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ABSTRACT

Handling the vast amounts of single-cell RNA-sequencing and CyTOF data,
which are now being generated in patient cohorts, presents a computational chal-
lenge due to the noise, complexity, sparsity and batch effects present. Here, we
propose a unified deep neural network-based approach to automatically process
and extract structure from these massive datasets. Our unsupervised architecture,
called SAUCIE (Sparse Autoencoder for Unsupervised Clustering, Imputation,
and Embedding), simultaneously performs several key tasks for single-cell data
analysis including 1) clustering, 2) batch correction, 3) visualization, and 4) de-
noising/imputation. SAUCIE is trained to recreate its own input after reducing
its dimensionality in a 2-D embedding layer which can be used to visualize the
data. Additionally, it uses two novel regularizations: (1) an information dimen-
sion regularization to penalize entropy as computed on normalized activation val-
ues of the layer, and thereby encourage binary-like encodings that are amenable to
clustering and (2) a Maximal Mean Discrepancy penalty to correct batch effects.
Thus SAUCIE has a single architecture that denoises, batch-corrects, visualizes
and clusters data using a unified representation. We show results on artificial data
where ground truth is known, as well as mass cytometry data from dengue pa-
tients, and single-cell RNA-sequencing data from embryonic mouse brain.

1 INTRODUCTION

Vast amounts of high-dimensional, high-throughput, single-cell data measuring various aspects of
cells including mRNA molecules, proteins, epigenetic marks and histone modifications are being
generated via new technologies. Furthermore, the number of patients included in large-scale stud-
ies of single-cell data for comparing across populations or disease conditions is rapidly increasing.
Processing data of this dimensionality and scale is an inherently difficult prospect, especially con-
sidering the degree of noise, batch effects, artifacts, sparsity and heterogeneity in the data. Here, we
propose a deep learning approach to process and analyze this type of data (single-cell data from a
cohort of patients).

While traditional deep learning methods aim to automate predictive and generative tasks, we utilize
deep learning in an exploratory fashion, to reveal the structure of multi-sample data without super-
vision. We base our approach on the autoencoder. An autoencoder is a neural network that learns to
recreate its own input via a low-dimensional bottleneck layer that learns meaningful representations
of the data and enables a denoised recreation of the input Bengio et al. (2013); Vincent et al. (2008);
Wang et al. (2014); Hinton & Salakhutdinov (2006). If the low-dimensional bottleneck is chosen
to be 2-D, then it naturally serves as a visualization of these meaningful representations as well.
Since neural networks learn their own features, they can reveal structure that other 2-D visualization
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Figure 1: SAUCIE’s neural network framework.

methods that require a definition of distance in the original data space cannot Maaten & Hinton
(2008).

SAUCIE leverages the ability of an autoencoder to denoise, impute, and visualize, and adds
carefully-designed regularizations to perform batch correction and clustering, which are essential
tasks in single-cell data analysis. We introduce two novel regularizations: 1) information dimen-
sion regularization which allows us to recover cluster structure in a hidden layer of the autoencoder,
and 2) a maximal mean discrepancy regularization that constrains the embedding layers such that
different samples (of the same experimental condition) overlap with each other to perform batch
correction. SAUCIE, like other modern neural networks, is also scalable to large datasets due to its
massive parallelizability Simonyan & Zisserman (2014).

2 RESULTS

2.1 SAUCIE ARCHITECTURE

SAUCIE is based on the autoencoder neural network framework for unsupervised learning, which
learns to reconstruct its input after passing it through a low-dimensional bottleneck layer. The bot-
tleneck layer forces the autoencoder to learn compressed representations of the input and find high-
level relationships between parts of the input space. The overall structure of an autoencoder can be
divided into two parts: an encoder network that maps the input space to the low-dimensional repre-
sentation, and a decoder network that maps the low-dimensional representation back to the original
input space. The general architecture of SAUCIE (Figure 1) is as follows:

