
Workshop track - ICLR 2018

FAST AND ACCURATE TEXT CLASSIFICATION: SKIM-
MING, REREADING AND EARLY STOPPING

Keyi Yu
Department of Computer Science
University of Illinois at Urbana-Champaign
Tsinghua University
yu-ky14@mails.tsinghua.edu.cn

Yang Liu
Department of Computer Science
University of Illinois at Urbana-Champaign
liu301@illinois.edu

Alexander G. Schwing
Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign
aschwing@illinois.edu

Jian Peng
Department of Computer Science
University of Illinois at Urbana-Champaign
jianpeng@illinois.edu

ABSTRACT

Recent advances in recurrent neural nets (RNNs) have shown much promise in
many applications in natural language processing. For most of these tasks, such
as sentiment analysis of customer reviews, a recurrent neural net model parses the
entire review before forming a decision. We argue that reading the entire input is
not always necessary in practice, since a lot of reviews are often easy to classify,
i.e., a decision can be formed after reading some crucial sentences or words in the
provided text. In this paper, we present an approach of fast reading for text classi-
fication. Inspired by several well-known human reading techniques, our approach
implements an intelligent recurrent agent which evaluates the importance of the
current snippet in order to decide whether to make a prediction, or to skip some
texts, or to re-read part of the sentence. Our agent uses an RNN module to encode
information from the past and the current tokens, and applies a policy module to
form decisions. With an end-to-end training algorithm based on policy gradient,
we train and test our agent on several text classification datasets and achieve both
higher efficiency and better accuracy compared to previous approaches.

1 INTRODUCTION

Recurrent neural nets (RNNs), including GRU nets (Chung et al., 2014) and LSTM nets (Hochreiter
& Schmidhuber, 1997), have been increasingly applied to many problems in natural language pro-
cessing. Most of the problems can be divided into two categories: sequence to sequence (seq2seq)
tasks (Sutskever et al., 2014) (e.g., language modeling (Bengio et al., 2003; Mikolov et al., 2010),
machine translation (Cho et al., 2014; Bahdanau et al., 2014; Kalchbrenner & Blunsom, 2013), con-
versational/dialogue modeling (Serban et al., 2016), question answering (Hermann et al., 2015; We-
ston et al., 2015; Lee et al., 2016), and document summarization (Rush et al., 2015; Nallapati et al.,
2016)); and the classification tasks (e.g., part-of-speech tagging (Santos & Zadrozny, 2014), chunk-
ing, named entity recognition (Collobert et al., 2011), sentimental analysis (Socher et al., 2011),
and document classification (Kim, 2014; Sebastiani, 2002)). To solve these problems, models often
need to read every token or word of the text from beginning to the end, which is necessary for most
seq2seq problems. However, for classification problems, we do not have to treat each individual
word equally, since certain words or chunks are more relevant to the classification task at hand. For
instance, for sentiment analysis it is sufficient to read the first half of a review like “this movie is
amazing” or “it is the best I have ever seen,” to provide an answer even without reading the rest of
the review. In other cases, we may want to skip or skim some text without carefully checking it.
For example, sentences such as “it’s worth to try” are usually more important than irrelevant text
such as “we got here while it’s still raining outside” or “I visited on Saturday.” On the other hand,
sometimes, we want to re-read some sentences to figure out the actual hidden message of the text.

1

Workshop track - ICLR 2018

LSTM

Classifier

Stop?

Next Move

Yes No
Policy

Module

Output Label

action

…

…

0 1 2 K

ht

label probability
Reread

Read

Sequentially

Skip 1

Token

Skip K-1

Tokens

πs

πc πn

Token 1

Encoder

Skip 2

Tokens

Token 4 Token 5

LSTM

Output Label

Encoder Encoder

Read

Sequentially

Reread

LSTM LSTM

Stop

Figure 1: Outline of the proposed model.

All of these techniques enable us to achieve fast and accurate reading. Similarly, we expect RNN
models to intelligently determine the importance or the relevance of the current sentence in order to
decide whether to make a prediction, whether to skip some texts, or whether to re-read the current
sentence.

