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Abstract
Cross-Encoder (CE) and Dual-Encoder (DE) mod-
els are two fundamental approaches for predict-
ing query-document relevance in information re-
trieval. To predict relevance, CE models use joint
query-document embeddings, while DE models
maintain factorized query-document embeddings;
usually, the former has higher quality while the
latter has lower latency. Recently, late-interaction
models have been proposed to realize more fa-
vorable latency-quality trade-offs, by using a DE
structure followed by a lightweight scorer based
on query and document token embeddings. How-
ever, these lightweight scorers are often hand-
crafted, and there is no understanding of their ap-
proximation power; further, such scorers require
access to individual document token embeddings,
which imposes an increased latency and storage
burden over DE models. In this paper, we propose
novel learnable late-interaction models (LITE)
that resolve these issues. Theoretically, we prove
that LITE is a universal approximator of contin-
uous scoring functions, even for relatively small
embedding dimension. Empirically, LITE out-
performs previous late-interaction models such
as ColBERT on both in-domain and zero-shot
re-ranking tasks. For instance, experiments on
MS MARCO passage re-ranking show that LITE
not only yields a model with better generaliza-
tion, but also lowers latency and requires 0.25×
storage compared to ColBERT.

1. Introduction
Transformers (Vaswani et al., 2017) have emerged as a suc-
cessful model for information retrieval problems, where
the goal is to retrieve and rank relevant documents for a
given query (Nogueira & Cho, 2019). Two families of
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Transformer-based models are popular: cross-encoder (CE)
and dual-encoder (DE) models. Given a (query, document)
pair, CE models operate akin to a BERT-style encoder (De-
vlin et al., 2019): the query and document are concatenated,
and sent to a Transformer encoder which outputs a relevance
score (cf. Figure 1a). CE models can learn complex query-
document relationships, as they allow for cross-interaction
between query and document tokens.

By contrast, DE models apply two separate Transformer en-
coders to the query and document, respectively, producing
separate query and document embedding vectors (Reimers
& Gurevych, 2019). The dot product of these two vectors is
used as the final relevance score (cf. Figure 1b). Compared
to CE models, DE models are usually less accurate (Hofstät-
ter et al., 2020), since the only interaction between the query
and document occurs in the final dot product. However, DE
models have much lower latency, since all the document
embedding vectors can be pre-computed offline.

Recently, late-interaction models have provided alterna-
tives with a more favorable latency-quality trade-off com-
pared to CE and DE models. Similarly to DE models, late-
interaction models also use a two-Transformer structure, but
they store more information and employ additional nonlin-
ear operations to calculate the final score. In particular, let
Q ∈ RP×L1 and D ∈ RP×L2 denote the query and doc-
ument token embeddings output by the two Transformers,
i.e., there are L1 query token embedding vectors and L2

document token embedding vectors of dimension P . DE
models simply pool Q and D into two vectors, and take
the dot product. By contrast, ColBERT (Khattab & Za-
haria, 2020) calculates the (token-wise) similarity matrix
Q>D and computes the final score via a sum-max reduction∑
i maxj(Q

>D)i,j .

While the sum-max score reduction lets ColBERT achieve
better accuracy than DE, it is unclear whether this hand-
crafted reduction can capture arbitrary complex query-
document interactions. Moreover, ColBERT can have
higher latency than DE: calculating the similarity matrix
Q>D requires L1 · L2 dot products, while the DE model
only requires one dot product. Additionally, to reduce online
latency, ColBERT needs to pre-compute and store the Trans-
former embedding matrix D for each document (Hofstätter
et al., 2020; Santhanam et al., 2022). This can entail signifi-
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Figure 1. Illustration of different query-document relevance models. (a) CE models compute a joint query-document embedding by
passing the concatenated query/document tokens through a single Transformer. (b) In DE models, query and document embeddings
are computed separately with their respective Transformers and the relevance score is the dot product of these embeddings. (c) In the
proposed LITE method, query and document token embeddings are computed similarly to DE, but instead of a dot product, we first
compute the similarity matrix between each pair of query and document tokens, and pass this matrix through an MLP to produce the final
relevance score.

cant storage space if we decide to store a large number of
document tokens, since there can be billions of documents
in industry-scale information retrieval systems (Zhang &
Rui, 2013; Overwijk et al., 2022). (See ?? for a detailed
discussion.)

To reduce latency and storage cost, one may seek to store
fewer document tokens, and/or reduce the dimension of
each token embedding vector. However, it is unclear how
these influence performance. In fact, such reduction can
significantly hurt the accuracy of ColBERT, as we show in
Section 3.2.

Contributions. In this work, we propose lightweight scor-
ing with token einsum (LITE), which addresses the afore-
mentioned shortcomings of existing late-interaction mod-
els. LITE applies a lightweight and learnable non-linear
transformation on top of Transformer encoders, which cor-
responds to processing the (token-wise) similarity matrix
S = Q>D via shallow multi-layer perceptron (MLP) layers
(cf. Figure 1c and Section 2). In particular, we focus on
a separable LITE scorer which applies two shared MLPs
to the rows and the columns of S (in that order), and then
projects the resulting matrix to a single scalar.

Theoretically, we rigorously establish the expressive power
of LITE: we show that LITE is a universal approximator of
continuous scoring functions in `2 distance, even under tight
storage constraints (cf. Theorem 2.1). To our knowledge,
this is the first formal result about the approximation power
of late-interaction methods. Further, we also construct a
scoring function that cannot be approximated by a DE model
with restricted embedding dimension (cf. Theorem 2.2).

