further lower bound eq. B.38 with p > min; K;. O

Theorem 4.4 (PropFair). Denote L= M—( ML+ L3) and p; = - Given Assumptions 4.1 and 4.3,
assume that the local learning rate satisfies:

. 1 1 1
”Smm{%b‘%am sL\/ @ 2><zip%><ziK;*>}' 3

By running Algorithm 1 for T global epochs we have:

12 T — T~
2 0
oS8R ElIVTO)I” < =7, ( T q"’) ’

with p =Y, p; I for full participation and p = min; K; for partial participation, 7o = m(6y), 7" = ming 7(6)
the optimal value, and

2
—77|1)||2{ZK2 ( +202) +16(e — 2) 2L22K4 <m +52)]
=1
where &7 = 37 (9M?07 +4L305 ;) and & = 57 (30 + Fp00).

Proof. The proof follows similarly the proof of FedAvg (Theorem 4.2). Denote ¢(t) = —log(M —t). The
changes of PropFair compared to FedAvg as follows:

o The aggregate loss for each client i is not f;, but p o f;;
 The objective function is not F =) p;f;, but 7 =Y. pipo fi;

o For each batch S; ~ D]" from client ¢, the batch loss is not £g,, but ¢ o {g,.

Note that in Assumption 4.1 we implicitly required eq. 2.1:

fl(a) = E(w,y)NDi M(ea (SE, y))]7

or in other words, £(0, (x,y)) is an unbiased estimator of f;. This is no longer true if we replace ¢ with o £
and f; with ¢ o f;. Similarly, ¢ o £g, is no longer an unbiased estimator of ¢ o f;. We will take care of this
pitfall in our proof.

First, from the Lipschitzness assumption in Assumption 4.3 we can obtain an upper bound for the gradient:
IV£i(8)| < Lo for any 8 € R%. We will use this result, as well as the rest of Assumption 4.3, to derive
similar bounds as in Assumption 4.1:
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o the Lipschitz constant of Vi o f;;
o the Lipschitz constant of o f; — ¢ o f;;

o the variance of each batch Vo /g,.

For the Lipschitz smooth constant of ¢ o f;, we write:

V fi(0) Vfi(0")

||V(<p o fz)(o) - V((p © fz)(el)” = M — fz(e) M — fi(al)

_ ’M(szw) — V/i(0) = V[i(0)1:(0") + Vi(6') fi(0 H
(M — fi(6))(M — f:(6"))

V(anfz( ) = V(@) + IV £:(6)£:(6") — V£i(6") £:(0)])

ML|6 — 6| + [V fi(0)fi(6') — V£:(6') f:(0)]))- (B.43)

ﬁ(
The second term in the parenthesis above can be computed as:
IV f:(0)f:(8") = V fi(6') [:(0)] = [V [:(0) f:(6") — V f:(0) f:(8) + V [:(0) fi(08) — V 1:(0") £(0)) |

<|IV£i(8)£:(8') = V1i(0)fi(0)|| + IV £:(0) fi(0) — V fi(8") £i(8)]]
=V fi(0)]l - ||fz(9') L@+ 11V f:(8) =V (0] - | fi(0)]]

< Lglle" - 9||+L 16" — 6, (B.44)

where in the second line we used triangle inequality; in the fourth line we used Assumptions 4.1 and 4.3.
Plugging in back to eq. B.43 we have:

4 (/3
IVl £0(6) = Voo £ < 37z (5L +13) 0 - '] (8.15)
Let us now figure out the variance terms. For the global variance term, we similarly write:

IV (g0 f)(8) = V(po f1)(O)] = ’ Mv—fij(%()ﬁ ijfi)é’ H

:HM(VJ%(@) Vi(0)) —V/i(0)f;(0 )+ij(9)fi(0)H
(M — fz( (M — £;(6))

Mi(MIIVfl( ) = VO + IV fi(0)1;(0) =V ;(0)£i(0)]])
Mi(MGJrIIsz( )f3(0) =V 1;(0) fi(6)])- (B.46)

The second term in the parenthesis above can be computed as:

IV£i(0)1;(0) =V f;(0)f:(0))l = [V fi(0)1;(0) — V1:(0) fi(0) + V 1:(6) fi(0) — V [;(6) f:(0)]l
<|IV/i(0)1;(0) =V fi(0) fi(0)|| + [V fi(0) f:(0) — V 1;(0) fi(0)]]
= IVFi(O)l - 11£5(8) = fi()]| + [[V£i() = V f;(O)] - | fi(O)]

< L()O'O + %O’, (B47)

where in the second line we used triangle inequality; in the last line we used Assumptions 4.1 and 4.3.
Plugging eq. B.47 into eq. B.46 we find:

100 £)(6) — Vigo f,)O)] < - (30 n o) (B.48)
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Let us finally compute the new local variance term for each batch. Recall that we denoted (g, (0) =
|S71i‘ D@ yes; L0, (x,y)), with S; ~ Di". We can write

IV (0 £:)(8) — V(pols,)(B)]| = ‘ vai;i)e) _ vasééi)a) H
= % <312wlvfz-<0) — Vs, (0)] + Lol £:(6) — gsi(G)H) : (B.49)

and the derivation follows similarly as eq. B.46. Taking the square on both sides and taking the expectation
over S; ~ D", we obtain:

V£i(8) — Vs, (0)[*+

2 . 9M2
Es,~pp V(o fi)(0) = V(oo ls,)(0)]* < M4 —Es,~pp

+ 2L3Es,~pm || £:(6) — Ls, (9)||2>

8
<— MQ— 422 B.
e <9 + m), (B.50)

where in the first line we used (a +b)? < 2(a? +b?) and in the second line we used Assumptions 4.1 and 4.3.

