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Abstract

In living organisms, homeostasis is the natural regulation of internal states aimed1

at maintaining conditions compatible with life. Here, we introduce an artificial2

neural network that incorporates some homeostatic features. Its own computing3

substrate is placed in a needful and vulnerable relation to the very objects over4

which it computes. For example, MNIST digits may cause excitatory or inhibitory5

effects upon the homeostatic network that classifies them, by altering the network’s6

learning rate. Accurate recognition is desirable to the agent itself because it guides7

decisions to up- or down-regulate its internal states and functionality. Counter-8

intuitively, the addition of vulnerability to a learner can confer some benefits.9

Homeostatic learners are more adaptive under conditions of concept shift, in which10

the relationships between labels and data change over time. The greatest advantages11

are obtained under the highest rates of shift. Homeostatic learners are also resilient12

to second-order shift, or environments with changing rates of concept shift.13

1 Introduction14

To paraphrase Heraclitus, "The only constant in life is change". The rules and relationships learned15

today may no longer hold tomorrow. Un-learning the bad old rules, re-learning the good new ones,16

and knowing how to tell the difference remains a major challenge for learning machines. Here we17

are inspired by the natural intelligence of living organisms, which maintain themselves in the face18

of environmental change by following the dictates of homeostasis. Homeostasis is the regulation19

of internal body states within a range compatible with life. It has been proposed that (a) machines20

that implement a process resembling homeostasis could be designed to exhibit a feeling-like device21

for the motivation and evaluation of their behavior and that (b) equipping an artificial learner with a22

feeling-like device might improve its adaptiveness to the inconstant data streams of the real world23

(Man and Damasio 2019).24

Here we present a homeostatic neural network architecture in which a classifier is placed into a25

needful and vulnerable relation to the objects over which it computes. By way of analogy, the26

homeostatic agent must learn to distinguish between cups of coffee and cups of beer, while also27

needing to take a drink every so often to regulate its own mental arousal. In this setting, accurate28

classification is desirable to the agent itself because it guides decisions that can carry consequences29

for its internal states.30

2 Background31

In biological brains, neurons regulate their excitability and synaptic conductance to stabilize network32

function (Marder and Goaillard 2006). In artificial neural networks, homeostatic regulation of33

excitability can reduce saturation and improve signal propagation (Williams and Noble 2007). In34
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simulation studies of evolutionary robotics, phototactic robots used ‘neural plasticity’ to restore35

adaptive behavior following visual field inversion (Di Paolo 2000; Iizuka and Di Paolo 2008).36

However, the homeostatic-like features of prior works were implemented from the outside-in: systems37

were instructed to maximize, or keep within a set range, certain arbitrary values that were labeled38

"homeostatic". The operation of the system itself was not exposed to the consequences of the system’s39

own activities, that is, it was not made vulnerable to the world and therefore sensitive to changes in40

the world.41

Non-stationarity, or "changes in the world", poses a major challenge in machine learning. Learners42

can fail to generalize because of concept shift (Moreno-Torres et al 2012), in which the associations43

between labels y and observations x change across the training and testing phases: Ptrain(y|x) ̸=44

Ptest(y|x). This phenomenon occurs frequently in real world settings of online supervised learning;45

for example, recommender systems must stay current with their users’ evolving tastes.46

3 Homeostatic architecture of needful neural networks47

Our homeostatic agent learns to classify images of objects. In a twist, the learner is designed to be48

needful – it depends on the objects that it classifies for its continued integrity and functionality. The49

objects have direct effects, excitatory or inhibitory, on the learner itself. For example, in MNIST50

classification, the digits {0,1,2,3,4} have inhibitory effects and reduce the learning rate (LR), while51

the digits {5,6,7,8,9} have excitatory effects and increase the LR. Critically, following classification52

of an object, the learner decides to either "ingest" the digit and alter its own learning rate, or "reject"53

the digit and keep its current learning rate. We use a counterfactual decision process to answer54

the question, "How would my own functionality be affected by taking or leaving this object?" The55

learner evaluates each alternative by simulating both versions of itself and testing them against a56

store of recently seen objects and labels (Supplementary Fig. 1). Misperceiving an object can lead to57

performing the wrong simulation of the object’s effects on the learner. This will drive the wrong LR58

decision, further destabilizing future perceptions.59

3.1 The vicissitudes of life60

As so often happens in life, the rules have a way of changing on you. We introduce concept shift by61

permuting labels on a subset of the data. When a shift occurs, we swap the labels for two randomly62

selected classes. For the MNIST example, we may swap the labels "zero" and "nine", such that all63

images that look like "0" are now labelled "nine", and all images that look like "9" are now labelled64

