Hybrid RF Propagation Model using I'TM and
Gaussian Processes for Communication-Aware
Planning

Spencer Watza, Ramya Kanlapuli Rajasekaran, and Eric Frew
Ann and H.J. Smead Aerospace Engineering Sciences
University of Colorado Boulder; Boulder, Colorado 80309
Email: spencer.watza@colorado.edu; ramya.kanlapulirajasekaran @colorado.edu; eric.frew @colorado.edu

Abstract—Communication-aware robotics is a necessary step
to successfully implement multi-agent missions with UAS. While
distributed systems have been investigated, previous research
focused on using simple RF propagation models or ignored
it with assumptions. To develop higher understandings of the
affects of wireless communication between agents, higher fidelity
models are required. This work proposes a hybrid approach
for simulation and in-situ mapping of the Path Loss fields.
The architecture combines a prediction step using traditional
propagation models with a learning step to correct errors. A
version of this architecture is used for simulation and shows the
plausibility of using Gaussian Processes to find the structure of
an RF with sparse measurements.

I. INTRODUCTION

Using multiple robotic agents increases the mission possi-
bilities with small UAS (sUAS). Industry and academics are
interested in using teams of SUAS to better solve missions like
remote sensing, package delivery, and target tracking [8]], [L5],
[7], [14]. A key issue is that the agents must maintain links
between each other while solving the task in order to gain
benefits over a single agent systems [3]], [16]. This requires
the agents to be Communication-aware with their cooperative
partners (Figure [T)).

A crucial part of communication awareness is being able
to estimate the link between nodes in order to avoid drop out
or to reconnect with the network if a failure occurs [6]. In
cooperative missions sharing information is crucial and with
stronger links the information relay is more reliable. Current
research that has investigated distributed autonomous systems
have either assumed the links are maintained or used simple
transmission equations in simulation. These assumptions are
not reasonable for all operational environments, especially
in complex environments. For example, mountainous terrain
provides trouble to emergency workers and military forces
when communicating between teams due to the frequency of
large elevation changes and obstructions [1].

While there are dozens of propagation models and types that
scientists have been developing for almost an entire century,
there is no clear best model [9]. Many models are developed
for a set of frequencies in specific environments like indoor
or urban propagation [10]. Surprisingly, there has not been
significant research recently in rural propagation due to the
belief that it has already been solved, although Phillips et al.

show otherwise. We aim to bridge the gap between robotics
simple RF propagation modeling with that used in communi-
cation focused work. This work proposes a hybrid architecture
with traditional propagation models and machine learning to
act as both a simulation environment and in-situ estimation
for Communication-aware applications. Before diving into
the proposed architecture, a brief review of RF propagation
basics will be performed. The proposed architecture model
will be presented in section II. The simulation environment
and evaluations will be setup in Section III with their results
will be discussed in section I'V. The paper will conclude with
a summary and planned future work in sections V and VI
respectively.

RF Propagation Basics

In wireless communication information is modulated into an
RF signal that is transmitted through space. A receiver picks
up this signal and attempts to obtain the information encoded
in the signal. There are a variety of modulation schemes and
error coding correction techniques that are used for the digital-
analog portions of communication and will not be a focus
here. The challenge in wireless channels is the receiver is also
picking up signals from other sources or delayed signals from
the desired transmitter which creates interference. In addition,
the energy of the desired signal dissipates as it propagates and
can be reflected, refracted, and scattered by objects in space.
The ability for a receiver to piece together the information
is directly related to how strong the main signal is when
compared to the noise it is hearing; signal-to-noise ratio.

Wireless communication often doesn’t use a single fre-
quency for its signal but a bandwidth of frequencies centered
around the carrier frequency. This bandwidth helps contain
the information that is being sent. When a wireless signal
attenuates, there are two main types of fading that can occur;
frequency selective fading and flat fading. Frequency selective
fading occurs when only a portion of the frequencies in the
bandwidth attenuate while the rest are unaffected. In flat
fading, all frequencies are faded. Flat fading can be assumed
as a worst scenario as there are possibilities of recovering
information from frequency fading by use of error correction.

