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ABSTRACT

Building robust online content recommendation systems requires learning com-
plex interactions between user preferences and content features. The field has
evolved rapidly in recent years from traditional multi-arm bandit and collabora-
tive filtering techniques, with new methods integrating Deep Learning models that
enable to capture non-linear feature interactions. Despite progress, the dynamic
nature of online recommendations still poses great challenges, such as finding the
delicate balance between exploration and exploitation. In this paper we provide a
novel method, Deep Density Networks (DDN) which deconvolves measurement
and data uncertainties and predicts probability density of CTR (Click Through
Rate), enabling us to perform more efficient exploration of the feature space. We
show the usefulness of using DDN online in a real world content recommendation
system that serves billions of recommendations per day, and present online and
offline results to evaluate the benefit of using DDN.

1 INTRODUCTION

In order to navigate the vast amounts of content on the internet, users either rely on active search
queries, or on passive content recommendations. As the amount of the content on the internet
grows, content discovery becomes an increasingly crucial challenge, shaping the way content is
consumed by users. Taboola’s content discovery platform aims to perform ”reverse search”, using
computational models to match content to users who are likely to engage with it. Taboola’s content
recommendations are shown in widgets that are usually placed at the bottom of articles (see Fig. 1)
in various websites across the internet, and serve billions of recommendation per day, with a user
base of hundreds of millions of active users.

Traditionally recommender systems have been modeled in a multi-arm bandit setting, in which the
goal is to a find a strategy that balances exploitation and exploration in order to maximize the long
term reward. Exploitation regimes try to maximize the immediate reward given the available in-
formation, while exploration seeks to extract new information from the feature space, subsequently
increasing the performance of the exploitation module.

One of the simplest approaches to deal with multi-arm bandit problems is the ε-greedy algorithm, in
which with probability ε a random recommendation is chosen, and with probability 1− ε the recom-
mendation with the highest predicted reward is chosen. Upper Confidence Bound -UCB- (Auer et al.
(2002)) and Thompson sampling techniques (Thompson (1933)) use prediction uncertainty estima-
tions in order to perform more efficient exploration of the feature space, either by explicitly adding
the uncertainty to the estimation (UCB) or by sampling from the posterior distribution (Thompson
sampling). Estimating prediction uncertainty is crucial in order to utilize these methods. Online rec-
ommendations are noisy and probabilistic by nature, with measured values being only a proxy to the
true underlying distribution, leading to additional interesting challenges when predicting uncertainty
estimations.

In this paper we present DDN, a unified deep neural network model which incorporates both mea-
surement and data uncertainty, having the ability to be trained end-to-end while facilitating the ex-
ploitation/exploration selection strategy. We introduce a mathematical formulation to deconvolve
measurement noise, and to provide data uncertainty predictions that can be utilized to improve
exploration methods. Finally, we demonstrate the benefit of using DDN in a real world content
recommendation system.
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Figure 1: Taboola’s recommendation widget example.

2 RELATED WORK

Over the past decade deep learning has been applied with tremendous success in many different
application domains such as computer vision, speech recognition and machine translation. In recent
years we have seen a corresponding explosion of deep learning models in the recommender systems
landscape, revolutionizing recommendation architectures and providing superior performance over
traditional models ( Zhang et al. (2017); Cheng et al. (2016); Covington et al. (2016); Okura et al.
(2017)). Deep learning’s ability to capture non-linearities has enabled to model complex user-item
relations and to integrate higher level representations of data sources such as contextual, textual and
visual input.

Traditionally recommender systems have been modeled in a multi-arm bandit setting, where the goal
is to find an exploitation/exploration selection strategy in order to maximize the long term reward.
A similar challenge has been faced in Reinforcement learning (RL) setting, in which an agent has
to decide when to forego an immediate reward and to explore its environment. Bayesian neural net-
works (Neal (2012)) using distributions over the weights were applied by using either sampling or
stochastic variational inference (Kingma & Welling (2013); Rezende et al. (2014)). While Bayesian
models offer a mathematically grounded framework, they usually entail a prohibitive computational
cost. Blundell et al. (2015) proposed Bayes by Backprop algorithm for the variational posterior es-
timation and applied Thompson sampling. Gal & Ghahramani (2016) proposed Monte Carlo (MC)
dropout, a Bayesian approximation of model uncertainty by extracting estimations from the differ-
ent sub-models that have been trained using dropout. Kendall & Gal (2017) separated uncertainty
into two types, model and data uncertainty, while studying the effect of each uncertainty separately
in computer vision tasks. Li et al. (2010a) formulated the exploration/exploitation trade-off in per-
sonalized article recommendation as a contextual bandit problem and proposed LinUCB algorithm,
which adapts the UCB strategy to support models based on contextual features.