In this paper, we aim to augment existing RNN models by introducing efficient partial reading for
classification, while maintaining a higher or comparable accuracy compared to reading the full text.
To do so, we introduce a recurrent agent which uses an RNN module to encode information from
the past and the current tokens, and applies a policy module to decide what token to read next
(e.g., rereading the current token, reading the next one, or skipping the next few tokens) or whether
the model should stop reading and form a decision. To encourage fast and accurate reading, we
incorporate both classification accuracy and the computational cost as a reward function to score
classification or other actions made by the agent during reading. We expect that our agent will
be able to achieve fast reading for classification with both high computational efficiency and good
classification performance. To train this model, we develop an end-to-end approach based on the
policy gradient method which backpropagates the reward signal into both the policy module (also
including the classification policy) and the recurrent encoder.

We evaluate our approach on four different sentiment analysis and document topic classification
datasets. By comparing to the standard RNN models and a recent LSTM-skip model which imple-
ments a skip action (Yu et al., 2017), we find that our approach achieves both higher efficiency and
better accuracy.

2 METHODS

2.1 MODEL OVERVIEW

Given an input sequence x1:T with length T , our model aims to predict a single label y for the entire
sequence, such as the topic or the sentiment of a document. We develop a technique for skimming,
re-reading, early stopping and prediction, with the goal of (i) skipping irrelevant information and
reinforcing the important parts, and (ii) to enable fast and accurate text classification. Specifically,
the model will read the current token/chunk xit at time step t, encode the data xit and previous
information ht−1 into a feature ht, and then decide the next token to read by skimming/skipping
or to stop to form a final prediction (see Figure 1). Such a model can be fully defined on top of a
RNN structure and trained in an end-to-end fashion via back-propagation of a well defined reward
signal. Both skimming and re-reading actions can be defined similarly by first choosing a step size

2

Workshop track - ICLR 2018

k ∈ {0, 1, 2, · · · ,K} and then setting it+1 = it + k. When k = 0, the model rereads the current
token; when k = 1, the model moves to the next token sequentially; when k > 1, the model skips
the next k − 1 tokens. If the current action is to stop or the next token to read is after the last token
of the input sequence text, the model will stop and output a label. All of these actions are defined
by a policy module Π which takes the recurrent feature ht as input and outputs a stop signal and a
label or generates a step size k and moves to the next token xit+1=it+k.

2.2 MODEL SPECIFICATION AND TRAINING

The design of the policy module Π plays an critical role in our framework. It should (i) read as much
significant text as possible to ensure a confident classification output and (ii) be computationally
efficient, e.g., avoiding reading to the end of the text if sufficient information is already obtained and
skipping irrelevant or unimportant part of the text. More specifically, for each step, the policy module
Π should decide whether the information collected is convincing enough to stop reading and make
a prediction. Otherwise it will need to evaluate the importance of the current semantic unit or token
just read to decide which token to be read in the next step. By formulating this process as a sequential
decision process, at each time step t, the policy module takes the output ht of an encoder, which
summarizes the text read before and the current token xit , and outputs a probability distribution
πt defined over actions. It is worth noting that to save computation, the actions are determined
only by the latent representation ht. At each time step t, a sequence of actions are generated by
first sampling a stopping decision in the form of a binary variable s from a Bernoulli distribution
πS(·|ht). If s = 1, the model stops and draws a label ŷ from a conditional multinomial distribution
specified by a classifier πC(·|ht, s = 1); otherwise, the model draws a step size k ∈ {0, . . . ,K}
from another conditional multinomial distribution πN (·|ht, s = 0) to jump to the token xit+1=it+k.

Thus the probability of a sequence of actions that reads text Xi1:it = {xi1 , xi2 , ..., xit}, stops at
time t, and outputs a label ŷ can be written as the joint distribution

Π(Xi1:it , ŷ) = πS(s = 1|ht)πC(ŷ|ht, s = 1)

t−1∏
j=1

πS(s = 0|hj)πN (kj = ij+1 − ij |hj , s = 0),

or simply as

Π(Xi1:it , ŷ) = πS(1|ht)πC(ŷ|ht, 1)

t−1∏
j=1

πS(0|hj)πN (kj |hj , 0). (1)

Hereby, kj = ij+1− ij is the step size sampled at time j which ensures the model moves from token
xij to xij+1 , and hj = RNN(xij , hj−1) is computed by the RNN module.

To encourage fast and accurate text reading, we want to minimize the difference between true label
and predicted while ensuring a low computational cost, which is measured by the length of the
assessed text. Hence, as the reward for the last output action, we use −L (ŷ, y), where L is a loss
function that measures the accuracy between predicted label ŷ and true label y. For other actions we
use a negative computational cost −F . Hereby, F is the normalized FLOP count used at each time
step which is approximately constant. Note that the FLOP count for the last step, Ft, differs, since
it also includes the cost of the classification. Overall, the reward signal is defined as:

rj =

{
−L (ŷ, y)− αFt if j = t is the final time step
−αF otherwise

,

where α is a trade-off parameter between accuracy and efficiency.