The total fade of a signal is often referred to the Path Loss
of a signal which is caused by free space loss, shadowing, and



multipath. Free space loss and shadowing are both characteris-
tically slow which means that the change in the amount of loss
is not dependent on time. Free space loss is energy dissipation
which is a function of the distance between the transmitter and
receiver while shadow fading is from obstructions in the path
of the signal often hills or buildings (hence the term shadow).
Multipath fading is characteristically fast which looks like
random noise and is highly time dependent but usually has
a smaller overall effect. Multipath is when multiple signals
arrive at the receiver at the same time from different paths
causing wave interference.

In this work Path Loss is referred to being free space loss
and shadowing as they are primarily functions of positions.
Multipath will be treated as an additional noise term as it
is correlated to motion, antenna, location, and temperature
among others. For additional reading material for RF prop-
agation readers can explore books on wireless channels such
as Rappaport [11]

II. MODEL

The proposed architecture to model the RF propagation
losses in-situ is a hybrid of traditional and active methods. The
architecture consists of two components; an initial prediction
of the mean field and a correction mean field. The two of
these combined will provide the estimated mean field for
the Communication-aware application. The goal is to take
the advantages of both types of RF propagation models.
Traditional models do an okay job at predicting path losses
for a given environment but will have errors, however they can
be used before an operation to provide a base line prediction.
Active methods require sampling live to “learn” the field
through some sort of model parameterization. This process can
take time to sample and process which may not be practical
before the sUAS operation begins [10]. The implementation
in this paper uses a terrain model and a Gaussian Process for
the active model.

In addition, this architecture is extensible for simulation as
the terrain model will provide location based structure to the
Path Loss. By adding a correcting field derived from flight tests
or random processes, a higher fidelity model can be generated.
This section will discuss the in-situ use of the two components.

Prediction Step

Terrain models make predictions on the shadowing and free
space loss effects using Digital Elevation Maps (DEM) which
are available from the USGS. This allows for larger extensi-
bility than most other types of models. The two main terrain
models are the Irregular Terrain Model (ITM) also known as
the Longley-Rice Model and the International Telecommunica-
tions Union Terrain model (ITU Terrain and ITU-R). SPLAT!,
an open source software, was chosen to perform the prediction
step which implements a modified version of ITM. SPLAT!
can provide point to point analysis or area coverage for Path
Loss including line of sight and average terrain elevations
for the area. In the United States, Space Radar Topography
Mission (SRTM) DEM data is available at high 1 degree arc

second resolution and lower 3 degree arc second resolution.
For more information about SPLAT! and ITM, the authors
refer the readers to http://www.gsl.net/kd2bd/splat.html and
Hufford [4].

Since SPLAT! is calculated at every pixel, it is reasonable
to make the Path Loss field discrete. A grid structure is
created centered about the region of interest and finds the
value of the cell by averaging all SPLAT! points that fall
in it. The limitation of this method is the resolution of the
DEM, however may be fine for operation due to errors in GNC.
There are different techniques to generate a more continuous
field from the SPLAT! output but would make generating and
planning on this information computationally intractable.

Correction Step

Using the same grid structure that was generated for the
prediction step, a correction is generated for each cell from
a Gaussian Process (GP). GP were chosen as there has
been research showing that they are good tools for learning
spatiotemporal models such as wind from Sheahan et al. [13]
and RF [2]. Gaussian Processes are a nonparametric data-
driven Bayesian method for non-linear regression [12]. The
first step of a Gaussian Process is to learn the hyper-parameters
for a continuous probability density function from a finite set
of observations. Using the learned model parameters, the GP
predicts the joint distribution for the entire space by determin-
ing the value at new points with conditional probability.