Empirically, we show that LITE can systematically improve
upon existing late-interaction methods like ColBERT on

both in-domain benchmarks such as MS MARCO and Natu-
ral Questions (cf. Table 1), and out-of-domain benchmarks
such as BEIR (cf. ??). Moreover, LITE can be much more
accurate than ColBERT while having lower latency and
storage cost (cf. ??).

2. LITE scorers
We now introduce LITE scorers. Let S := Q>D ∈ RL1×L2

denote the similarity matrix which consists of the dot prod-
ucts of all query-document Transformer token embedding
pairs. LITE models apply MLPs to reduce S to a scalar
score. A natural option is to flatten S and then apply an
MLP; we call this flattened LITE. On the other hand, in
this paper we focus on another MLP model which we call
separable LITE, motivated by separable convolution (Chol-
let, 2017) and MLP-Mixer (Tolstikhin et al., 2021): we
first apply row-wise updates to S, then column-wise up-
dates, and then a linear projection to get a scalar score.
Formally, we first calculate S′,S

′′ ∈ RL1×L2 as follows:
for all 1 ≤ i ≤ L1 and 1 ≤ j ≤ L2, let

S′i,: = LN(σ(W2LN(σ(W1Si,: + b1)) + b2)), (1)

S′′:,j = LN(σ(W4LN(σ(W3S
′
:,j + b3)) + b4)), (2)

where LN, σ respectively denote layer-norm and ReLU. The
final score is given by w>vec(S′′).

Given the above definitions, it is natural to consider the
expressivity of LITE. In particular, there are two fundamen-
tal questions: (1) Can we always approximate (continuous)
scoring functions using LITE, even though LITE only has
the similarity matrix as inputs and the original Transformer
embeddings are lost? (2) Are LITE models more expressive
than simpler models such as DE?
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We answer these questions in the following: we show that
LITE models are universal approximators of continuous
scoring functions (cf. Theorem 2.1), while there exists a
scoring function which cannot be approximated by a simple
dot-product DE (cf. Theorem 2.2).

2.1. Universal approximation with LITE

We consider the Transformer architecture described by (Yun
et al., 2020): it includes multiple encoding layers, each of
them can be parameterized as A(X) + FF(A(X)), where
X ∈ RP×L denotes the input, FF denotes a feedforward
network, and A(X) denotes an attention block:

X +

H∑
i=1

Wi
oW

i
vXSoftmax((Wi

kX)>(Wi
qX)).

Here Wi
q,W

i
k,W

i
v ∈ RC×P are query, key and value and

projection matrices, Wi
o ∈ RP×C are output projection

matrices, and H,C denotes the number of heads and dimen-
sion of each head. The Softmax function is applied to each
input column.

A Transformer network defined in the above way is
permutation-equivariant (Yun et al., 2020, Claim 1): if
we permute the input token sequence, then the output to-
ken sequence is permuted in the same way. If we want the
network to distinguish between different orders of tokens,
we can add a positional encoding matrix E ∈ RP×L to the
input X, and apply a Transformer network to X + E.

As discussed in previous sections, in the late-interaction
setting, we may need to store the whole Transformer output
with shape P × L, which can be expensive. One solution is
to apply a pooling function to reduce the number of tokens;
we empirically study this method in Section 3.2, and in
Theorem 2.1, we apply pooling functions to map the Trans-
former output in RP×L to RP×2, i.e., a sequence of two
token embeddings. We show that two query tokens and two
document tokens are enough for universal approximation.

Next, we define the scorers. Let Fσ,n denote the set of
2-layer ReLU networks with n-dimensional inputs and a
scalar output:

Fσ,n :=
{
z→ a>σ(Wz + b)

}
,

where σ denotes the ReLU activation, z ∈ Rn, W ∈ Rm×n,
a,b ∈ Rm, and we allow m to be arbitrarily large. We first
consider a class of flattened LITE scorers, including all
two-layer ReLU networks on top of S that output a scalar
score:

Ff := {S→ f(vec(S))|f ∈ Fσ,L1·L2
} .

For separable LITE, we consider a simplified version of (1)
and (2), but without loss of generality, as described blow:

we first use a 2-layer ReLU network f1 : RL2 → R to
reduce every row of S to a single scalar, and thus transform
S into a column vector; and then we apply another 2-layer
ReLU network f2 to reduce this column vector into a scalar.
Formally,

Fs := {S→ f2(f1(S))|f1 ∈ Fσ,L2
, f2 ∈ Fσ,L1

} ,

where we let f1(S) ∈ RL1 denote the result of applying f1

to every row of S. Note that Fs is a subset of the function
class defined by (1) and (2) (ignoring layer normalization).

Here is our universal approximation result.
Theorem 2.1 (Universal approximation with LITE). Let
s : R(P×L1)×(P×L2) → R denote a continuous scoring
function with a compact support Ω and L1, L2 ≥ 2. For any
F ∈ {Ff ,Fs} and any ε > 0, there exist a scorer f ∈ F ,
and T1 : RP×L1 → RP×2 and T2 : RP×L2 → RP×2, both
of which consist of positional encodings, a Transformer and
a pooling function, such that∫

Ω

(f(T1(X)>T2(Y))− s(X,Y))2d(X,Y) ≤ ε.

The proof is given in Appendix B, and is based on the
“contextual mapping” techniques from (Yun et al., 2020).
This result is non-trivial, since the input to LITE scorers is
the similarity matrix based on only two query tokens and
two document tokens; this means LITE models are universal
approximators even under strong constraints on the total
embedding size. In contrast, as we show in Theorem 2.2, if
the total embedding size is less than P ·L, then a dot-product
DE can have a large approximation error.