The effect of measurement noise and noisy labels has been studied extensively (Frénay & Verleysen
(2014)). Mnih & Hinton (2012) proposed a probabilistic model for the conditional probability of
seeing a wrong label, where the correct label is a latent variable of the model. Goldberger & Ben-
Reuven (2017) explicitly modelled noise by an additional softmax layer that connects the correct
labels to the noisy ones. In this paper we model measurement noise using a Gaussian model and
combine it with a MDN.

3 TABOOLA’S RECOMMENDER SYSTEM OVERVIEW

Taboola’s revenue stream is facilitated by online advertisers, who pay a fixed amount CPC (Cost Per
Click) for each user that is redirected to their site after clicking on a Taboola’s recommendation. The
algorithm’s total value is measured in RPM (Revenue Per Mille) where RPM = CTR ∗ CPC ∗
1000, is the average revenue for every 1000 recommendations and CTR (Click Through Rate) is the
probability of a recommendation being clicked. Content recommendations are ranked according to
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Figure 2: High level overview of candidation and ranking architecture.

their predicted RPM; recommendations with the highest predicted RPM will be shown to the user.
Taboola’s main algorithmic challenge is to provide an estimate of the CTR in any given context.

Taboola’s recommendation engine needs to provide recommendations within strict time constraints
(< 50ms). It is infeasable to rank millions of recommendations in that time frame; in order to
support this we have partitioned the system into a two-step process, candidation and ranking (see
Fig. 2). During the candidation phase, we narrow down the list of possible recommendations to thou-
sands based on their RPM prediction in a specific context. CTR prediction in this setting is based on
features such as the creative of recommendations (text and image) and empirical click statistics. This
relatively small list of recommendations is written to distributed databases in worldwide data cen-
ters, and are re-calculated by Taboola’s servers continuously throughout the day. When the frontend
servers get a request for recommendations from the browser, they retrieve the relevant ready-made
recommendation list, and perform an additional ranking of the recommendations based on additional
user features using a DNN, further personalizing recommendations. This system architecture shows
similarities to (Cheng et al. (2016)).

The dynamic nature of Taboola’s marketplace means that our algorithm constantly needs to evaluate
new recommendations, with tens of thousands of new possible recommendations every day. To
support this, we split the algorithm into exploration and exploitation modules. The exploitation
module aims to choose the recommendations that maximize the RPM, while the exploration module
aims to enrich the dataset available for exploitation models by showing new recommendations.

In this paper we focus on the candidation phase and the corresponding CTR prediction task, leaving
out of this scope the second ranking step.

4 DEEP DENSITY NETWORK AND UNCERTAINTY

In this section we present Deep Density Network (DDN) and describe its ability to deconvolve
measurement noise and integrate it with data uncertainty in a unified model. Employing uncertainty
during the training phase can be interpreted as loss attenuation, making our model more robust
to noisy data. In addition, accurate uncertainty estimations enable us to employ more efficient
exploitation/exploration selection strategies as discussed below.

4.1 DEEP ARCHITECTURE

Our deep recommender model is a hybrid of a content-based and a collaborative filtering (CF) rec-
ommendation system. A high level overview is depicted in Fig. 3. We use two separate subnets
which model the target and the context features. The target subnet receives as input the content
features seen by the user and additional features such as the recommendation age which are unseen
to the user. The categorical features are passed through an embedding layer and concatenated along
with the numerical features, followed by fully connected layers with a RELU activation function.
The result is the target feature descriptor. Similarly, the context features are modeled using a separate
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Figure 3: A hybrid content-based and collaborative filtering model accounting for data and mea-
surement uncertainties. Both target and context features are passed through a DNN, then through a
fusion sub-network, and finally through a MDN layer that outputs the parameters of a distribution
over CTR. The number of recommendations r is used for attenuating the loss of noisy examples.

DNN, taking as input context features such as device type where the target will be recommended,
resulting in the context feature descriptor. The target and context feature descriptors are then fused
using a DNN which outputs both the CTR and its uncertainty prediction, with the measurement
being compensated as described in sec. 4.2.

In order to train our models, we collect and use historical data which consists of target and context
pairs (t, c), where t is the target we recommended in a specific browsing context c. Each row in our
training dataset includes the empirical CTR of the target-context pair (t, c), together with additional
target and context features. We train models that optimize CTR prediction on this dataset using
Maximum Likelihood Estimation (MLE) as discussed below.

4.2 MODELING UNCERTAINTY

We separate uncertainty into two different types: measurement and data uncertainty. Measure-
ment uncertainty corresponds to the uncertainty of our observation due to the measurement noise
introduced by the binomial recommendation experiment. This type of uncertainty depends on the
number of times r, a specific target x = (t, c) pair was recommended, i.e. target t was recom-
mended in context c. Data uncertainty corresponds to the inherent noise of the observations; In
contrast to measurement noise, it cannot be reduced even if more data was to be collected, as it cor-
responds to the inherent variability of the data. Data uncertainty is categorized into homoscedastic
and heteroscedastic uncertainty. Homoscedastic is constant over all different inputs, in contrast to
heteroscedastic which depends on the inputs, i.e. different input values may have more noisy outputs
than others.