For convenience we will use the following notations:

4
M

3 8 . 4 (3 Ly
2( ML—|—L0> o7 = 3 (9M?07 +4L303 ;) UZM(2U+MUO) (B.51)

L=
which are the new Lipschitz constant of Vg o f;, the new local variance term of Vy o lg,, and the new
Lipschitz constant of ¢ o f; — ¢ o f;. Note that if we average after the composition, then the local variance
would be:

Esnom || or D, Vool (x,y) - Voo f(8)|| <
| ’| (®,y)€S;

> By, [Veol(8,(@,y) — Voo [(0)]

1
| i‘ (z,y)€S;
a7, (B.52)

K3

IN
9

where we can only use Cauchy—Schwarz inequality since @ o/ is biased. Therefore, if we do it in this way, the
variance (upper bound) will be m times larger than the current way, which will slow down the convergence.

Let us now follow the proof of FedAvg (Theorem 4.2) to prove the convergence of PropFair. Our proof
follows the one of Theorem 4.2. Note that the global update now is:

01 =6, — TIZPZ Zgizj)v (B.53)
with g g =Vpo ESJ (0, ‘- 1) and Sg the ;' batch from client 4. Similar to eq. B.10 we obtain:

7(0041) < 7(01) — (1 - ";%) 1970

2

K; 2 n K;
—n(l—Lnu><vﬂ<et>,szZ @) -V >>+L§ S @) - ve@)| . (B0

=1 i=1 =1

3

28



Published in Transactions on Machine Learning Research (01/2023)

. ~(i
However, since g( )

+,; 1s no longer unbiased, we need to rewrite eq. B.11 as:

2

n K;
L ~(i
Br(61s1) < Bn(6:) — o (1= 51 ) EIVR(O)] 4101 - o) | [V (60)] |2 2@t - vrteo

2

+ —IE) ZPZZ gtj V7 (6,))
i=1 =1

< a0 + (—m (1= 5l + gu(1 ~ Low) ) EITx(6) P+

2

n K;
L 1 ~ (i
# (B + - 2o B[S om D (@) - n00)
i=1  j=1
2
11/1 6 = & ~(i)
< Em(6:) —n E[[V7(8,)|* + Z ng v (6:))]|

where we recycled eq. B.12 and eq. B.35. Similar to eq. B.14 we write:
gi) = Vr(0:) = 1) — Voo [i(01)_1) + Vi o fi(0])_)) = Vr(8y),
and using |la + b||? < 2(||a||? + ||b]|?) eq. B.55 becomes:

Bn(041) < Bn(0) — 1B V(0] + yE szz - VIO +

= Jj=1
2

n K;
E Z ZVf, 6\ )~ vn(6,)) |

with fi a shorthand for ¢ o f;. With eq. B.50 and similar to eq. B.16, we have:

2
) n ~9
~(7 ) Ui
Zplz (@)~ VAOL_D)| <lplP Y K27
= j=1 =1

and similar to eq. B.22, we obtain:

2

n n K;
Zplz V0 1) = Vr(0)|| <2|pl? > K26+ 2L2|pl > K Y B[6)) , — 6.
= j=1

i=1 i=1 =1

For j € [K; — 1], we can write similarly to eq. B.25:

E||6!") - 6,]> = E|6\")_, — 6, — ng)|* < (1+ )Enem1—0t||2+2Km2E||g§3||2

2K; — 1
With the following equality:

) = (@) = V(0] 1) + (V(8)) ) = V]i(60) + (V]i(8:) — V(8,)) + Vr(6y),
we use [|a +b+c+d||> <4(||a|* + ||b]*> + ||c||*> + ||d]|?) to obtain:

(B.55)

(B.56)

(B.57)

(B.58)

(B.59)

(B.60)

(B.61)

_|_

E||g“’\|2<4EH§£? V00 )P + 4BV i(8))_) — V]i(8,)|? + 4E|V Ji(8,) — Vr(6,)|* + 4E||V(8,)|

<4 ALPE0f), — 6, + 45 + 4BV (6,)]*
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Plugging it back into eq. B.60 we have:

f o
165 - 0 < (1+ oy + SKP L2 ) 16, — 07 + stk (7 4 6 ) 4 KB V(6

1
2K; —

1 i ~2
< (1 n K) B16%), — 6, + 8K’ < 15 ) T KBV (0,)

1Y/ 52
< K; ((1 + K) - 1) (SKm2 (fn + 62> + 8Ki7121EIIV7r(0t)I2) : (B.63)

where in the second line we used 1 < mini{ﬁ}, and the last line is telescoping. Similar to eq. B.33,
summing over j = 0,1,..., K; — 1 gives:
Ki—1 ~9
> B16) - P < s(e 21?2 +6% 4 BITR(6]?). (B.64)
§=0

From eq. B.57 we have:

11p
12

6 T oG
E|[Vr(8,)]? + nF szz )= Vi) +
i=1 Jj=1

2

Ew(0t+1) S Eﬂ'(gt) -

+ szz V(8] _)) — Vn(8,)