Assume that the entire policy Πθ is parameterized by θ = {θπS , θπC , θN , θRNN}, where θRNN
subsumes the parameters for the encoder. Our final goal is to find the optimal θ which maximize the
expected return defined by:

J(θ) = E(x,y)∼D

∑
t

E(Xi1:it ,ŷ)∼Π

t∑
j=1

γj−1rj

 , (2)

where the first summation is used for integrating all possible sequences with different lengths to
ensure the normalization of the distribution Π, and γ ∈ (0, 1) is a discount factor. It is not hard to

3

Workshop track - ICLR 2018

see that J is infeasible to compute by enumerating all possibilities in the summation and expectation.
Fortunately, we can apply the policy gradient algorithm (Williams, 1992) to optimize this objective
by estimating the gradient using Monte Carlo rollout samples, without doing expensive integration
or enumeration. The REINFORCE policy gradient of the objective on data (x, y) can be derived as
follows:

∇̂θJ = ∇θ[log πS(1|ht) + log πC(ŷ|ht, 1) +

t−1∑
j=1

(log πS(0|hj) + log πN (kj |hj , 0))]

t∑
j=1

γj−1rj .

Considering that the length of the rollout sequence can differ significantly, the space for policy
exploration is very large, thus making the variance of the gradient estimation very high. To rem-
edy this, we also implement the advantage actor-critic algorithm (Konda & Tsitsiklis, 2000), which
couples partial future return with each action and estimates a value function as the baseline for vari-
ance reduction. We find this procedure to provide better performance than the vanilla REINFORCE
algorithm.

It is worth noting that this policy gradient method eventually is able to backpropagate both clas-
sification accuracy and computational cost signals to every module in our model, including the
stopping/skipping distributions, the label distribution and even the recurrent encoder, thus providing
an end-to-end solution to text classification problems.

Overall, our model aims to accelerate text classification while still achieving a high accuracy. The
hyperparameter α is used to control the trade-off between accuracy and time cost. If we set α to
be a relatively large value, our model will be more boldly to skip tokens, stop reading and output
a label. If α is small, our model would like to (re)read more tokens. Actually, the reward for
penalizing the computational cost can be seen as a Lagrangian multiplier which is used to constrain
the average cost of the computation. Therefore, there is a mapping between α and the amortized
computational budget allocated for each sample. Given a budget, we can tune α to provide a model
with best classification accuracy with the amortized cost within the budget. This is desirable for
many cost-sensitive applications, such as those on mobile devices.

3 EXPERIMENTS

In this section, we illustrate our approach using two representative text classification tasks: sentiment
analysis and topic classification. To perform a solid demonstration on re-reading and skimming, we
conduct experiments on three different syntactic levels. We will first introduce the results on the
word level before discussing character and sentence level performance.

General Experimental Settings: In our experiments, we use the IMDB and Yelp dataset for sen-
timent analysis, and the AG news and DBpedia for topic classification. To evaluate each classifier,
we use predictive accuracy as the performance metric and average per-data floating point operations
(FLOPs) as the computational cost metric. We also take the FLOPs of the policy module into ac-
count, even though they are much lower than the classifier. The energy cost for the policy module
is about 1 to 2 million FLOPs per sentence, which is much smaller than the total FLOPs needed for
the recurrent module and the classifier.

Hyper-parameters: We use the Adam (Kingma & Ba, 2014) optimizer with a learning rate of
0.001 in all experiments. For the recurrent network structure, we use a convolution layer with 128
kernels of size 5 and stack it as input to an LSTM with a hidden size of 128. For πS and πN
policy network, we use a three hidden-layer MLP with 128 hidden units per layer. For πC and value
network, we use a single-layer MLP with 128 hidden units. For all experiments, the maximal step
size K is set to 3.