1. An input layer

2. A variable number of encoder layers

3. A sparse encoder layer for clustering

4. An embedding layer for visualization

5. A corresponding decoder symmetric to the encoder

6. An output layer for the reconstruction.

Different layers of SAUCIE are used for different analysis tasks. A sparse encoder layer for unsuper-
vised clustering, an embedding layer for visualization and batch normalization, and the output layer
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for reconstruction of denoised and imputed input values. Thus SAUCIE uses a unified representa-
tion and framework for many tasks, thereby increasing the coherence between tasks. For instance,
the visualization and clustering in SAUCIE correspond with each other as they are in subsequent
layers. We developed and implemented novel regularizations designed to restrict the representations
in particular layers to achieve particular tasks. These regularizations used together form a pipeline
for using neural networks to analyze biological data.

2.2 MULTITASK TRAINING BY SEQUENTIAL OPTIMIZATION

To perform multiple tasks, SAUCIE uses a single architecture, but is run and optimized twice se-
quentially. The first run imputes noisy values and corrects batch effects in the original data, while
also providing two-dimensional coordinates for visualization. This preprocessed data is then run
through SAUCIE again to pick out clusters. The two different runs are done by optimizing two
different objective functions.

2.2.1 MMD REGULARIZATION FOR BATCH CORRECTION

A major challenge in the analysis of single-cell data is dealing with so-called batch effects, which
result from technical variability between replicates of an experiment. Combining replicates often re-
sults in technical and experimental artifacts being the dominant source of variability in the data, even
though this variability is entirely artificial. This experimental noise can come in the form of dropout,
changes of scale, changes of location, or even more complicated differences in the distributions of
each batch. It is infeasible to parametrically address all of the potential differences explicitly, such
as assuming measurements are drawn from a Gaussian distribution. Instead of addressing specific
models of noise, SAUCIE minimizes a distance metric between distributions, the Maximal Mean
Discrepancy Dziugaite et al. (2015) (MMD) between batches.

2.2.2 INFORMATION DIMENSION REGULARIZATION FOR CLUSTERING

In order to automatically learn an appropriate granularity of clusters, we developed a novel regu-
larization that encourages near-binary activations and minimizes the information (i.e., number of
clusters) in the clustering layer. Our regularization is inspired by the von Neumann (or spectral)
entropy of a linear operator Anand et al. (2011), which is computed as the Shannon entropy of their
normalized eigenvalues Arpit et al. (2016); Glorot et al. (2011). This entropy serves as a proxy for
the numerical rank of the operator Moon et al. (2017), and thus provides an estimation of the essen-
tial dimensionality of its range. In our case, we extend this notion to the nonlinear transformation
of the neural network by treating neurons as our equivalent of eigenvalues, and computing the en-
tropy of their total activation over a batch. We call this entropy ‘information dimension’ (ID) and
the corresponding ID regularization aims to minimize this entropy while still encoding sufficient
information to allow reconstruction of the input data points.

2.2.3 INTRACLUSTER DISTANCE REGULARIZATION

SAUCIE learning digital codes creates an opportunity to interpret them as clusters, but these clusters
wouldn’t necessarily be comprised of only similar points. To emphasize that inputs only be repre-
sented by the same digital code if they are similar to each other, SAUCIE also penalizes intracluster
pairwise distances. Beyond suffering reconstruction loss, using the same code for points that are far
away from each other will now incur an even greater loss.

3 DISCUSSION

Deep neural networks have been shown to be effective in processing massive datasets such as in the
context of images and search engines. Here we apply, for the first time, a deep learning approach
in an unsupervised fashion to large-scale single-cell data. As single-cell datasets become larger
both in terms of cells and experimental samples (batches), scalability of analysis methods becomes
key. The GPU-based parallelizable approach that training of neural networks offer makes deep
learning especially suited for finding structure in single-cell data. We have presented SAUCIE,
a new autoencoder framework, that performs four key tasks in single-cell data analysis: 1) data
imputation, 2) clustering, 3) batch correction, 4) visualization.
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