11p
12

< En(6;) - —CB|vr(6,)? + nlp|* ZKQ : +2n|p||? ZK2

i=1

+ 2 L2)p? ZK ZEHGM 6P

< Bx(0,) - ”’j; B vr(o) 17+ nlpl? 37 (% +207) +
=1
+ 2nL?||p|? Zg 2K in? (&; + 52 +IE)||V7r(0t)|2>
i=1
= B(6) <”’{2 © —16(c 20?2 ] ij?) EIV(00)] + T,
=1
< En(0) — 1B Va (8 + T, (5.65)

where in the second inequality we used eq. B.58 and eq. B.59; in the third inequality we used eq. B.64, in
the second last inequality, we denoted:

v, = 1lp|* {ZK} (fn + 252) +16(e 2L2ZK4 ( 52 ) ]; (B.66)
=1

and in the last line, we note that:

1y —6 272 12N jd _ L —9
—16(e — 2)n“L K < B.67
5 (e —2)n*L?||p]| ; <= (B.67)
since we assumed:
1 1
n< —= 7 . (B.68)
8L\/ (e —2)|pI2(Xi, K
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Figure 6: The visualization of the distribution shown in eq. C.1. The plus sign means the positive label
y = 1 and the negative sign means the negative label y = —1.

Similar to eq. B.42 we obtain:

. 12 7(0) — 7 ~
2 <
OS?%%AEHVW(&)H < A=) < T + \Ifa) . (B.69)

C A Failure Case of Agnostic Federated Learning

In this section we show that AFL might suffer from the generalization issue, in the case when some of the
clients have very few samples that are outliers. Suppose the input space is R? and the classification task
is binary with a linear classifier. We assume the simple case where every client has the same underlying
distribution:

(C.1)

~ Jo9U([~1,0] x [-1,1]) + 0.1U([0,1] x [~1,1]) ify =1,
plely) = 0.9U([0,1] x [=1,1]) + 0.1U([~1,0] x [-1,1]) ify = —1.

Note that U(I) represents the density of the uniform distribution on interval I. A visualization of eq. C.1
can be found in Figure 6.

In practice, we draw samples from each of the client. However, if one of the clients do not have enough
samples, AFL might have an issue. For instance, two clients could have to opposite sample sets:

S; ={((0.5,%£0.5),1), ((—0.5,4£0.5), —1) }, Sz = {((0.5,£0.5), —1), ((—0.5, £0.5), 1) }.

In this case, AFL could give an unfavorable generalization error, since the optimal training error is 50%. For
example, this optimal AFL solution can be reached if one chooses the linear classifier to be perpendicular
to the z-axis, resulting in the test error to be 50%. However, there exists an optimal classifier w = (—1,0)
such that the test error is 10%.

We can also verify this claim from the proof of Theorem 1 in Appendix C.2, Mohri et al. (2019). If one of
the clients has too few samples (i.e., some my, is small), then the generalization bound on the right can be
very large or even vacuous.

Note that our PropFair algorithm does not suffer from this generalization problem, since if some client ¢ has
too few samples, then the corresponding weight p; = n; /N will be small, and thus according to equation 3.7
the overall performance will not be heavily affected.
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D Additional Experiments

In this section, we provide more details about our experimental results. Results for all experiments are
provided based on an average over three runs with different seeds.

D.1 Datasets and models

We describe the benchmark datasets in this subsection. For all datasets we fix the batch size to be 64.

CIFAR-{10, 100} (Krizhevsky et al., 2009) are standard image classification datasets. There are 50000
samples with 10/100 balanced classes for CIFAR-{10, 100}. By doing Dirichlet allocation (Wang et al.,
2019a) we achieve the heterogeneity of label distributions. For all samples in each class k, denoted as the
set Sy, we split S, = Sp1 USk2... Sk, into n clients according a symmetric Dirichlet distribution Dir(/3).
Then we gather the samples for client j as §; ;USs ;... S ; if we have C classes in total. We note that some
of the clients might have too few samples (a few hundred). In this case the FL algorithm might overfit for
such clients and we regenerate the data split. We choose the number of clients to be 10 for both CIFAR-{10,
100}. For each of the client dataset, we split it further into 80% training data and 20% test data.

TinyImageNet is from the course project of Stanford CS231N.2 It contains 200 classes and each class has
500 images. Our FL split setting is the same as CIFAR-{10, 100}, except that we choose 20 clients and the
Dirichlet parameter 8 = 0.05.

Shakespeare (Shakespeare, 1614; McMahan et al., 2017) is a text dataset of Shakespeare dialogues, and
we use it for the task of next character prediction. We treat each speaking role as a client resulting in a
natural heterogeneous partition. We first filter out the clients with less than 10,000 samples and sample 20
clients from the remaining. Also, each client’s dataset is split into 50% for training and 50% for test.

In Table 3, we summarize these datasets, our partition methods, as well as the models we implement.

Table 3: Details of the experiments and the used datasets. ResNet-18 is the residual neural network defined
in He et al. (2016). GN: Group Normalization (Wu & He, 2018); FC: fully connected layer; CNN: Convolu-
tional Neural Network; Conv: convolution layer; RNN: Recurrent Neural Network; LSTM: Long Short-Term
Memory layer. The plus sign means composition.

