
Workshop track - ICLR 2018

AN EVALUATION OF FISHER APPROXIMATIONS
BEYOND KRONECKER FACTORIZATION

César Laurent1, Thomas George1, Xavier Bouthillier1, Nicolas Ballas2, Pascal Vincent1,2,3
1 Montreal Institute for Learning Algorithms, Université de Montréal;
2 Facebook AI Research;
3Canadian Institute for Advanced Research (CIFAR).

ABSTRACT

We study two coarser approximations on top of a Kronecker factorization (K-FAC)
of the Fisher Information Matrix, to scale up Natural Gradient to deep and wide
Convolutional Neural Networks (CNNs). The first considers the feature maps as
spatially uncorrelated while the second considers only correlations among groups
of channels. Both variants yield a further block-diagonal approximation tailored
for CNNs, which is much more efficient to compute and invert. Experiments
on the VGG11 and ResNet50 architectures show the technique can substantially
speed up both K-FAC and a baseline with Batch Normalization in wall-clock time,
yielding faster convergence to similar or better generalization error.

1 INTRODUCTION AND PREVIOUS WORK

Deep Neural Networks, especially Convolutional Neural Networks are the state-of-the art machine
learning approach in many application areas, including image recognition (He et al., 2016a) and
natural language processing (Gehring et al., 2017). Training consists in optimizing their parameters
θ (of size nθ) to minimize a regularized empirical risk R (θ), through gradient descent. Methods
that employ 2nd order information have the potential to speed up 1st order gradient descent by
correcting for imbalanced curvature. The parameters are then updated as: θt+1 ← θt − ηG−1∇θR,
where G is the Hessian matrix in Newton’s method, an approximation of it in Generalized Gauss-
Newton (Schraudolph, 2001), or the Fisher Information Matrix in Natural Gradient (Amari, 1998).
In the last two cases, and for probabilistic losses, G can be expressed as an expectation of an outer
product of gradients1: G = E

[
vec (∇θ) vec (∇θ)>

]
. The matrix G has a gigantic size nθ × nθ

which makes it intractable to estimate and invert. In order to get a practical algorithm, we must find
approximations of G that keep some of the relevant second order information while removing the
unnecessary and computationally costly parts.

Layerwise approximation A first usual approximation is to ignore interactions between param-
eters from different layers. This results in a G matrix that is block-diagonal, where each block Gb
concern the parameters of a layer b, and can be inverted independently of the others.

Kronecker Factorization Heskes (2000) proposes to further approximate Gb as a Kronecker-
product factorization: Gb ≈ B ⊗ A. It involves two smaller matrices, making it much faster to
invert as (B ⊗A)−1 = B−1 ⊗ A−1. The block Gb of a convolution layer can be approximated
using eq. 1 (Grosse & Martens, 2016):

Gb = E

∑
(s,s′)
∈S×S

(hs ⊗ δs)
(
hs
′
⊗ δs

′
)> ≈ n2 E

 1

n2

∑
(s,s′)
∈S×S

hshs
′>

︸ ︷︷ ︸

B

⊗E

 1

n2

∑
(s,s′)
∈S×S

δsδs
′>

︸ ︷︷ ︸

A

(1)

1where for the Fisher Information Matrix the expectation should be taken over samples from the model.

1

Workshop track - ICLR 2018

where s ∈ S represent the spatial positions iterated over by a convolutional filter, hs the correspond-
ing input activation subtensor (receptive field), δs the corresponding gradient of the loss w.r.t. the
output of the filter at that position, and n = |S|. We refer to this factorization as K-FAC.

2 PROPOSED APPROXIMATION

2.1 SPATIALLY UNCORRELATED ACTIVATIONS

We propose to further alleviate the cost of inverting the matrix Gb, by making the assumption that
the spatial positions in the receptive field of the convolution kernels are uncorrelated (leveraging the
CNN model structure) leading to the following approximation: Gb ≈ |S|2 (Ikw·kh ⊗ C)⊗A, where
Ikw·kh is the identity matrix and (kw, kh) are the kernel width and height. This approximation of
the structure of Gb was studied as a reparametrization trick in Natural Neural Networks for convo-
lution layers (Desjardins et al., 2015). Grosse & Martens (2016) also mentioned it, under the name
Spatially Uncorrelated Activations (SUA), and argued that it was a bad approximation. However, it
significantly reduces the computational requirement of the inverse G−1 from O((kwkhm)3) for the
original K-FAC version (described by eq. 1) to only O(m3) under the SUA approximation, where
m is the channel size.

2.2 CHANNEL GROUPING

While SUA leverages the CNN model structure and assumes that features at different spatial posi-
tions are uncorrelated, we propose to further approximate G by arbitrarily segmenting the channels
into groups of a predetermined fixed size and apply the decorrelation only between parameters of
the same group. This approximation is equivalent to saying that there is no correlation between two
parameters that are in different groups, leading to a block-diagonal covariance matrix. The com-
plexity of computing G−1 is O(g(k2m/g)3) when we applied this approximation to K-FAC and
O(g(m/g)3) when we combined this approximation with SUA, where g is the group size. In addi-
tion, with block-diagonal matrices, we can compute and invert each block separately. If an input of
size m is separated in g different blocks, we need to perform g inverses of size m/g instead of one
big inverse of sizem, thus reducing the overall computational cost. Also, those small inverses can be
efficiently computed in parallel using batched operations on the GPU. Finally, such approximation
can also be used for fully-connected layers, while the SUA variant is only for convolution.