2.2. Non-universality of existing scorers

In addition to Theorem 2.1, even without positional encod-
ings, in Theorem B.1 we show that LITE scorers are still uni-
versal approximators of arbitrary continuous scoring func-
tions if we do not apply pooling. By contrast, without posi-
tional encodings, ColBERT can only represent permutation-
equivariant ground-truth scoring functions, because the sum-
mation and maximum operations do not consider the order
of input tokens. It is an open question if ColBERT is a
universal approximator with positional encodings.

If we ask whether a dot-product DE can approximate arbi-
trary continuous functions, then we give a negative result.
Theorem 2.2 (Limitation of DE with restricted embedding
dimension). Suppose each query and document both have
L ≥ 2 tokens. There exists a continuous ground-truth scor-
ing function s supported on Ω := [0, 1]P×L × [0, 1]P×L,
such that if O ≤ PL − 1, then for any mappings h1, h2 :
RP×L → RO that map queries and documents to O-
dimensional vectors respectively,∫

Ω

(h1(X)>h2(Y)− s(X,Y))2d(X,Y) ≥ 1

20
.
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Table 1. MRR@10 and nDCG@10 scores. Separable LITE
achieves the best in-domain results across all benchmarks.

MS MARCO NQ
Scorer MRR nDCG MRR nDCG

DE 0.355 0.413 0.699 0.611
ColBERT 0.383 0.442 0.756 0.689
Sep LITE 0.393 0.756 0.769 0.693

Previously Menon et al. (2022) showed that if there is no
constraint on the embedding dimension, then dot-product
DE is a universal approximator of continuous functions. By
contrast, here we show if the DE embedding dimension
is less than PL, there could be a constant approximation
error.

3. Experiments
We now evaluate the proposed LITE scorer on a few stan-
dard information retrieval benchmarks, where we confirm
that LITE significantly improves accuracy over existing DE
and late-interaction methods.

3.1. In-domain re-ranking on MS MARCO and NQ

In Table 1, we report MRR@10 and nDCG@10 scores for
different scorers. We try both the KL loss and margin MSE
loss and report the better results; more details can be found
in Appendix A.3.

On MS MARCO, the T2 teacher (Hofstätter et al., 2020)
has Dev MRR@10 of 0.399. A DE student can only achieve
MRR@10 of 0.355. Both ColBERT and separable LITE can
significantly reduce this gap, but separable LITE is much
better than ColBERT (0.393 vs. 0.383). We also train a
6-layer, 768-dimensional CE student using distillation from
the T2 teacher; it has MRR@10 of 0.395, which is only
slightly better than separable LITE.

These observations generalize to the NQ dataset as well: we
find that late-interaction models are much better than DE,
and separable LITE is much better than ColBERT.

We also try a few ablations, including using top-k aligned
document tokens instead of top-1 in ColBERT, and freezing
the backbone and only fine-tuning the scorers. Separable
LITE achieves better accuracy than ColBERT in all cases.
See Appendix A.4 for details.

3.2. Results on MS MARCO with reduced latency and
storage

As discussed previously, late-interaction methods may have
higher latency and storage cost than DE. Suppose the Trans-
former encoders use L1 query tokens and L2 document
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Figure 2. MS MARCO MRR with fewer document tokens.
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Figure 3. MS MARCO MRR with reduced token dimension.

tokens of dimension P , then DE only needs to take one
dot product, while calculating the similarity matrix for late-
interaction methods requires L1L2 dot products. Moreover,
to save online latency, we need to pre-compute and store
one P -dimensional document embedding vector for DE,
while for late-interaction methods we might need to store a
P × L2 embedding matrix. This increase in storage cost is
significant in industry-scale information retrieval systems,
since there can be billions of documents (Zhang & Rui,
2013; Overwijk et al., 2022).

One solution is to reduce P and L2 to some smaller P ′ and
L′2 (by projection, pooling, etc.), and then store a P ′ × L′2
embedding matrix for each document. Correspondingly, for
each query we use L1 embedding vectors of dimension P ′,
and to calculate the similarity matrix, we need L1L

′
2 dot

products between P ′-dimensional vectors. This can reduce
both latency and storage. Figure 2 shows the results when
L2 is reduced while keeping P fixed and Figure 3 shows
the results when P is reduced while keeping L2 fixed. In
both cases, separable LITE is more accurate than ColBERT.
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A. Experimental details
A.1. Hyper-parameters

The main hyperparameters for LITE are the MLP widths. For Separable LITE (cf. (1) and (2)), if the input dot-product
matrix has shape L1 × L2, then W1 has shape (m2, L2), W2 has shape (L2,m2), W3 has shape (m1, L1), and W4 has
shape (L1,m1). In this work, we let m1 = 360 and m2 = 2400 in most experiments for simplicity, but we also note that
much smaller widths can already give a high accuracy while also reducing the latency (cf. ??).

A.2. Training details

Here we first define the loss functions used in our experiments.

For simplicity, let us first consider the triplet setting, where we are given a query q, a positive document d+, and a negative
document d−. Suppose the teacher score is given by t = (t+, t−), and the student score is s = (s+, s−). The margin
MSE loss is defined as ((t+ − t−)− (s+ − s−))

2, i.e., it calculates the teacher score margin and student score margin, and
applies a squared loss. The KL loss first calculates the teacher and student probability distributions as below

p(t) =

(
exp(t+)

exp(t+) + exp(t−)
,

exp(t−)

exp(t+) + exp(t−)

)
,

p(s) =

(
exp(s+)

exp(s+) + exp(s−)
,

exp(s−)

exp(s+) + exp(s−)

)
,

and then calculates the KL divergence KL(p(t)||p(s)).