Simple algorithms like ε-greedy choose actions indiscriminately during exploration, with no specific
preference for targets that have higher probability to be successful in exploitation, or for targets that
hold significant information gain about the feature space, for example targets that contain words that
weren’t previously recommended. It is beneficial to select among the non-greedy actions according
to their potential of actually being optimal, taking into account both the expectation and the variance
of their CTR estimates. Estimating uncertainty enables us to employ the upper confidence bound
(UCB) algorithm for a better and adaptive selection strategy between exploitation/exploration.
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We estimate both the mean payoff µt and the standard deviation σt of each target t and select the
target that achieves the highest UCB score, where a is a tunable parameter:

A = argmax
t

(µt + a · σt) (1)

Our marketplace is defined by a very high recommendation turnover rate, with new content being
uploaded everyday and old one becoming obsolete. Probabilistic modeling of the data uncertainty
assists us in using the exploration model in order to sample targets that have the highest potential
value, by employing the UCB strategy.

In contrast to the variance captured by data uncertainty, model uncertaintiy corresponds to what the
model ”knows” about the feature space. Gal & Ghahramani (2016) show that model uncertainty
can capture the confidence about different values in the feature space. This however comes at a
prohibitive computational cost when calculated using dropout. We explore the feature space by
setting to Out Of Vocabulary (OOV) categorical feature values which have been shown less than a
minimal threshold. As shown in Fig.4, OOV values indeed get larger uncertainty estimations.

4.2.1 INTEGRATING MEASUREMENT NOISE

In order to deconvolve the data and measurement uncertainties we explicitly model them together.
Let Y , Y ∗ and ε be three random variables given x = (t, c). Y corresponds to observed CTR, after
recommending (t, c) pair, r times. Y ∗ corresponds to the true/clean CTR without the measurement
noise, i.e. the observed CTR had we recommended t infinite times in c. ε corresponds to the binomial
noise error distribution.

Y = Y ∗ + ε
(2)

We are modelling data uncertainty by placing a distribution over the output of the model and learning
it as a function of the different inputs. To this end, we are using Mixture Density Network (MDN),
which employ a Gaussian Mixture Model (GMM) to model Y ∗ (Bishop (1994)).

Y ∗ ∼
∑
i

αiN (µi, σ
2
i ) (3)

For every input the MDN model predicts the coefficients of the GMM; These are the mixing co-
efficients, αi, µi and σi, from which we estimate the expected value and the standard deviation of
Y ∗.

The measurement uncertainty ε corresponds to the measurement noise distribution which we ap-
proximate with a Gaussian distribution:

ε ∼ N (0, σ2
ε ) (4)

Due to the fact that data noise is small given x, we enforce constant σε = f(µ, r) for every y∗|x
where µ is the expected value of y∗|x. In this way, Y ∗ |= ε given x, as σε depends only on r and µ.
We can rewrite eq. 2 using eq. 3 and 6 to:

Y ∼
∑
i

αiN (µi, σ
2
i + σ2

ε ) (5)

This enables us to deconvolve and model both data and measurement uncertainties, using a single
model which combines MDN and a Gaussian model. Given this probability estimation, the training
process uses SGD for minimizing the loss:

L = − log(P (y|x)) (6)

5 EXPERIMENTS

5.1 DATA AND MODELS

Data: For the purpose of this paper we use the browsed website (i.e. publisher) as the user context.
In all of the experiments we used three months of historical data, containing ∼10M records of
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Figure 4: Ratio of estimated σ, before and after feature values are set to OOV. Dashed vertical lines
are the median values.

Dataset MDN DDN Improvement
D1 0.2681 0.25368 5.3%
D2 0.25046 0.24367 2.7 %

Table 1: Relative improvement in the MSE between MDN and DDN when trained over two datasets
that differ by the amount of measurement noise.

target-publisher pairs. The dataset contains ∼ 1M unique targets and ∼10K unique publishers.
Every experiment has been run on multiple time slots to validate that the results were statistically
significant.

Models: We have experimented with the following models:

1. REG is a regression model that outputs a point estimate of the CTR where the loss is the MSE
between the actual and the predicted CTR.

2. MDN is a model that estimates the distribution over the CTR utilizing a mixture of Gaussians
(see sec. 4.2.1).

3. DDN is a model that estimates the distribution over the CTR combining the data and measurement
uncertainties (see sec. 4.2.1).