"zero" (Supplementary Fig. 2). Note that in this swap, the homeostatic effects of the digits have also65

been reversed. Images that were previously inhibitory (image 0 → label "zero" → inhibitory) are66

now excitatory (image 0 → label "nine" → excitatory), and vice versa.67

4 Experiments68

We compare homeostatic regulation of LR against two control conditions: a randomly regulated69

“wandering” learning rate, and a more conventional, constant learning rate. We characterize the70

conditions under which homeostatic regulation either imposes a performance penalty, or else allows71

a learner to smoothly adapt to changing conditions. All classification studies are performed with a72

multilayer perceptron with two hidden layers containing 80 and 60 units respectively, using the ELU73

activation function (Clevert et al 2015) and He initialization (He et al 2015). We evaluate our method74

on two datasets, MNIST (Lecun et al 2010) and Fashion-MNIST (Xiao et al 2017). All experiments75

were performed in MATLAB and the source code is provided in the Appendix.76

4.1 The homeostatic learner adapts to concept shift77

Testing across a wide range of rates of concept shift, measured in swaps per epoch of training, we find78

that in the stationary setting (no swapping) the conventional, constant-LR classifier is most accurate79

(Fig. 1, red traces in far left column). The homeostat (blue traces) nearly matches the constant-LR80

classifier’s performance, which is remarkable because the homeostat has the seeming disadvantage of81

being vulnerable to its own mistakes. Illustrating how badly things could have gone, the randomly82

regulating LR classifier (green traces) goes off the rails and shows large variance across replicates.83
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Figure 1: Homeostatic learners incur some performance penalty in environments with no or low
concept shift, but are far superior under conditions of highest shift. Color-coded validation accuracies
of learners with their learning rates homeostatically regulated (blue), randomly regulated (green), and
held constant (red). Traces show mean +/- SEM over 20 replicates.

The benefits of the homeostatic architecture become apparent at the highest intensities of concept84

shift (Fig. 1, right columns). At 500 swaps per epoch, the constant-LR classifier is overcome by85

change and falls to near chance level. The homeostat, on the other hand, is able to learn and even to86

improve despite extreme rates of concept shift.87

4.2 Homeostatic LR regulation is responsive to the prevailing rates of concept shift88

The homeostat tunes its learning rate to a level specific to the environment in which it finds itself89

(Supplementary Fig. 3). All learning rates are initialized at the same value (0.005) but the homeostat90

seeks a LR appropriate to the experienced rate of concept shift. It arrests its own rise in high shift91

environments and converges upon stable LR values.92

4.3 The homeostatic learner adapts to second-order shifts, or "seasonality"93

We next created learning environments with seasonality, in which the rate of concept shift can vary94

over the course of training. We find that the homeostat maintains the most consistent performance95

across "calm" and "stormy" seasons, and rapidly recovers after the onset of a stormy period (Fig. 2).96

5 Discussion97

To summarize, we show that: 1) homeostatic learners are superior to conventional learners under98

concept shift, with the greatest advantage obtained under the greatest rates of shift; 2) homeostatic reg-99

ulation imposes a slight performance penalty under static and low-shift environments; 3) homeostatic100

learners tune their learning rate in accordance with environmental conditions; and 4) homeostatic101

learners can adapt to second-order shift, or changes in the rate of environmental change. Although102

we find these converging results across the MNIST and Fashion-MNIST datasets we note that one103

possible limitation on the scope of our claims is the use of only these two datasets, each being104

somewhat limited in visual complexity and image size.105

Another possible limitation is the re-use of training data over many epochs, which limits the funda-106

mental novelty of the concept shift. Although the labels and data are repeatedly shuffled, the classifier107