In our NQ experiments, we use one positive document and multiple negative documents. In this case the KL loss is defined
similarly, while for the margin MSE loss we consider the margins between the positive document and every negative
document. Formally, suppose there are N documents, the first one is positive while the remaining ones are negative, and let
ti and si denote the teacher and student scores for the i-th document, then we consider

N∑
i=2

((t1 − ti)− (s1 − si))2.

It is also an interesting open direction to try other training frameworks, such as sRank (Zhu et al., 2023).

On the optimization algorithm, we use AdamW (Loshchilov & Hutter, 2019) with batch size 128, peak learning rate
2.8× 10−5, weight decay 0.01, and 1.5 million steps. We use a linear learning rate warm up of 30000 steps, then a linear
learning rate decay.

A.3. Results with different loss functions

Here we present results on different scorers and loss functions.

First, Table 2 includes results on MS MARCO.

Table 2. MS MARCO Dev MRR@10. Separable LITE achieves the best results among factorized (non-CE) models.

Scorer KL Margin MSE

CE student 0.394 0.395

DE 0.355 0.350
ColBERT 0.383 0.378
Separable LITE 0.388 0.393

For context, the T2 teacher (Hofstätter et al., 2020) achieves a Dev MRR@10 of 0.399. Even a CE student (with 6 layers
and token dimension 768) cannot match this teacher performance: the best MRR@10 we get is 0.395.

We also note that separable LITE get good results for both the KL loss and margin MSE loss, while other scorers seem to
prefer only one loss. It is interesting to understand the effects of loss functions.
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Table 3. Natural Questions Dev MRR@10. Separable LITE achieves the best results both in direct training and distillation settings.

Scorer Cross Entropy (one-hot labels) KL (distillation) Margin MSE

DE 0.678 0.699 0.699
ColBERT 0.690 0.754 0.756
Separable LITE 0.710 0.741 0.769

Table 3 includes results on NQ. Here we report results in two settings: direct training with 1-hot labels and the cross entropy
loss, and distillation training with the KL loss and margin MSE loss. Separable LITE achieves the best results for both the
cross-entropy loss and margin MSE loss; although ColBERT performs better with the KL loss, it gives lower scores than the
margin MSE loss.

A.4. Model ablations

Using top-k aligned document tokens in ColBERT. Given query Transformer embedding vectors q1, . . . ,qL1
and

document Transformer embedding vectors d1, . . . ,dL2 , recall that ColBERT performs a sum-max reduction:

∑
i∈[L1]

max
j∈[L2]

q>i dj .

In other words, for each query token qi, ColBERT finds the most-aligned document embedding vector and includes their
dot-product in the score. Qian et al. (2022) suggest using top-k aligned document tokens for each query token; here we try
k = 2, 4, 8 on MS MARCO, but do not notice significant improvement compared with k = 1.

k 1 2 4 8
MRR@10 0.383 0.378 0.380 0.382

Table 4. Dev MRR@10 on MS MARCO with different values of k. We find that k = 1 (i.e., the original ColBERT) is better than other
options we try (k = 2, 4, 8).

Freezing query and document encoders. Recall that we use pretrained BERT models for query and document encoding,
and moreover in all experiments above we also fine-tune the pretrained Transformers on MS MARCO and NQ. Here we
explore performance of different scorers when the query and document Transformer encoders are frozen (i.e., pre-trained
but not fine-tuned on MS MARCO).

When the query and document encoders are frozen, ColBERT does not require any additional fine-tuning since the sum-max
function does not include any weights. In this case, ColBERT can achieve Dev MRR@10 score 0.112 on MS MARCO.

For separable LITE, if we freeze the query and document Transformer encoders and only fine tune the separable LITE scorer
(i.e., W1,b1,W2,b2,W3,b3,W4,b4 in (1) and (2)), then it can achieve Dev MRR@10 score 0.188 on MS MARCO,
which is much better than ColBERT.

A.5. KNRM results

For KNRM, following (Xiong et al., 2017), we use K = 11 kernels, where µ1 = 0.9, µ2 = 0.7, . . ., µ10 = −0.9 with
σ1 = · · · = σ10 = 0.1, and µ11 = 1.0 with σ11 = 10−3. We hold µk and σk fixed and only train w.

We report MRR@10 and nDCG@10 scores on in-domain tasks in Table 5. KNRM achieves similar scores to ColBERT
overall, while separable LITE is more accurate than KNRM on all benchmarks.

Moreover, separable LITE is much better than KNRM on zero-shot transfer: it is better than KNRM on 12 out of 14 datasets,
as shown in Table 6.
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Table 5. MRR@10 and nDCG@10 scores for in-domain tasks. KNRM is similar to ColBERT overall, while worse than separable LITE
on all tasks.

MS MARCO DL 2019 DL 2020 NQ
Scorer MRR nDCG MRR nDCG MRR nDCG MRR nDCG

ColBERT 0.383 0.442 0.878 0.753 0.860 0.731 0.756 0.689
KNRM 0.390 0.448 0.859 0.744 0.858 0.730 0.759 0.682
Sep LITE 0.393 0.452 0.898 0.765 0.873 0.756 0.769 0.693

Table 6. BEIR nDCG@10. Separable LITE is better than KNRM on 12 out of 14 datasets.