Datasets Training set size Test set size Partition method # of clients Model
CIFAR-10 39963 10037 Dirichlet partition (8 = 0.5) 10 ResNet-18 + GN
CIFAR-100 39764 10236 Dirichlet partition (8 = 0.1) 10 ResNet-18 + GN
TinylmageNet 78044 20135 Dirichlet partition (8 = 0.05) 20 ResNet-18 + GN
Shakespeare 178796 177231 realistic partition 20 RNN (1 LSTM + 1 FC)

D.2 Algorithms to compare and tuning hyperparameters

We compare our PropFair algorithm with common FL baselines, including FedAvg (McMahan et al., 2017),
¢-FFL (Li et al., 2020c) and AFL (Mohri et al., 2019). For each dataset and each algorithm (algorithms
with different hyperparameters are counted as different), we find the best learning rate from a grid. Here
are the grids we used for each dataset:

o CIFAR-10: {5e-3, 1e-2, 2e-2, 5e-2};
e CIFAR-100: {5e-3, 1le-2, 2e-2, 5e-2};

e TinylmageNet: {5e-3, 1le-2, 2e-2, 5e-2};

%http://cs231n.stanford.edu/
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e Shakespeare: {le-1, 5e-1, 1, 2};

Table 4: The best values of hyperparameters used for different datasets, chosen based on grid search.
Algorithm Hyperparameter CIFAR-10 CIFAR-100 TinyImageNet Shakespeare

q¢-FFL q 0.1 0.1 0.1 0.1
TERM @ 0.5 0.5 0.5 0.5
GIFAIR-FL A/ Amax 0.9 0.1 0.1 0.5
FedMGDA+ € 0.5 0.05 0.05 0.5
PropFair M 5.0 2.0 2.0 2.0

Table 5: The best learning rates used for different datasets and algorithms, based on grid search.
Datasets FedAvg ¢-FFL AFL PropFair TERM GIFAIR-FL FedMGDA +

CIFAR-10 5e-3 5e-2 le-2 5e-2 le-2 le-2 le-2

CIFAR-100 5e-3 2e-2 le-2 le-2 5e-3 le-2 le-2

TinylmageNet 2e-2 2e-2 2e-2 5e-2 2e-2 2e-2 le-2
Shakespeare 2 2 2 2 2 2 2

We adapt hierarchical TERM from Li et al. (2020a), with client-level fairness (o > 0) and no sample-
level fairness (7 = 0). For each dataset, we tune a (user-level parameter) from {0.01,0.1,0.5}. Table 4
shows the optimal value of « used for different datasets is 0.5. For AFL we tune the learning rate -,
from the corresponding grid and choose the default hyperparameter vy = 0.1. For ¢-FFL, we run the ¢-
FedAvg algorithm from Li et al. (2020c) with the default Lipschitz constant L = 1/n from where 7 is the
learning rate.® For each dataset we tune ¢ from {0.1,1.0,5.0}. For all datasets we find ¢ = 0.1 has the best
performance. We also find that ¢ = 5 often leads to divergence during training.

For PropFair we fix e = 0.2 and tune M (Algorithm 1) from M = 2,3,4,5. Table 4 shows the optimal values
of M used for different datasets. A rule of thumb is to first take a large M (say M = 10) and then gradually
reduce this value so as to obtain better performance. Given a learning rate 7, we use the learning rate 7
when the loss is greater than M — ¢, and n otherwise.

In addition to the fair FL algorithms in the main text, we compare with two additional baselines in our
appendices: GIFAIR-FL (Yue et al., 2022) and FedMGDA+ (Hu et al., 2022). For GIFAIR-FL we first com-
pute Amax and choose A from {0.1A\pax, 0.5 Amax, 0.9Amax }. For FedMGDA+, we choose € from {0.05,0.1,0.5}
as implemented in Hu et al. (2022). One minor difference is that we fix the global learning rate to be 1.0.

After finding the best hyperparameters for each algorithm, we record the best learning rates in Table 5.
For CIFAR-10/CIFAR-100/TinyImageNet/Shakespeare, we take 100/400/400/100 communication rounds
respectively, in which cases we find most fair FL algorithms converge.

D.3 Detailed results

In Table 6, we report different statistics across clients, for all the algorithms and datasets we study in this
work. These statistical quantities include:

e The mean of test accuracies of all clients;

e The standard deviation of client accuracies;

The worst test accuracy among the clients;

o The mean of test accuracies across the worst 10% clients;

Shttps://github.com/litian96/fair_flearn/tree/master/flearn/trainers
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e The best test accuracy among the clients.
o The mean of test accuracies across the best 10% clients.

For each algorithm we take three different runs and report the mean and standard deviation of different
statistical indices. In all the experiments we have used 64 as the default batch size. Table 6 shows that
PropFair is comparable with state-of-the-art algorithms across various datasets.

Table 6: Comparison among federated learning algorithms on CIFAR-10, CIFAR-~100, TinylmageNet and
Shakespeare datasets with test accuracies (%) from clients. All algorithms are fine-tuned. Mean: the
average of performances across all clients; Std: standard deviation of client test accuracies; Worst /Best:
the worst/best test accuracy from clients; Worst (10%)/Best(10%): the average of performance across
the worst/best 10% clients. Note that for CIFAR-{10, 100} the worst (best) case accuracy is the same as
the worst (best) 10% accuracy since we have 10 clients.