3.1 RESULTS

We first evaluate our method on the IMDB movie dataset (Maas et al., 2011). We randomly split
it into 20,000 training, 5,000 validation and 25,000 test samples. The average length in the dataset
is 240 words. We adopt the same preprocessing method as Yu et al. (2017), either padding or

4

Workshop track - ICLR 2018

0 25 50 75 100 125 150 175
FLOPs(M)

70

75

80

85

90

Ac
cu
ra
cy

Partial Reading
Early Stopping
Ours

Figure 2: Comparison of partial reading, early stopping and our model on the IMDB dataset. Curves
are obtained by changing the computational budget for each method. For Ours and Early Stopping,
we adjust the parameter α.

truncating each sentence to 400 words. We use a chunk-size of 20 words, i.e., at each step, the
classifier reads 20 words. When the action is rereading or skipping, it rereads or skips several
chunks of 20 words.

To demonstrate the effectiveness of re-reading and skimming, we design three baseline models: (1)
The early stopping model, which has only a stopping module to decide when to terminate reading
the paragraph, the classifier and policy module are jointly trained on the entire training corpus; (2)
The partial reading model, which is a classifier with same architecture trained on the truncated
sentences decided by the stopping model (same as the one in the early stopping model. Thus,
although the partial reading model has the same computational budget as the early stopping model,
the prediction performance may differ; (3) The whole reading model, which tries to use the whole
corpus as training data.

Figure 2 shows our comparison on the IMDB dataset, where the blue line indicates our proposed
model while green and red one denote early-stopping model and partial reading model, respectively.
The x-axis denotes the FLOP count (in millions) and the y-axis indicates the accuracy. Here the
FLOP count is determined by the choice of the hyper-parameter α. As α increases, we obtain
a curve indicating the trade-off between accuracy and energy cost. From this plot, we observe
that both blue line and green line outperform the red line significantly. In addition, rereading and
skipping further improve the performance of the model with only the early stopping mechanism.
This observation implies that training the classifier jointly with the policy model improves both
computational efficiency and accuracy.

Besides the word-level evaluation, we also conduct experiments on a smaller scale syntactic unit:
character-level. In detail, we perform topic classification on two large-scale text datasets (Zhang
et al., 2015): the AG news dataset contains four topics, 120,000 training news, 10,000 validation
news, 7,600 testing news. The DBpedia dataset contains 14 topics, 560,000 training entities, 10,000
validation entities and 70,000 testing entities. The results are summarized in Figure 3. We observe
that our proposed model outperforms the partial reading baseline by a significant margin.

Furthermore, we evaluate our proposed model on a larger syntactic level: sentence level. We use
Yelp review sentiment analysis dataset for this experiment. The Yelp dataset includes 500,000 train-
ing reviews, 20,000 validation reviews and 40,000 testing reviews. To evaluate on the larger seman-
tic unit, we treat each sentence as a token, which will be read sequentially by the RNN encoder.
The performance is provided in Figure 4. We observe that our proposed model achieves superior
performance while being significantly faster.

We summarize the obtained performance improvements in Table 1. On four different datasets and for
three different syntactic levels we observe significant speedups when using the proposed techniques
for skimming, rereading and early stopping, while maintaining the accuracy. A partial reading model

5

Workshop track - ICLR 2018

10 20 30 40 50
FLOPs(M)

76

78

80

82

84

86

88

90

Ac
cu
ra
cy

Partial Reading
Ours

(a) AG news comparison curve

20 25 30 35 40 45 50
FLOPs(M)

92

93

94

95

96

97

Ac
cu

ra
cy

Partial Reading
Ours

(b) DBpedia comparison curve

Figure 3: Comparisons on character-level topic classification on two datasets: The x-axis and y-axis
are representing FLOPs and accuracy, respectively. The red line denotes the partial reading baseline.
The blue line indicates our proposed model.

5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5
FLOPs(M)

86

88

90

92

94

96

Ac
cu
ra
cy

Partial Reading
Ours

Figure 4: Comparison of the partial reading model and our model on the Yelp challenge dataset.

which has the same computational cost achieves results that are less accurate, which illustrates the
benefits of a flexible model. In addition, our model achieves about 0.5-1 percent accuracy improve-
ment compared to the full-reading model.

Finally, we compare our model to a recently published baseline (Yu et al., 2017), which only im-
plements the skipping actions with k ∈ {1, 2, ...,K} but without rereading, and simply do early
stopping when k = 0. We implemented their algorithm for a fair comparison. Results in Table 2
show that our model is much more efficient than their LSTM-skip model at the same-level of ac-
curacy, which is marginally better than full reading baseline. These results demonstrated that our
proposed rereading and skimming mechanisms are effective on a variety of text classification tasks
including sentiment analysis and topic classification. Also it is effective on different level of seman-
tics: character-level, word-level or even sentence-level. With the help of our mechanisms, we could
achieve both higher accuracy and faster speed.