3



Figure 2: Accuracy and learning rate under “seasonality” of concept shift. Top row: Schedule A
cycles between extreme rates of concept shift, while schedule B is more gradual. Middle row: The
accuracy of the constant-LR classifier, in red, severely declines during stormy periods but returns to
normal during calm periods. The homeostat, in blue, maintains good average performance across
shifts in the rate of concept shift. Bottom row: The sequence of learning rates reveals that the
homeostatic learner ratchets up its learning rate during stormy periods but is less inclined to reduce it
during calm periods.

is never asked to learn from never-before-seen image patterns. In the real world, concept shift often108

co-occurs with some level of covariate shift. Not only do relationships change over time, but the109

predictors change as well.110

Although our method can dynamically adjust the learning rate, we did not benchmark it against111

LR optimizers such as ADAM (Kingma and Ba 2014) and other momentum-based methods. In the112

non-stationary setting the loss surface shifts over time and it is therefore inappropriate to accumulate113

previous gradients from an outdated loss surface.114

Finally, we are aware of the resemblance between reinforcement learning and our task of homeostatic115

self-regulation, though we argue that they should not be identified as the same. The objective here116

is not to maximize some arbitrary “reward” by massed trial-and-error. The object of the game is117

simply to keep playing the game. We specify a particular target to optimize: homeostatic well-being,118

crystallized as an internal parameter that controls the ongoing ability to make good decisions. For an119

excellent example of work in reinforcement learning that takes homeostatic logic into account see120

(Keramati and Gutkin 2014).121

One way of explaining our homeostatic design is to say that it exposes an artificial neural network’s122

thinking machinery to the consequences of its own "thoughts". A vulnerable learner with the meta-123

task of self-preservation is incentivized to better align with reality and to adapt to external change.124

The superior adaptability of the vulnerable learner illustrates the benefits of putting one’s own "skin125

in the game".126
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Figure S1: Algorithm: Pseudocode for homeostatic self-regulation of learning rate.

Figure S2: Concept shift is implemented by swapping the mapping between label and image between
two randomly selected classes. Illustrated here on the MNIST dataset, the mappings for “zero” and
“nine” are swapped. This swap will also invert the homeostatic effects expected for each number – a
potentially hazardous situation for a vulnerable classifier.
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Figure S3: Learning rate sequencies of the two LR-regulating classifiers. The homeostatic learner
seeks an LR appropriate to each level of concept shift, while the random regulator drifted upwards.
At 500 swaps per epoch (left, blue), the homeostat arrests its own LR growth and asymptotes. Data
shown from MNIST only.
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Answer: [Yes]155
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asymptotic approximations only holding locally). The authors should reflect on how these179
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reproducibility can also be provided via detailed instructions for how to replicate the results,232

access to a hosted model (e.g., in the case of a large language model), releasing of a model233

checkpoint, or other means that are appropriate to the research performed.234
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applicable).271
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• The answer NA means that the paper does not include experiments.291

• The authors should answer "Yes" if the results are accompanied by error bars, confidence292

intervals, or statistical significance tests, at least for the experiments that support the main claims293
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the paper).324

9. Code Of Ethics325

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code326

of Ethics https://neurips.cc/public/EthicsGuidelines?327

Answer: [Yes]328

Justification: Reviewed and confirmed.329

Guidelines:330

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.331

• If the authors answer No, they should explain the special circumstances that require a deviation332
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scraped datasets)?367

Answer: [NA]368
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compensation (if any)?415

Answer: [NA]416

Justification: No crowdsourcing.417

Guidelines:418

• The answer NA means that the paper does not involve crowdsourcing nor research with human419

subjects.420

• Including this information in the supplemental material is fine, but if the main contribution of the421

paper involves human subjects, then as much detail as possible should be included in the main422

paper.423

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other424

labor should be paid at least the minimum wage in the country of the data collector.425

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Subjects426
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risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an428

equivalent approval/review based on the requirements of your country or institution) were obtained?429

Answer: [NA]430
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• The answer NA means that the paper does not involve crowdsourcing nor research with human433

subjects.434

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be435
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