Dataset KNRM Separable LITE

T-COVID 0.741 0.763
NFCorpus 0.353 0.358
NQ 0.526 0.540
HotpotQA 0.678 0.681
FiQA-2018 0.328 0.336
ArguAna 0.446 0.424
Touché-2020 0.301 0.305
CQAD 0.367 0.374
Quora 0.239 0.839
DBPedia 0.420 0.434
SCIDOCS 0.159 0.164
FEVER 0.715 0.788
C-FEVER 0.199 0.213
SciFact 0.645 0.633

B. Proof of Theorem 2.1
Here we prove Theorem 2.1. We first restate it here and also include a universal approximation result without positional
encodings.

Theorem B.1 (Universal approximation with LITE). Let s : R(P×L1)×(P×L2) → R denote a continuous scoring function
with a compact support Ω and L1, L2 ≥ 2. For any F ∈ {Ff ,Fs} and any ε > 0, there exists a query Transformer
T1 : RP×L1 → RP×L1 , a document Transformer T2 : RP×L2 → RP×L2 , and a scorer f ∈ F , such that∫

Ω

(
f
(
T1(X)>T2(Y)

)
− s(X,Y)

)2
d(X,Y) ≤ ε.

Under the same conditions, there also exist positional encoding matrices E ∈ RP×L1 and F ∈ RP×L2 , a query Transformer
T1 : RP×L1 → RP×L1 and a pooling function pool1 : RP×L1 → RP×2, a document Transformer T2 : RP×L2 → RP×L2

and a pooling function pool2 : RP×L2 → RP×2, and a scorer f ∈ F , such that∫
Ω

(
f
(
pool1(T1(X + E))>pool2(T2(Y + F))

)
− s(X,Y)

)2
d(X,Y) ≤ ε.

Our proof is based on the analysis of (Yun et al., 2020): they showed that Transformer networks are universal approximators of
continuous and compactly-supported sequence-to-sequence functions. In our case, we need to show universal approximation
with the dot-product matrix; to this end, we actually need a few technical lemmas from (Yun et al., 2020), as detailed below.

Without loss of generality, we assume the support of the ground-truth scoring function is contained in [0, 1)P×L1×[0, 1)P×L2 .
The first step is to replace the ground-truth scoring function s with a piece-wise constant function: let δ > 0 be small enough,
and let

sδ(X,Y) :=
∑

X′∈Gδ,Y′∈Hδ

s(X′,Y′)1 [X ∈ CX′ and Y ∈ CY′ ] , (3)
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where X ∈ [0, 1)P×L1 , and Y ∈ [0, 1)P×L2 , and Gδ := {0, δ, . . . , 1 − δ}P×L1 , and Hδ := {0, δ, . . . , 1 − δ}P×L2 , and
CX′ :=

∏P
j=1

∏L1

k=1[X ′j,k, X
′
j,k + δ), and CY′ :=

∏P
j=1

∏L2

k=1[Y ′j,k, Y
′
j,k + δ). Since s is continuous, if δ is small enough,

it holds that sδ is a good approximation of s.

Next we follow (Yun et al., 2020) and try to approximate sδ using LITE models based on modified Transformers. Recall
that a standard Transformer uses softmax in attention layers and ReLU activation in MLPs; by contrast, in a modified
Transformer, we use hardmax in attention layers, and in MLPs we are allowed to use activation functions from Φ which
consists of piece-wise linear functions with at most three pieces where at least one piece is a constant. Such a modified
Transformer can then be approximated by a standard Transformer (Yun et al., 2020, Lemma 9).

Here are two key lemmas from (Yun et al., 2020). For simplicity, we state them for the query Transformer, but they will also
be applied to the document Transformer.

The following lemma ensures that there exists a modified Transformer that can quantize the input domain, and thus we can
just work with Gδ . Similarly, on the document side, we can focus on Hδ .
Lemma B.2 ((Yun et al., 2020) Lemma 5). There exists a feedforward network gq : [0, 1)P×L1 → Gδ with activations
from Φ, such that for any entry 1 ≤ i ≤ P and any 1 ≤ j ≤ L1, it holds that gq(X)i,j = kδ if Xi,j ∈ [kδ, (k + 1)δ),
k = 0, . . . , 1/δ − 1.

The following lemma ensures the existence of a modified Transformer that can implement a “contextual mapping”: roughly
speaking, it means each token of the Transformer output is a a unique Hash encoding of the whole input token sequence.
Below is a formal statement.

Lemma B.3 ((Yun et al., 2020) Lemma 6). Consider the following subset of Gδ:

G̃δ := {X ∈ Gδ|X:,i 6= X:,j for all i 6= j} .

If L1 ≥ 2 and δ ≤ 1/2, then there exists an attention network gc : RP×L1 → RP×L1 with the hardmax operator, a vector
u ∈ RP , constants tl, tr with 0 < tl < tr, such that α(X) := u>gc(X) satisfies the following conditions:

1. For any X ∈ G̃δ , all entries of α(X) are different.

2. For any X,X′ ∈ G̃δ such that X′ is not a permutation of X, all entries of α(X), α(X′) are different.

3. For any X ∈ G̃δ , all entries of α(X) are in [tl, tr].

4. For any X ∈ Gδ \ G̃δ , all entries of α(X) are outside [tl, tr].

For the document side, consider

H̃δ := {X ∈ Hδ|Y:,i 6= Y:,j for all i 6= j} .

Lemma B.3 also ensures the existence of an attention network hc : RP×L2 → RP×L2 with the hardmax operator, a vector
v ∈ RP , constants sl, sr with 0 < sl < sr, such that β(Y) := v>hc(Y) satisfies similar conditions. Also note that for
small enough δ, we can neglect Gδ \ G̃δ and Hδ \ H̃δ , since |Gδ \ G̃δ| = O

(
δP |Gδ|

)
and |Hδ \ H̃δ| = O

(
δP |Hδ|

)
.