Dataset  Algorithm Mean Std Worst Worst (10%) Best Best (10%)

FedAvg 63.63io_43 5.38i0,43 53-49i1.67 53-49i1.67 72.37io_53 72.37i0,53

q-FFL 57,27i0,47 5.68i0,16 47.28i0,26 4728:‘:0.26 66.71i1,24 66.71i1,24

AFL 64.29:‘:()‘40 4‘48:&()‘70 56‘16:[:156 56.16:&156 71.55:&084 71‘551084

CIFAR-10 TERM 63.81+0.62 4.9640.42 56.2247 24 56.2211 .24 71.5140.42 71.5140.42
GIFAIR-FL 63,81;‘;0,23 5.05:]:0,04 54.24j:1.14 54.24:t1.14 7241:‘:0.88 7241:!:0.88

FedMGDA+ 61.9240.93 4.9340.44 52.8441.12 52.8411.12 70421172 70.4241 72

PI‘OpFaiI‘ 64.75i0.10 4~46i0.63 58.14i0‘39 58.14i0‘39 72'72i2,35 72-72i2435

FedAvg 29~94:t0.81 4.06i0,37 25.2611.50 25.26i1,50 40~29:t0.85 40-29:t0.85

q-FFL 28.53+0.58 4.5340.11 23.33+0.72 23.33+0.72 39.8211.02 39.8241.02

AFL 30.3310,27 3.68i0,40 25-49i1,12 25.49i1.12 39.21;&0.98 39-21i0,98

CIFAR-100 TERM 30.3540.28 3.50+0.37 26.46+0.36 26.46+0.36 39.3940.90 39.39+0.90
GIFAIR-FL 30.6310.37 3.5810.17 26.9910.38 26.99+0.38 40.03+0.62 40.03+0.62

FedMGDA+ 23.6910.98 3-52i0.33 19~01i0.87 19.01i0.87 32.51;t1.86 32~51i1.86

PropFair 31.84:{:0.67 3.10:‘:0,47 28.85:{:0,94 28.85:{:0494 40-12:(:1.80 40-12:l:1.80

FedAvg 16-14i0.59 2-33i0.07 11-O7i0.78 11-81i0.67 20-23i1.11 19-91i0'90

q-FFL 18.844+0.02 3.23+0.25 12.1240.58 13.06+0.66 24.194+0.25 23.69+0.19

AFL 16~43i058 2‘34:5:0‘04 11‘34;{:124 12~32j:0A66 20.70i0A64 20‘21:5:0‘49

TinyImageNet TERM 16.4110.29 2.7540.27 10.6710.47 11.5540.40 21.7541.19  20.97+0.71
GIFAIR-FL 16.544+0.41 2.7040.17 11.3440.47 11.9240.15 22.2840.46 21.4740.50

FedMGDA—l— 13.94i()‘20 2.70:5:0‘30 9.45j:0A03 9.73;[:012 19~15i0A06 18.62:5:0‘53

PI‘OpFaiI‘ 18-04i0.74 2.69i0,03 12.63i1‘57 13'51i1419 23.68io_49 23.02i0,30

FedAvg 50.54:‘:0,12 1.22:&0,07 48.18:&0,17 48.26:‘:0,17 52.33:‘:0,29 52.15:‘:0,12

q—FFL 50.69i()‘14 1.05i0,02 48.74i0.21 48.83i0.22 52-35i008 52-25i0'13

AFL 52.5440.08 1.2540.05 49.8640.29 50.1310.12 54.4710.29 54.2240.138

Shakespeare TERM 50.90i0,11 1.27;{:0,03 48.10:(:0,15 48.45:‘:0,20 52.65:‘:0,39 5247:[:0.26
GIFAIR—FL 50-67i0.28 1.25i0,04 48-22i0.26 48.32io_30 52.50i024 52.45i0,21

FedMGDA+ 44.1740.18 0.9940.02 42.4240.10 42.67+0.05 46.3040.20 46.10+0.20

PropFair 52.28:‘:0,08 1.20:&0,04 49.50:(:0,41 49.76i0,20 54.10i0,11 53.88;{:0,12

D.4 Additional evaluation metrics
In this subsection, we perform comparison with baseline algorithms on CIFAR-100 using additional evaluating

metrics, including worst 20% and 30% test accuracies. One can see that our algorithm remains the state-of-
the-art among a large variety of algorithms.
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Table 7: Comparison using worst 20% and 30% test accuracies on the CIFAR-100 dataset. The hyperpa-
rameters and learning rates are the same as in Table 4 and Table 5.

Metric PropFair AFL FedAvg TERM q-FFL GIFAIR-FL FedMGDA+

worst 20% 29.08:|:0‘77 26.15:|:0‘69 25.68:‘:1,66 26.90:‘:0,33 23.94:‘:0,51 27.33:|:0‘35 19-77:|:0.87
worst 30% 29-29i0.63 26.63i0.24 26.26i1.48 27-25i0.25 24-53j:0.53 27.66i0,23 20-33i1.10

E Dual View of Fair FL Algorithms

In this section we derive the convex conjugates of the generalized means for each algorithm. We sometimes
extend the domain of f to obtain a clear form of A7, while ensuring the equality of eq. 2.10.

E.1 Dual View of FedAvg

For FedAvg, we have ¢(t) =t and the generalized mean can be written as:

Ap(f) = Zpifi, (E.1)
where we extend the domain of f to be R™. The convex conjugate can be written as:
AL(A) = sup A —p)" f (E-2)
FeR
Solving it yields:
0 ifA=p
AZ(X) = ’ E.3
He {oo otherwise. (E-3)

Bringing the equation above to eq. 2.10 we obtain the original form of FedAvg.