In order to have a fair comparison, we tuned the hyper-parameters (e.g. embedding sizes, number
of layers, number of mixtures) for each model separately; we performed thousands of iterations of
random search, and chose the parameters that yielded the best results.

5.2 METRICS AND EVALUATION

We evaluate our models using Mean Square Error (MSE). Due to the dynamic nature of online
recommendations it is crucial that we evaluate our models online within an A/B testing framework,
by measuring the average RPM of models across different publishers. In addition we utilize an
online throughput metric which aims to capture the effectiveness of the exploration mechanism.
Prior works have put an effort on how to measure exploration; Li et al. (2010b) built an offline
simulator that enabled them to test different models to see which one achieves target coverage faster.
This is not feasible in our case given the large turnover rate in the recommendation pool. Instead,
we use the following targets throughput metric.

Let < ti, pi > be the set of target-publisher pairs that accumulated enough data to achieve empiric
binomial statistical significance in a given day. A model is said to be contributing to < ti, pi >
if it has recommended ti in pi in the previous day more times than a predefined threshold. Our
throughput metric is defined by the number of targets that a specific model contributed to this set.
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Model REG MDN DDN
RPM lift 0% 1.2% 2.9%

Table 2: A comparison of the online RPM lift between the different models.

a 0 0.5 1 1.5
RPM lift 0% -0.05% -0.2% -0.3%

Throughput lift 0% 6.5% 9.1% 11.7%

Table 3: RPM lift vs targets throughput as a function of different values of c.

5.3 EXPERIMENTAL RESULTS

Feature importance: Understanding the parameters of deep learning networks poses a significant
challenge compared to linear and tree based models. We utilize the fact that our models output a full
distribution rather than a point estimate to evaluate feature importance. In our analysis, we evaluate
the effect on the σ prediction when a feature is ”hidden” from the model during inference, by setting
it to OOV. For each feature, we calculate statistics over the ratio σoov/σ, between the predicted σ
before and after setting it to OOV.

In Fig. 4 we observe that the analyzed features have a large impact on data uncertainty. The median
values of the various features are greater than one, validating our assumption that feature values that
did not appear in the training data will obtain a higher uncertainty estimation. In addition, we see a
distinct ordering of feature importance, where new advertisers yield a larger ratio than new targets.
Using σ in a UCB setting (as in equation 1) will prioritize new targets, especially ones from new
advertisers - a desired behaviour both in terms of information gain and advertiser satisfaction.

Measurement noise: In Table 1 we compare the MDN and DDN models by training them on two
different datasets, D1 and D2. D1 differs from D2 by the amount of noise in the training samples;
D1 contains noisy data points with relatively small amount of empirical data, while D2 contains
examples with higher empirical statistical significance. We observe that DDN improves on MDN
performance by 2.7% when using D1 for training, and by 5.3% when using D2. This validates that
integrating measurement noise into our modeling is crucial when the training data contains very
noisy samples, by attenuating the impact of measurement noise on the loss function. (see sec. 4.2.1)

Model comparison: In Table 2 we compare the three different models discussed previously in terms
of online RPM. We observe that DDN is the best performing model, outperforming MDN and REG
by 1.7% and 2.9% respectively. These results verify once again that the loss attenuation achieved by
DDN during training has enabled it to converge to better parameters, generalizing better to unseen
examples.

RPM lift vs. targets throughput: We analyzed the effect of the parameter a found in 1. From a
theoretical standpoint, increasing this value is supposed to prioritize higher information gain at the
expense of RPM, by choosing targets that the model is uncertain about. This trade-off is worthwhile
in the long term. In Table 3 we observe that there is an inverse correlation between RPM and
throughput which is triggered by different values of a, with targets throughput increasing by 11.7%
when setting a = 1.5. Choosing the right trade-off is an application specific concern, and we chose
the trade-off induced by a = 0.5, resulting in a good throughput gain with a small RPM cost.

6 CONCLUSIONS

We have introduced Deep Density Network (DDN), a unified DNN model that is able to predict
probability distributions and to deconvolve measurement and data uncertainties. DDN is able to
model non-linearities and capture complex target-context relations, incorporating higher level rep-
resentations of data sources such as contextual and textual input. We have shown the added value
of using DNN in a multi-arm bandit setting, yielding an adaptive selection strategy that balances
exploitation and exploration and maximizes the long term reward. We presented results validat-
ing DDN’s improved noise handling capabilities, leading to 5.3% improvement on a noisy dataset.
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Furthermore, we observed that DDN outperformed both REG and MDN models in online experi-
ments, leading to RPM improvements of 2.9% and 1.7% respectively. Finally, by employing DDN’s
data uncertainty estimation and UCB strategy, we improved our exploration strategy, depicting 6.5%
increase of targets throughput with only 0.05% RPM decrease.
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