For in-situ architecture, the observations are taken as the
dimensional positions along with the Path Loss (backed out
of the Received Signal Strength). In this research, both the
total Path Loss and Correction Model are desired and thus two
different GPs are setup. PL = fy,;(p) and EMF = fgamrp(p).
One of the most important part of the GP framework is
the kernel function (covariance function). The most common
kernel function is the Squared Exponential shown in Eq [I]

—(X1 - X2)2)
202

where the hyper parameters are 6 = [l afc]. The first hyper-
parameter [ is the characteristic length scale and a]% is known
as the signal variance. Learning the hyper-parameters is time
consuming and is related to the number of data samples
collected. In order to account for the smaller processing units
onboard, the learning and prediction steps would be done at a
much lower rate like once a minute. The prediction from the
GP can be stored as a table from which communication aware
applications can use along with the prediction from SPLAT!.
There could be additional ways to increase the speed at which
learning is performed such as sparsifying the measurements
into the grid structure but the effects of these on performance
is not known.

k(X1, Xs) = UJ% exp( (1)

III. SIMULATIONS

For simulations, the architecture was extended to act as
the ‘truth’ data. SPLAT! output was used as the baseline
and then a randomly generated correction field was applied



belief state b,

Sensor Model

aircraft state x,,,

Prediction J

v

| measurement

Sensor Fusion

I
1 ztar
i

~

11010000 1)

00101101
10101110

Quality of
k Information

Cooperative
Aircraft Guidance

Airborne Sensor

Platform

~tp

Geospatial RF
Mapping

Network
\ Prediction

Fig. 1.

to create a simulated true mean field. A noise layer was
added on top of this based on LOS characteristics and Doppler
spectrum to simulate multipath effects and other sensor errors.
Two different random models were used to for the generated
correction field models. Experiments were conducted evaluat-
ing the capability of the Gaussian Process to learn the true
mean field and the randomly generated correction field. For
simulations, MATLAB’s environment was used along with
their machine learning and statistical toolbox for the Gaussian
Process through fitrgp and predict.

Correction Field Generation

The first model adds an independent Gaussian random
variable to each cell. The parameters for the Gaussian random
variable come from Kasampalis et al. [3] and are set as pu
= 13.4 and o = 7.1. These parameters are acceptable are
the worst reported values from SPLAT! in the paper even if
it was for another wavelength. Since there is no correlation
between cells and transmitter location this would be a worst
case scenario for the error field. The second model takes the
first model then adds a level of correlation between the cells
for the variation and mean. Intuitively this makes sense as RF
propagation is correlated to terrain and areas near each other
should experience similar levels of modelling errors. Equation
[2]is the scaling factor for the variance and mean based on the
distance from the transmitter. d,,,, is the max distance away
possible from the transmitter and by scaling this value by b a
reasonable result can be generated.
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Figures [2] show the results from these two models with a

transmitter centered in the middle of the grid structure.

SF =

Measurement Model

Lastly, measurement noise is added on top of the mean
field generated by SPLAT! and the correction field represent-
ing multipath effects and sensor noise. Multipath fading is
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RSSI,
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correlated to the antenna parameters (omni vs directional),
relative motion of the transmitter/receiver and the line of sight
characteristics. Two common statistical distributions have been
used to model multipath fading; Rician if there is a LOS
component and Rayleigh with no LOS. The parameters of
these two distributions are related to the Doppler spectrum.
The method used to generate these distributions is the sum of
sinusoids. The approach taken is outlined in Rappaport [11]].
We generate two frequency components for the wave based on
the carrier frequency w,. and the maximum Doppler frequency
wy and perform a phase shift based on the angle of arrival from
a Uniform distribution where F, is the carrier frequency and
Ve 1s the relative velocity.

wg = %cos(’U’(O, 2m)) 3)

we = 27F, “)
N

ray = Z acos((we + wq)t +" U'(0,27)) ®)
i=1

where a is generated from a Weibull distribution with a o of
3. The difference between the Rayleigh to the Rician is that
one component dominates and has no phase shift. The number
of paths was chosen to be 16 for these simulations.