3.2 ABLATION ANALYSIS

In this section, we conducted an ablation study to demonstrate the effectiveness of each action
mechanism in our method: skimming, rereading and early-stopping. Our experiment was performed

6

Workshop track - ICLR 2018

Syntactic level Dataset Speedup Accuracy Relative PR Accuracy
Word IMDB 4.11x 88.32% -7.19%

Character AG news 1.85x 88.50% -4.42%
DBpedia 2.42x 95.99% -1.94%

Sentence Yelp 1.58x 94.95% -3.38%

Table 1: Summary of our results: We compare our model to a complete reading baseline and a
partial reading (PR) baseline on four datasets and three different syntactic levels. Here we report
the speedups of our model compared to whole-reading baseline at the same accuracy level. Also we
report the relative performance of the partial reading baseline with the same computational cost as
our model.

Syntactic-level Dataset Accuracy FLOPs (Yu et al., 2017) FLOPS (Ours)
Word IMDB 88.82% 57.80% 29.33%

Character AG news 88.60% 87.68% 57.55%
DBpedia 96.21% 76.35% 44.34%

Word Yelp 95.14% 82.34% 70.02%

Table 2: Summary of our results: We compare our model to (Yu et al., 2017), showing the relative
FLOPs necessary to achieve the same accuracy on two datasets used in both theirs and this paper.

on the word-level IMDB dataset, and the result is presented in Figure 5. The blue curve denotes the
performance of the model with all actions (skimming, rereading and early-stopping) enabled. The
green one denotes the performance of the model with only the early-stopping actions. Between
these two curves, the red curve represents a model with rereading and early-stopping action, and the
yellow line represents a model with skimming and early-stopping actions. Note that the performance
of the green curve is the worst, indicating that rereading and skimming mechanisms are necessary.
Furthermore, the blue curve is better than all other ones, indicating that combining skimming and
rereading together can further improve the performance of the policy model.

3.3 CASE STUDIES

To obtain a more detailed understanding of our model, we first show the actions taken by our model
on a sentiment analysis example (Figure 6), on which the LSTM full-reading model failed to give
the right classification. We show the degree of positiveness given by LSTM model encoded in color,
from green representing positiveness to brown representing negativeness.

The paragraph starts with a sentence with strong positiveness of a dinner, then followed by a few
sentences on some confusing description on the dinner. Many trivial or even negative words show up
in the explanation. As a result, the output of the full-reading model gradually changes from positive
to negative and finally results in a negative signal. Importantly, after our model reads the first two
sentences, the policy module decides that it is confident enough to make a decision yielding the
correct answer.

Next we illustrate how the rereading and skimming actions are useful to identify important infor-
mation in the text. As shown in Figure 7, our model first reads a key word “stake” and is confident
that the document is about money. Then it skims a few irrelevant tokens to read about “buying stake
in Biotechnology” the following two tokens. The phrase “5 percent stake” showed up twice. Our
model consider it to be important so it re-reads this token. At this time, the model basically knows
this text is about business with a reasonable confidence. Then it skips to read about “collaboration
deal” and stops to make a confident prediction.

4 RELATED WORK

The idea of improving time efficiency with adaptive computation has been studied extensively and
throughout the years Weiss & Taskar (2013). For example, the adaptive computation time algo-
rithm Graves (2016) on recurrent neural networks proposed to utilize early stopping action to save

7

Workshop track - ICLR 2018

30.0 32.5 35.0 37.5 40.0 42.5 45.0 47.5 50.0
FLOPs(M)

84

85

86

87

88

89

Ac
cu
ra
cy

Skim+Reread+Early-Stop
Reread+Early-Stop
Skim+Early-Stop
Early-Stop

Figure 5: Comparison between different action combination settings to demonstrate the effective-
ness of each mechanism: the blue line denotes our model with all actions, the green line denotes
the model with only an early-stopping module. Between these two lines, the red one represents the
model with rereading and early-stopping (no skimming) while the yellow one represents the model
with skimming and early-stopping (no rereading).

They walk around with threeWhat a great dinner! I had the pasta trio special.

and they did not bat an eye. They even had the pasta prepared the same way to

and I kick myself for it on my way out of town every

pastas and just re-fill your plate. I even wanted one of them without an ingredient ,

refill me! I haven't been back,

time I visit there!