3 EXPERIMENTS

We use the CIFAR10 dataset (Krizhevsky & Hinton, 2009). We train the network using SGD with
momentum (0.9), optionally preconditioned by our approximations of Gb. The mini-batches size
is 100. For each setup, we perform a grid search over the learning rate and a diagonal Tikhonov
damping factor εI, and report the best performing curves.

3.1 INTROSPECTION EXPERIMENTS ON VGG11

We first evaluate the training and validation performances of both our approximations. We use the
VGG11 architecture (Simonyan & Zisserman, 2014), equipped with Batch Normalization (Ioffe &
Szegedy, 2015). We recompute the inverses every 50 mini-batch. Figure 1 shows the optimization
performances with respect to the number of epochs (left) and the validation misclassification rate
with respect to wall-clock time (right). We can see that K-FAC equipped with the SUA approx-
imation optimizes almost as well as the original K-FAC in terms of epochs. However it is way
cheaper computationally, as it can be seen in Figure 1 (right). The reason is the that in the original
K-FAC, the biggest matrices we need to invert matrices are of size 4608×4608, while we only invert
512 × 512 matrices in the SUA variant. Figure 1 also contains curves of K-FAC divided in smalls
groups of size 32. This approximation leads to slightly worse optimization, while still offering the
same (or even slightly better) validation performances.

2

Workshop track - ICLR 2018

0 20 40 60 80 100
Epochs

0.0

0.1

0.2

0.3

0.4

Tr
ai

ni
ng

L
os

s

Baseline
K-FAC SUA
K-FAC, g = 32
K-FAC

0 5 10 15 20
Minutes

0.10

0.15

0.20

0.25

V
al

id
at

io
n

M
is

c.
R

at
e

Baseline
K-FAC SUA
K-FAC, g = 32
K-FAC

Figure 1: Left: Optimization performances of the batch-norm baseline, the SUA and the full ap-
proximations on VGG11 (with optional grouping), with respect to the number of epochs. Right:
Validation curves, with respect to wall-clock time.

3.2 DEEP RESIDUAL NETWORKS

We now explore the scaling properties of our approximations on a 50 layer Pre-Activation Residual
Networks (ResNet50) (He et al., 2016b). This architecture is particularly challenging for second
order methods for two reasons: It can already be quite well optimized with standard SGD with
momentum; and it possess some wide convolution layers (2048 channels with 1x1 filters and 512
channels with 3x3 filters), making the matrices to invert rather large.

We train a standard Resnet-50 using SGD and K-FAC SAU using groups of size of 64. In addition,
K-FAC SAU recomputes G−1 every 64 mini-batch, using the sole mini-batch statistics. In Figure 2
(left) we report the training and validation accuracy with respect to wall clock time using a constant
learning rate through training. We observe that K-FAC SAU outperforms the BN baseline both in
term of training and validation performances. Next, we investigate the use of learning rate decay
schedule (Figure 2 (middle)). We can observe that the baseline is able to catch K-FAC SAU late in
training. However, our approach still shows faster optimization. Finally, Figure 2 reports results for
CIFAR100 where we observe a similar trend.

0 50 100 150 200
Minutes

0.00

0.05

0.10

0.15

0.20

0.25

M
is

c.
R

at
e

Baseline
K-FAC SUA g = 64

0 50 100 150 200
Minutes

0.00

0.05

0.10

0.15

0.20

0.25

M
is

c.
R

at
e

Baseline
K-FAC SUA g = 64

0 50 100 150 200
Minutes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
is

c.
R

at
e

Basline
K-FAC SUA g = 64

Figure 2: Training (dashed) and validation (solid) curves on the ResNet50. Left: CIFAR10, without
decay. Middle: CIFAR10, with decay. Right: CIFAR100 with decay.

4 CONCLUSION

In this paper, we presented two approximations that can be made to reduce the computational cost
of 2nd order matrices. We have experimentally showed that both of them perform extremely well
against existing factorization, while being way cheaper to compute. Ba et al. (2016) showed it was
possible to scale K-FAC to 50 layers Residual Networks by parallelizing computations across several
GPUs. We showed that we were also able to do so, without requiring a distributed setup.

ACKNOWLEDGMENTS

The experiments were conducted using PyTorch (Paszke et al. (2017)). The authors would like to
acknowledge the support of Calcul Quebec, Compute Canada, CIFAR and Facebook for research
funding and computational resources.

3

Workshop track - ICLR 2018

REFERENCES

Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural computation, 10(2):251–
276, 1998.

Jimmy Ba, Roger Grosse, and James Martens. Distributed second-order optimization using
kronecker-factored approximations. 2016.

Guillaume Desjardins, Karen Simonyan, Razvan Pascanu, et al. Natural neural networks. In Ad-
vances in Neural Information Processing Systems, pp. 2071–2079, 2015.

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin. Convolutional
Sequence to Sequence Learning. ArXiv e-prints, May 2017.

Roger Grosse and James Martens. A kronecker-factored approximate fisher matrix for convolution
layers. In International Conference on Machine Learning, pp. 573–582, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016a.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In European Conference on Computer Vision, pp. 630–645. Springer, 2016b.

Tom Heskes. On natural learning and pruning in multilayered perceptrons. Neural Computation, 12
(4):881–901, 2000.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448–456,
2015.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. 2009.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Nicol N Schraudolph. Fast curvature matrix-vector products. In International Conference on Artifi-
cial Neural Networks, pp. 19–26. Springer, 2001.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

4

	Introduction and Previous Work
	Proposed Approximation
	Spatially Uncorrelated Activations
	Channel Grouping

	Experiments
	Introspection Experiments on VGG11
	Deep Residual Networks

	Conclusion