E.2 Dual View of ¢-FFL and AFL

Let us now derive the conjugate function for ¢-FFL. With ¢(t) = t7*1 (¢ > 0) we have:

q+1

Ao (f) = (mef“) ; (E.4)

where we assume dom f = R’ . The convex conjugate can thus be written as:

q+1

AL(A) =sup AT f — (mef“) : (E.5)

f=0

If )", pi_l/q)\z(-“l)/q > 1, we can take f; = Az/qpi_l/qt and the maximand of eq. E.5 becomes:

q+1

q+1

_ Z )\Eqﬂ)/qp;l/qt - (Z )\l(qﬂ)/qpil/q) ¢
? ? %
= Z A§Q+1)/qpi—1/q _ (Z )\z(q+1)/qpi—1/fI> " (E.6)

i i

ATf - <Zpifiq+l>
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By taking ¢ — oo we have A%,(A) = co. Therefore we must constrain Zip;l/q)\z(-qﬂ)/q < 1. In this case, we

can utilize Hélder’s inequality to obtain A;()\) = 0. In summary, the convex conjugate for A > 0 is:

if . fl/qA(Q+1)/q <1
A%L(A) = {0’ o i A - (E.7)
oo  otherwise.
Taking ¢ — oo the function above becomes the one for AFL:
AX(A) = E.8
o) {oo otherwise. (E-8)

E.3 Dual View of TERM

We continue to derive the convex conjugate of the generalized mean of TERM. Recall that o(t) = e with
a > 0. The generalized mean can be written as:

Ap(f) = élog (Zpie“fi> , (E.9)

where we extend the domain of f to be R™. The convex conjugate is:
AL(A) = sup A f— > log (Zpieaf’l> . (E.10)

If any \; < 0, we can take the corresponding f; — —oo and thus A;(/\) =o00. If AT1 # 1, we can impose
f = t1 and obtain:

1
ATF— =1 i) = (AT = 1)t E.11
r- b (S ) =1 (E11)
By taking ¢ — 0o or t — —o0o we get A7,(A) = co. Now let us assume A > 0 and AT1 = 1. By requiring

stationarity in eq. E.10 we find the necessary and sufficient optimality condition:

pie”
A= =——+ E.12
= (E12)
which can always to satisfied with our assumption. Denote ¢ = ), pie®fi we can solve eq. E.12 to obtain

fi= élog (%) Bringing it back to eq. E.10 the convex conjugate becomes:

* )\z C)\i 1
AL(A) = Zglog ( . ) - alogc

i

-3 A jog 20 (E.13)
PR bi

where we used the condition AT1 = 1. Since we have the constraint that A > 0, eq. 2.10 still holds.
Therefore, we get:

(E.14)

¢ 00 otherwise.

i i . T
;logst ifA>0,A1=1
AWM{ZHX%M ifA 20, ,
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E.4 Dual View of PropFair

Let us derive the dual of the generalized mean for PropFair in the same framework as in Section 2.4. Note
that

p(t) = —log(M —t), (E.15)

and therefore the generalized mean is:

Ag(f) =" (ZPi@(fi)) =M -] - f)7, (E.16)

=1

where we require f < M1. We observe that A, is a convex function, since it is composition of the generalized
geometric mean (which is concave) and affine transformation. Now we compute the dual function

AL(A) = sup ATf —AL(f)

f<M1

= sup A f+ H (M — f;)? (E.17)
F<M1 ey

If any entry A; is non-positive, clearly we can let f; — —oo so that A%(A) — oo. For positive A, and
pi
I, (%) <1, we can take f; = M — c§* and get:

ATf—l—H(M—fi)p?‘—M:Z(M)\i—cpi)—&—H(Cfi) Y
i=1 ¢

i=1 i=1

=M1+ (] <§>p - 1) c (E.18)

pi
Since ¢ > 0 is arbitrary, we can take ¢ — 0o and thus A% (X) = oo. Otherwise, if [}, ()‘—) > 1, then we
have:

ATf*ﬁ(M = fi)" - (M —fi)P = AT(M1—f)+ M(AT1-1)

i=1

1 ::]: H'::]:

IN

n \Pi
(M — f;)P Hl(;) H(M—f»MM(ATl—l)

M()\Tl - 1), (E.19)

DPi
where in the second line we used the AM-GM inequality and in the last line we used H;LZI (;—) > 1. This

equality can always be achieved by taking f = M1. In summary, we have:

Pi

MAT1-1 ifA>0and J], () >1

AL(A) = ( ) HAz0an lel<m) =5 (E.20)
0, otherwise.

We remark that A is closed (since its domain is closed). If we want to enforce f > 0 when computing the
dual function, we simply apply the convolution formula:

AL(A) = uf AL(3). (E21)

However, the formula for A7 suffices for our purpose so we need not compute the above explicitly.