N-1
rice = 4.5005((wc+wd)t)—|—z acos((we+wq)t+'U’(0,27))

i=1

(6)
Using these two sum of sinusoids, they are demodulated using
Quadrature amplitude modulation to get the imaginary and
real components of the signal. By taking the norm of these
and converting to dB the fade is generated for a set number
of time samples on the time scale of the frequencies. When
a measurement is taken, one sample is grabbed from the
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Fig. 2. Simulated error correction fields using model 1 (left) and model 2 (right)

Parameter MRS
Earth Dielectric Constant (relative permittivity) | 13.00
Earth Conductivity (average ground) .002
Atmospheric Bending Constant 301.00
Frequency in MHZ 2480

Radio Climate 5

Polarization 0

Fraction of situations 9

Fraction of time 9

TABLE I
L1ST OF THE SPLAT! PROPAGATION CONFIGURATION PARAMETERS

generated time samples. Additional noise is added on top of
the multipath fade as sensor errors randomly generated with a
mean of .5 dB.

Location

Only a single region of interest will be presented here but
the results are similar across multiple regions that were tested.
The region that was chosen is the CU Mountain Research
Station (MRS) located at 40.0331548, -105.5367712. This area
is a mix of heavily wooded areas with large elevation changes.
This provides a reasonable environment that represents con-
ditions that emergency fire fighting crews might experience
in the rural parts of Colorado Rockies. For the simulations,
the transmitter is centered at the reference GPS location with
an antenna height of 2 meters and a 3km square is used
to constrain the region of interest. A simple aircraft model
is used to fly a lawn-mower pattern with 200 meter E-W
spacing with an extra 100 meter buffer. The aircraft model is
flying at constant AGL which the aircraft will ‘immediately’
perform altitude changes if a change in elevation occurs. This
is a reasonable assumption for now due to possible sensor
requirements and flight restrictions. The RSSI measurement
sample rate is set at 2 HZ and the GP components will be ran
after the entire flight path is flown. The SPLAT! configuration
for this region is listed in Table [[

The Fraction of Situations and Time are both tunable pa-

rameters to determine the statistics of the median value output
from the software and what was received. Time has to do with
atmospheric fluctuations while Situation is position based. The
higher the percentage the less variability in the model.The
choices for Earth Dielectric Constant and Conductivity is
based on table provided in SPLAT!’s documentation. These
are four main tunable parameters to tweak the output to better
fit the terrain.

IV. RESULTS

The results for the Mountain Research Station simulation
are shown here and are similar across the other regions that
were analyzed. The main focus of this paper is investigating
the difference in SPLAT! resolution, SPLAT! to Free Space
Loss, and the capability of the Gaussian Processes to learn
the true mean field and generated corrected field.

A. DEM Resolution Comparison

The Figures in [3] and [ show significantly different results.
While not direct comparisons since the higher resolution has
more grids, the shape of the top half of the region is not
very similar at all. It is likely that the SRTM data with 3 arc
second resolution has already perform some averaging across
the terrain space and is resulting in incorrect terrain model. At
this point, with out truth data to validate it is recommended
to use the 1 Arc Second data when available.

B. Simple Path Loss Comparison to SPLAT!

Figure [5] shows that the largest areas are a majority of the
space that the two models were propagating in. The areas of
the closest performance of Free Space Loss and SPLAT! Path
Loss is when there is no longer LOS to the aircraft, the signal
loss is closest to FSPL. Free Space Loss attenuates the signal
significantly more than what SPLAT! predicts suggesting that
FSPL is a worst case scenario for losses. This is not surprising
as it would be expected that the ground plane would provide
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Fig. 3. SPLAT! output for 1 arc second resolution DEM for the MRS region
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Fig. 4. SPLAT! output for 3 arc second resolution DEM for the MRS region

some constructive wave interference at distances away related
to the wavelength of the signal.

C. Simulated Mean Fields

Figures [6] and [7] illustrates the two simulated mean fields
from SPLAT! prediction and the correction model using
method 1 and 2. The key difference between the two models is
that model 2 has more variation away from the center while the
first model is consistently random all across. The correction
models with the current parameters do not affect the overall
shape of the path loss field.