Now we are ready to prove Theorem B.1. We first consider the case without positional encodings.

Analysis without positional encodings. Note that for X ∈ G̃δ and Y ∈ H̃δ , it holds that α(X) and β(Y) already include
enough information to determine the score. However, in LITE models, the final score is calculated only based on dot
products between query embedding vectors and document embedding vectors. As a result, we need to first insert u and v
into the Transformer embeddings. The following lemma handles this issue: there exists a feedforward network such that for
each X ∈ G̃δ , it replaces one token in gc(X) with v while keeping other tokens unchanged.

Lemma B.4. Consider the activation function ϕ with ϕ(z) = 1 if 0 ≤ z ≤ 1, and ϕ(z) = 0 if z < 0 or z > 1. There
exists a feedforward network gv : RP → RP with activation ϕ such that for any X ∈ G̃δ, let i := argminjα(X)j , then
gv(gc(X):,i) = v, while for j 6= i, it holds that gv(gc(X):,j) = gc(X):,j .
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Proof. For any X ∈ G̃δ and any i, 1 ≤ i ≤ L1, Lemma B.3 ensures that there exists constants l(X, i) and r(X, i) such
that 0 < l(X, i) < α(X)i < r(X, i), and that [l(X, i), r(X, i)] does not contain other entries in α(X), and moreover
[l(X, i), r(X, i)] does not contain entries from α(X′) for X′ ∈ G̃δ which is not a permutation of X. For this (X, i) pair, if
i := argminjα(X)j , we construct the following neuron

ψX,i(z) := ϕ

(
1

r(X, i)− l(X, i)
(
u>z− l(X, i)

))
v,

otherwise let

ψX,i(z) := ϕ

(
1

r(X, i)− l(X, i)
(
u>z− l(X, i)

))
gc(X):,i.

The full network is the sum of all such neurons

gv(z) :=
∑

X∈G̃δ,1≤i≤L1

ψX,i(z),

which satisfies the requirement of Lemma B.4.

Lemma B.4 is stated for the query side; on the document side, it also follows that there exists a feedforward network hu that
can replace one token in the embeddings given by hc by u. Then we are ready to prove Theorem B.1 without positional
encodings.

Proof of Theorem B.1, no positional encodings. In this proof, we will focus on X ∈ G̃δ and Y ∈ H̃δ as ensured by
Lemmas B.2 and B.3. We also use notation introduced in Lemmas B.3 and B.4.

First consider u and v given by Lemma B.3. Without loss of generality, we can assume u>v ≤ 0; if u>v > 0, we will
replace v with −v and replace hc(Y) with −hc(Y), which ensures u>v ≤ 0, and moreover the conclusions of Lemma B.3
still hold. In detail, in the construction of gv, we use −v instead of v, while in the construction of hu, we use −hc(Y)
instead of hc(Y). As a result, in the following we assume u>v ≤ 0.

Recall that for X ∈ G̃δ, the range of u>gc(X) is denoted by [tl, tr] with 0 < tl < tr, while for Y ∈ H̃δ, the range of
v>hc(Y) is denoted by [sl, sr] with 0 < sl < sr. Define

M := max
X∈G̃δ

max
Y∈H̃δ

max
i,j

∣∣gc(X)>:,ihc(Y):,j

∣∣ .
In the following, we will assume tl > M and sl > tr without loss of generality; if these conditions do not hold, we can let
λ1, λ2 be large enough such that λ1tl > M and λ2sl > λ1tr, and scale u to λ1u, and scale v to λ2v.

Given X ∈ G̃δ and Y ∈ H̃δ , we consider Q = gv(gc(X)) ∈ RP×L1 , and D = hu(hc(Y)) ∈ RP×L2 , and the dot-product
matrix S := Q>D ∈ RL1×L2 . Lemma B.4 ensures that Q has one column equal to v, while D has one column equal to u.

Let q denote an arbitrary column of Q other than v, and let d denote an arbitrary column of D other than u. Due to previous
discussion, we have v>d ≥ sl > tr ≥ q>u, and therefore we can distinguish them. Additionally q>u ≥ tl > M , and thus
we can distinguish it from other entries of S, including v>u ≤ 0.

Now let us examine S in detail. Suppose Q:,i = v and D:,j = u for some 1 ≤ i ≤ L1 and 1 ≤ j ≤ L2. Then

Si,: = (Q>D)i,: = [v>d1, · · · ,v>u, · · · ,v>dL2
],

and

S:,j = [q>1 u, · · · ,v>u, · · · ,q>L1
u]>.

The previous scaling allows us to find Si,: and S:,j . Lemma B.3 ensures that every element of Si,: other than v>u can
uniquely determine the set of columns of the document input Y, but not the order of columns since Transformers without
positional encodings are permutation-equivariant (Yun et al., 2020, Claim 1). However, all elements of Si,: together are able
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to determine the exact order of columns of Y. Similarly, S:,j as a whole can determine the exact query input X, including
the order of columns. Consequently, S can uniquely determine the input pair (X,Y), and also the ground-truth score
sδ(X,Y).