37



Published in Transactions on Machine Learning Research (01/2023)

Applying the above conjugation result we can rewrite PropFair’s generalized mean as:

meinAw(f(H)) melnrilg())()\ F(60) — AL(N). (E.22)

We focus on the inner maximization so that we know the weights we put on each client:

max A" AL () = max ATF-(A"1-1)M
max A~ f(0) —AC(A) Nk f—( )
= max M — AT (M1 - f). (E.23)

A>0 H" (\i/pi)Pi>1

Using the AM-GM inequality we have:

o= =11 (5) Tor-snm = 1Ter-s (8:24)
3 i=1

(E.25)

Thus, we verify again that the optimal value of eq. E.23 is:

M =M = fi)P = Au(f), (E.26)

i=1
and we retrieve our original objective. eq. E.25 tells us that we are essentially solving a linearly weighted

combination of fi,..., f,, but with more weights on the worse-off clients, since 3/ T, is larger for larger f;.

F More Related Work

In this appendix we introduce more related work, including multi-objective optimization, fairness in FL, as
well as various definitions of fairness from multiple fields.

F.1 Multi-objective optimization

Multi-Objective Optimization (MOO) has been intensively studied in the field of operation research (Geof-
frion, 1968; Yu & Zeleny, 1975; Jahn et al., 2009). The goal of MOO is to minimize a series of objectives
f1s f2,- -, fn based on their best trade-offs. This is directly related to federated learning (Hu et al., 2022)
because one can treat the loss function of each client as an objective.

In MOO, Pareto optimality is often desired. To find a Pareto optimum, one way is to use an aggregating
objective (a.k.a. scalarizing function, Lootsma et al. 1995). We list some common choices of this aggregating
objective:

o Linear weighting method (Geoffrion, 1968): this method converts MOO into the problem of mini-
mizing the convex combination of client objectives:

mmZ)\ fi(z (F.1)

reX
with A € A,,_1 in the (n — 1)-simplex, and X the domain of . Such solution is always Pareto

optimal and the method has been used in FedAvg (McMahan et al., 2017). A well-known difficulty
is that it cannot generate point in the nonconvex part of the Pareto front (Audet et al., 2008).
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o Reference point (Audet et al., 2008): This method requires proximity to the ideal point: r =

(minger fi(x),...,mingex frn(x)), measured by ¢,-norm:
min || f(z) — (| = ;(fi(w) — i)Y, (F.2)

with f(z) := (fi(z),..., fo(z)) and || - ||; the {;-norm (¢ > 1). This method has been applied to
federated learning as ¢-FFL (Li et al., 2020c) (by assuming r = 0).

o Weighted geometric mean (Lootsma et al., 1995): this method converts MOO to a single-objective
formulation by maximizing the weighted geometric mean between elements of the nadir point and
the client objectives:

max (qi — fi(x))N, such that fi(x) < ¢; for any i and x € X, (F.3)
xTE
i=1
where ¢ is called a nadir point, defined as (Lootsma et al., 1995):
¢ =  max fi(z]), (F.4)

J=12,...,n

with @} = argming,cy f;j(x) the optimizer of function f;. The A;’s are the weights for each client
and they are positive. If we take A = (A1,...,A,) = 1, then it resembles our objective in eq. 3.7.

F.2 Fairness in Federated Learning

As FL has been deployed to more and more real-world applications, it has become a major challenge to
guarantee that FL models has no discrimination against certain clients and/or sensitive attributes. Since
different participants may contribute differently to the final model’s quality, it is necessary to provide a fair
mechanism to encourage user participation.

Besides the related work we mentioned in the main paper (McMahan et al., 2017; Mohri et al., 2019; Li
et al., 2020b), another direction of research tries to directly encourage the involvement of user participation,
by providing some rewards to fairly recognize the contributions of clients. For example, Lyu et al. (2020)
designed a local credibility mutual evaluation mechanism to enforce good contributors get more credits.
Concretely, each client computes the contribution of every other client by investigating the label similarities
of the synthetic samples generated by the clients’ differential private GANs (Goodfellow et al., 2014). Kang
et al. (2020) proposed a pairwise measurement of contribution. Reputation scores are kept at each client
for all other clients, and are updated by a multi-weight subjective logic model. Yu et al. (2020) proposed
a Federated Learning Incentivizer (FLI) payoff-sharing scheme, which dynamically divides a given budget
among clients by optimizing their joint utility while minimizing their discrepancy. The objective function
takes into account the amount of payoff and the waiting time to receive the payoff. Wang et al. (2020)
analyzed the contribution from the data side, and proposed the federated Shapley Value (SV) for data
valuation. While preserving the desirable properties of the canonical SV, this federated SV can be calculated
with no extra communication overhead, making it suitable for the FL scenarios.

The above methods already applied some objective functions that reflect the concept of proportional fair-
ness, e.g., payoff proportional to the contribution. However, they mostly apply fixed contribution-reward
assignment rules, without explicit definitions of proportional fairness or theoretical guarantee.

F.3 Definitions of fairness

Fairness has been a perennial topic in social choice (Sen, 1986), communication (Jain et al., 1984), law
(Rawls, 1999) and machine learning (Barocas et al., 2017). Whenever we have multiple agents and limited
resources, we need fairness to allocate the resources. There have been many definitions of fairness, such
as individual fairness (Dwork et al., 2012), demographic fairness, counterfactual fairness and proportional
fairness.