D. GP Predicted Error Fields

Figures [§] and [9] are the GP predicted correction fields with
figures [10] and [TT] being the difference of the GP predictions
and the simulated truth values for the correction fields. The
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Fig. 6. Simulated mean path loss field from SPLAT and correction field with
model 1

prediction for the first model resembles a randomly generated
process of noise however the second one only shows the
gradual trend of the correction field losing some of the noise.
This is an interesting results because it predicts how the
correlation changes with position outwards but on other runs
it looks more like the results for model 1. This is likely a
function of the mulitpath effects which is different for every
run. Unfortunately, neither of the models do a very good job of
predicting the values for the field. The mean error for model 1
is 35.4 dB with a variance of 73.6 dB. For model 2 the mean
error is 37.8 dB with a corresponding 188.3 dB variance. The
mean is significantly higher than expected and is likely a result
of the way the error measurements are taken without filtering
any of the multipath effects. In addition it is very likely that
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the large errors correspond to how sparse the data is sampled.

Only a small number of locations are actually measured and
thus the unmeasured errors are highly erroneous and skew the
data. Finding this correction field may be more difficult than
anticipated without high sample sets.

E. GP Predicted Mean Fields

Figures [12) and [[3] are the true mean field predictions using
the GP while figures [T4] and [T3] are the error plots between
the GP prediction and truth. Comparison of the structure for
the mean field resembles that of the GP prediction. The main
parts that had errors are the boundaries where the signal
drops off. The error grows more so in between the path were
measurements were collected. The mean error for model 1 is
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Fig. 11.  Error between the GP prediction and simulated values for the error
correction field with model 2
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Fig. 13.  GP prediction of the mean field from simulation with model 2

7.54 dB with a variance of 166 dB while model 2 had a mean
of 7.7 dB error and 169 dB variance. The correction field does
not have a major effect on the overall performance of the GP
to find the structure of the RF Field. It would be expected that
with filtering to remove any of the noise from the simulated
multipath effects the mean error could be decreased further.

V. CONCLUSION

This paper describes an architecture that can be used for
simulation and in-situ learning of the attenuation of RF signals
in the environment. The architecture consists of two compo-
nents, a prediction mean field and a correction mean field. The
prediction mean field is generated using SPLAT!’s modified
ITM. The correction mean field is learned online with a
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Fig. 15.  Error between the GP and Simulated mean fields for model 2

Gaussian Process. For simulation purposes the correction field
is generated with simple models when no data is present. In
addition measurement sensor noise is added to the simulation
model accounting for multipath affects.

A single region of interest at CU Mountain Research
Station is presented. Comparisons of the two different DEM
resolutions for SPLAT! from SRTM is performed. While no
truth data is available to verify these results, it is recommended
to use the high res maps whenever possible. A comparison
of SPLAT!’s output with Free Space Loss demonstrates that
SPLAT!’s path loss values are lower than just free space loss as
a result of the terrain affects. Lastly, the simulated mean field
and results from the GP predictions are compared for both the
correction field and mean path loss field. The results suggest
that accurately finding the correction field will be difficult
without large sample sets however it does provide a general
overview of the structure. The error for the GP predictions of



the correction field were around 30 dB mean error. The GP did
a significantly better job at learning the true mean field with
the means around 7 dB. The GP learned structure looked very
similar to the truth data with the largest areas in places that
no samples were taken and the truth data had large variations.
It is believed that by adding in a filtering technique to remove
the time dependent noise, the means for both GP learning
methods would be decreased. Further investigation is needed in
seeing how the poor mapping of the correction field performs
for use in Communication-aware applications or if additional
modifications to the architecture is needed. Preliminary results
in this area (not shown in the paper) indicate that the correction
field error does not hinder the architecture’s performance for
communication applications.

VI. FUTURE WORK

The main two focus areas of continuing this work is collect-
ing data of actual RF path loss fields in several regions that
CU Boulder has COAs available for. This data collection will
occur summer and fall 2017. Using this data, the simulation
correction models will be refined to more accurately resemble
true environments. These flight tests will be conducted with
fixed wing and multirotor vehicles in order to characterize
the noise effects between stationary and mobile nodes. The
second area of focus is to continue developing the simulation
model features by adding in signal-to-noise ratios, frequency
selective fading, bit rates, and other channel components.
Part of this includes more advanced vehicle dynamics and
adding a 3rd dimension to the models to fly ASL rather
than AGL. This simulation model will than be applied to
specific Communication-aware applications of interest to the
researchers at RECUV including RF tracking, MANET, and
communication relaying.
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