For flattened LITE, note that G̃δ and H̃δ are both finite, and thus the set of possible dot-product matrix{
Q>D

∣∣∣Q = gv(gc(X)),D = hu(hc(Y)),X ∈ G̃δ,Y ∈ H̃δ
}

is also finite. Moreover, each dot-product matrix uniquely determines the ground-truth score, as discussed above. Therefore
there exists a 2-layer ReLU network that uniformly approximates an interpolations of these scores (Cybenko, 1989;
Funahashi, 1989; Hornik et al., 1989), which finishes the proof.

For separable LITE, recall that we first apply a shared MLP f1 to reduce every row of S to a scalar, and thus get a column
vector; then we apply another MLP f2 to reduce this column vector to a final score. Now let ψ denote an injection from H̃δ
to [tr + 1, tr + 2], i.e., for any Y,Y′ ∈ H̃δ, we have ψ(Y), ψ(Y′) ∈ [tr + 1, tr + 2], and ψ(Y) 6= ψ(Y′). There exists
such a ψ since H̃δ is finite.

Now if the i-th column of Q is v, then we let f1 map Si,: to ψ(Y); this is well-defined since Si,: uniquely determines
Y, as discussed above. For any i′ 6= i, we let f1 map Si′,: to q>i′u ∈ [tl, tr]. Note that by our construction, f1(Si,:) ≥
tr + 1 > tr ≥ f1(Si′,:). As a result, f1(S) can uniquely determines (X,Y), and thus there exists another MLP f2 which
can approximate the ground-truth score sδ .

Analysis with positional encodings. Here we consider the case with positional encodings. Following (Yun et al., 2020),
we will use fixed positional encodings: let 1 denote the P -dimensional all-ones vector, and let E ∈ RP×L1 denote the
matrix whose j-th column is given by (j − 1)1, and similarly let F ∈ RP×L2 denote the matrix whose j-th column is given
by (j − 1)1. Given input X ∈ [0, 1)P×L1 and Y ∈ [0, 1)P×L2 , we transform them to (X+E)/L1 and (Y +F)/L2. Note
that after the transformation, it holds that (X+E)/L1 ∈

∏P
i=1

∏L1

j=1[(j − 1)/L1, j/L1); in other words, different columns
of (X + E)/L1 have different ranges.

We can now invoke our earlier analysis. Let δ = 1/(nL1L2) for some large enough integer n such that the approximation
error in (3) is small enough. Then Lemma B.2 implies there exist feedforward networks gq and hq that can quantize the
input domains to Gδ = {0, δ, · · · , 1− δ}P×L1 and Hδ = {0, δ, · · · , 1− δ}P×L2 . Combined with the positional encodings,
we only need to consider the following input domains:

Gδ,pe :=
{
gq((X + E)/L1)

∣∣X ∈ [0, 1)P×L1
}
,

Hδ,pe :=
{
hq((Y + F)/L2)

∣∣Y ∈ [0, 1)P×L2
}
.

Note that for any X ∈ Gδ,pe, all of its columns are different, and for any different X,X′ ∈ Gδ,pe, it holds that the columns
of X are not a permutation of the columns of X′.

Then we can invoke Lemma B.3, which shows the existence of an attention network gc and a vector u such that for any
X ∈ Gδ,pe, it holds that any entry of u>gc(X) uniquely determines X. Similarly, there exists hc and v which implement
contextual mapping for documents. Now we just need the following pooling functions: for the query side, the pooling
function outputs v and gc(X):,1; for the document side, the pooling function outputs u and hc(Y):,1. The similarity matrix
is then given by [

u>v v>hc(Y):,1

u>gc(X):,1 gc(X)>:,1hc(Y):,1

]
In particular, the off-diagonal entries of the similarity matrix are enough to determine the query-document pair. Therefore
we can further use MLP scorers to approximate the ground-truth scoring function.

C. Proof of Theorem 2.2
To prove Theorem 2.2, we first construct an empirical dataset on which we show a simple dot-product dual encoder has
a large approximation error based on a rank argument. This empirical dataset can then be extended to a distribution on
[0, 1]P×L.
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Here we let L1 = L2 = L, i.e., all queries and documents have the same number of tokens. The set of queries is simply
Q := {0, 1}P×L, i.e., there are 2PL queries, each of them has dimension P × L, and each coordinate of them can be either
0 or 1. The set of documents is also given by D := {0, 1}P×L. Given a query X ∈ Q and a document Y ∈ D, define the
ground-truth score as

K∗(X,Y) := tr(X>Y) (4)

Let K∗ ∈ R2PL×2PL denote the matrix of ground-truth scores between all query-document pairs. We will show the
following result.

Lemma C.1. Let T1 : RP×L → RO denote an arbitrary function that maps a query X ∈ Q to an O-dimensional vector,
and let T2 : RP×L → RO denote an arbitrary function that maps a document Y ∈ D to an O-dimensional vector. Given
X ∈ Q and Y ∈ D, define the dot-product DE score as Kde(X,Y) = T1(X)>T2(Y), and let Kde ∈ R2PL×2PL denote
the matrix of DE scores for all query-document pairs. If O ≤ PL− 1, then the mean square error between K∗ and Kde is
at least 1/16:

1

22PL
‖K∗ −Kde‖2F ≥

1

16
.

To prove Lemma C.1, we first show the following linear algebra fact.

Proposition C.2. Let In denote the n-by-n diagonal matrix, and let Jn denote the n-by-n matrix whose entries are all 1.
For λ > 0, the matrix λIn + Jn has rank n; its top eigenvalue is λ+ n, while the remaining n− 1 eigenvalues are λ.

Proof. First consider the matrix Jn. Let 1n denote the n-dimensional vector whose entries are all 1; it is an eigenvector of
Jn with eigenvalue n. Moreover, Jn also has eigenvalue 0; the corresponding eigenspace is given by {z ∈ Rn|

∑
i zi = 0},

which has dimension n− 1. As a result, the eigenvalue 0 has multiplicity n− 1.