In this section, we introduce definitions of fairness from various perspectives including social choice, com-
munication and machine learning, and study the implications in the setting of FL.
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F.3.1 Social Choice and Law

We review some principles for fairness and justice in social choice (Sen, 1986) and law (Rawls, 1999), which
resembles FL: we can treat the shared global model as a public policy and clients as social agents.

o Utilitarian rule (Maskin, 1978): suppose we have n clients and their loss functions are f;, the
utilitarian rule aims to minimize the sum of the loss functions, e.g.,

rrganiw), (F.5)

with 8 the global model parameters. This utilitarian rule represents the utilitarian philosophy: as
long as the overall performance of the whole society is optimal, we call the society to be fair. A
utilitarian policy is Pareto-optimal but not vice versa. With model homogeneity, equation eq. F.5 is
nothing but the objective for FedAvg (McMahan et al., 2017), although the FedAvg algorithm may
not always converge to the global optimum even in linear regression (Pathak & Wainwright, 2020).

o Egalitarian rule (Rawls, 1974; 1999): The egalitarian rule, also known as the maximin criterion
represents egalitarianism in political philosophy. Instead of maximizing the overall performance as
in eq. F.5, an egalitarian wants to maximizing the performance of the worst-case client, i.e., we solve
the following optimization problem:

mgin max £i(9). (F.6)

This accords with Agnostic FL (Mohri et al., 2019). The egalitarian problem eq. F.6 may not always
be Pareto optimal, e.g., (f1, f2, f3) = (1,1,1) and (f1, fo, f3) = (1,0.9,0.8) can both be the optimal
solution of eq. F.6, but the former is not Pareto optimal.

F.3.2 Fairness in wireless communications

Since resource allocation is common in communication, different notions of fairness have also been proposed
and studied. We review some common fairness definitions in communication:

o Maz-min fairness / Pareto optimal (Bertsekas & Gallager, 1987): this definition says at the fair
solution, one cannot simultaneously improve the performance of all clients, which is equivalent to
the definition of Pareto optimal. The corresponding algorithm in FL for finding a Pareto optimum
is FedMGDA+ (Hu et al., 2022).

o Proportional-fair rule (Kelly, 1997; Bertsimas et al., 2011): proportional fairness aims to find a
solution 6* such that for all 8 in the domain:

u;(6) — ui(6%)

—7 7 <90 F.7

with u; the utility function of client i, e.g., the test accuracy. This problem aims to find a policy

such that the total relative utility cannot be improved. Proportional fairness has been studied in

communication (e.g. Seo & Lee, 2006) for scheduling but the application in FL has not been seen.

o Harmonic mean (Dashti et al., 2013): the method maximizes the harmonic mean of the utility
functions of each client, that is, we solve the following optimization problem:
n
max —————~—— F.8
8 Sy e

In a similar vein we can find its optimality condition, assuming the utility set U/ is convex:

n *

3 “<u*)12‘ <0, forall u e U. (F.9)
=1 ?

Compared to proportional fairness, it simply amounts to squaring the denominator.
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F.3.3 Fairness in machine learning

Fairness has been studied in machine learning for almost a decade (Barocas et al., 2017). A large body
of work focuses on proposing machine learning algorithms for achieving different definitions of fairness.
These definitions are often incompatible with each other, i.e., one cannot achieve two definitions of fairness
simultaneously. Let us review some common definitions, using classification as an illustrating example:

o Group fairness / statistical parity / demographic parity (DP, Dwork et al., 2012; Zemel et al., 2013):
this definition requires that the prediction is independent of the subgroup (e.g., race, gender). Denote
Y as the prediction and S as the sensitive attribute, this definition requires Y L S, where the symbol
L denotes statistical independence. This is the simplest definition of fairness, and probably what
people think of at a first thought. However, this definition can be problematic. For instance,
suppose a subgroup of clients have poor performance (e.g. due to communication, memory), and
then to achieve better group fairness one can deliberately lower the performance of high-performing
clients, and thus the overall performance is lower. Moreover, DP would forbid us to achieve the
optimal performance if the true labels are not independent of the sensitive attribute (Hardt et al.,
2016; Zhao & Gordon, 2019).

o FEgqualized odds (EO) (Hardt et al., 2016): this defintion requires demographic parity given each
true label class. Define T as the random variable for the true label. Equalized odds requires that
Y 1 S|T for any T and equal opportunity requires that Y L S|T for some T. Different from DP, this
conditioning allows the prediction to align with the true label. In the binary setting, EO and DP
cannot be simultaneously achieved (Barocas et al., 2017).

o Calibration / Predictive Rate Parity (Gebel, 2009): this definition requires that among the samples
having a prediction score Y, the expectation of the true label T should match the prediction score,
i.e., E[T|Y] = Y. In the context of fairness, calibration says that T L S|Y. Under mild assumptions,
calibration and EO cannot be simultaneously achieved (Pleiss et al., 2017). Similarly, calibration
and DP cannot be simultaneously achieved.

o Individual fairness (Dwork et al., 2012): this concept requires that similar samples, as measured by
some metric, should have similar predictions.

o Counterfactual fairness (Kusner et al., 2017): this definition requires that from any sample, the
prediction should be the same had the sensitive attribute taken different values. It follows the
notion of counterfactual from casual inference (Pearl, 2000).

o Accuracy parity (Zafar et al., 2017): the accuracy for each group remains the same.
Since many concepts conflict with each other (Barocas et al., 2017), there is no unified definition of fairness.
In light of this, a dynamical definition of fairness has been proposed (Awasthi et al., 2020). Algorithms

for achieving different definitions of fairness include mutual information (Zemel et al., 2013), representation
learning (Zemel et al., 2013; Zhao & Gordon, 2019) and Rényi correlation (Baharlouei et al., 2019).
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