Moreover, note that for any n-by-n matrix A with eigenvalue µ, the matrix λIn +A has an eigenvalue λ+µ. Consequently,
the matrix λIn + Jn has eigenvalue λ+ n with multiplicity 1, and eigenvalue λ with multiplicity n− 1.

Next we prove the following properties of K∗ using Proposition C.2.

Lemma C.3. It holds that K∗ has rank PL; its top eigenvalue is 2PL−2(PL+ 1), while the remaining PL− 1 eigenvalues
are 2PL−2.

Proof. Let U ∈ R2PL×PL denote the matrix whose rows are obtained by flattening elements of {0, 1}P×L (i.e., the query
set Q and document set D). It then holds that K∗ = UU>. We will analyze the spectrum of K∗ by considering U>U,
since it has the same eigenvalues as UU>.

We claim that U>U = 2PL−2(IPL + JPL). First consider diagonal entries of U>U. For any 1 ≤ i ≤ PL, it holds that
U:,i has half entries equal to 0, and the other half entries equal to 1. As a result, (U>U)i,i = 2PL−1. Next we consider
off-diagonal entries of U>U. For any 1 ≤ i, j ≤ PL and i 6= j, it holds that Uk,i = Uk,j = 1 for 1/4 of all positions k;
therefore (U>U)i,j = 2PL−2. This proves our claim.

The claim of Lemma C.3 then follows from Proposition C.2.

Now we can prove Lemma C.1

Proof of Lemma C.1. Let T1 : RP×L → RO denote an arbitrary mapping; in particular, it could represent a Transformer with
positional encodings which maps a query X ∈ Q to anO-dimensional embedding vector. Furthermore, let T1(Q) ∈ R2PL×O

denote the embeddings of all queries given by T1. Similarly, let T2 : RP×L → RO denote an arbitrary mapping which
represents the document encoder, and let T2(D) ∈ R2PL×O denote embeddings of all documents given by T2. The matrix
of dot-product DE scores is then given by Kde := T1(Q)T2(D)>.

By definition, Kde has rank at most O. If O ≤ PL− 1, then Lemma C.3 implies that

1

22PL
‖K∗ −Kde‖2F ≥

1

22PL
(2PL−2)2 ≥ 1

16
.
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Efficient Document Ranking with Learnable Late Interactions

Then we extend Lemma C.1 to Theorem 2.2.

Proof of Theorem 2.2. Recall that the domain of the ground-truth score K∗ defined in (4) is {0, 1}P×L × {0, 1}P×L. We
first extend its domain to [0, 1]P×L × [0, 1]P×L by quantizing the inputs: given X ∈ [0, 1]P×L, its quantized version
X̂ ∈ {0, 1}P×L is obtained by mapping all entries less than 1/2 to 0 and other entries to 1. Similarly, given Y ∈ [0, 1]P×L,
we can define its quantized version Ŷ ∈ {0, 1}P×L. We then let K∗(X,Y) = K∗(X̂, Ŷ) = tr(X̂>Ŷ). Note that K∗

defined in this way is not yet continuous; later we will replace it with a continuous ground-truth function, but we will first
use K∗ below since it simplifies the analysis.

Let T1 : RP×L → RO and T2 : RP×L → RO denote arbitrary mappings. Let

M :=
{
Z ∈ RP×L

∣∣Zi,j = 0 or 1/2, 1 ≤ i ≤ P, 1 ≤ j ≤ L
}
.

For Z ∈M, let CZ :=
∏P
i=1

∏L
j=1[Zi,j , Zi,j + 1/2].

Now we want to find a lower bound on∫
X∈[0,1]P×L,Y∈[0,1]P×L

(
T1(X)>T2(Y)−K∗(X,Y)

)2
dXdY

=
∑

Z,Z′∈M

∫
X∈CZ,Y∈CZ′

(
T1(X)>T2(Y)−K∗(X,Y)

)2
dXdY

=

∫
X∈C0,Y∈C0

∑
Z,Z′∈M

(
T1(X + Z)>T2(Y + Z′)−K∗(X + Z,Y + Z′)

)2
dXdY, (5)

where we let 0 denotes the P -by-L matrix whose entries are all 0. Note that in (5), for any X,Y ∈ C0, the error can be
lower bounded by 22PL/16 using the proof of Lemma C.1. Therefore we have

(5) ≥
∫
X∈C0,Y∈C0

22PL

16
dXdY

=
22PL

16
· vol(C0)2

=
1

16
.

As mentioned above, K∗ is not continuous, and the final step of the proof is to replace it with a continuous ground-truth
function. Previously, we quantize the input by transforming entries less than 1/2 to 0 and other entries to 1. Now we
use the following transformation function φτ : φτ (z) = 0 if z ≤ 1

2 − τ , and φτ (z) = 1 if z ≥ 1
2 + τ , and otherwise

φτ (z) = 1
2 + 1

2τ (z − 1
2 ). Given X,Y ∈ [0, 1]P×L, we apply φτ to every entry of X,Y and get φτ (X) and φτ (Y), and

define K∗τ (X,Y)
K∗τ (X,Y) := tr(φτ (X)>φτ (Y)).

Note that K∗τ is continuous for any τ , and as τ goes to 0, it holds that K∗τ becomes arbitrarily close to K∗ in `2 distance.
Therefore there exists a small enough τ such that K∗τ satisfies the requirements of Theorem 2.2.
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