STOP

Figure 6: Sentiment analysis example: The color scheme shows the spectrum from positiveness
(green) to negativeness (red) output by the LSTM model. Our model is able to read the first two
sentences and get the correct prediction (positive), while the full-reading LSTM model gets confused
and outputs the wrong label (negative).

computational cost. Spatially adaptive computation time Figurnov et al. (2016) was proposed for
image classification and object detection tasks. Compared to their work, our model is powerful by
utilizing the combinatorial complexity of actions.

Attention mechanism applied to text data are related. ReasonNet Shen et al. (2017) trains a policy
module to determine whether to stop before accessing the full text on question-answering tasks.
Similarly, the model of Dulac-Arnold et al. (2011) performs early-stopping on text classification
tasks. Comparing with these related work, our proposed model’s skimming and rereading mecha-
nisms are innovative. In addition, Choi et al. (2016) and Lei et al. (2016) propose to select the
relevant sentences which are critical for question answering and sentiment analysis, respectively.
Their methods utilize prediction accuracy as the reward signal to train the policy module. How-
ever, in our work, the policy module is trained considering both accuracy and computational cost
explicitly.

Other ways to reduce the inference computational cost for new examples have been considered.
Bengio et al. (2015) proposes a scheme to selectively activate parts of the network. Bolukbasi et al.
(2017) presents two schemes to adaptively utilize the network during inference: Given each data
point, they first select a network and then select some components of that network.

One closely related work is Yu et al. (2017). The authors train their policy network end-to-end with
reinforcement learning. In contrast to their work, our model implemented human-like mechanism
rereading and separated early-stopping mechanism, thus leading to further improved efficiency and
accuracy. Furthermore, we hardly rely on many hyper-parameters and only use a simple reward
structure. Finally, we get an advanced performance with better reward design which incorporates
the negative energy cost explicitly and implement a value network to reduce the variance.

8

Workshop track - ICLR 2018

Medarex Chief Executive Donald Drakeman.

in Medarex BOSTON (CBS.MW) - PharmaceuticalPfizer buys 5 percent stake

researcher Medarex under their newlyPfizer is buying a 5 percent stake in biotechnology

signed collaboration deal, according to

powerhouse

Powerhouse Pfizer is buying a

5 percent stake in biotechnology

Pfizer buys 5 percent stake

signed collaboration deal, according to

5 percent stake in biotechnology
Reread

Skip

Skip
Stop

Output

Scan

Figure 7: Topic classification example: Our model skips irrelevant chunks and reread an important
phrase with “stake.” It also early stops after reading “collaboration deal” and outputs the right
classification (Business), but the full-reading model is fooled to output a wrong label (Technology).

5 CONCLUSIONS

We develop an end-to-end trainable approach for skimming, rereading and early stopping applicable
to classification tasks. By mimicking human fast reading, we introduce a policy module to decide
what token to read next (e.g., rereading the current token, reading the next one, or skipping the
next few tokens) or whether the model should stop reading and form a decision. To encourage fast
and accurate reading, we incorporate both classification accuracy and the computational cost as a
reward function to score classification or other actions made by the agent during reading. An end-
to-end training algorithm based on the policy gradient method backpropagates the reward signal
into both the policy module (also including the classification policy) and the recurrent encoder.
We demonstrate the efficacy of the proposed approach on four different datasets and demonstrate
improvements for both accuracy and computational performance.

9

Workshop track - ICLR 2018

REFERENCES

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Emmanuel Bengio, Pierre-Luc Bacon, Joelle Pineau, and Doina Precup. Conditional computation
in neural networks for faster models. arXiv preprint arXiv:1511.06297, 2015.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural probabilistic
language model. Journal of machine learning research, 3(Feb):1137–1155, 2003.

Tolga Bolukbasi, Joseph Wang, Ofer Dekel, and Venkatesh Saligrama. Adaptive neural networks
for efficient inference. In International Conference on Machine Learning, pp. 527–536, 2017.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

Eunsol Choi, Daniel Hewlett, Alexandre Lacoste, Illia Polosukhin, Jakob Uszkoreit, and Jonathan
Berant. Hierarchical question answering for long documents. arXiv preprint arXiv:1611.01839,
2016.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel
Kuksa. Natural language processing (almost) from scratch. Journal of Machine Learning Re-
search, 12(Aug):2493–2537, 2011.

Gabriel Dulac-Arnold, Ludovic Denoyer, and Patrick Gallinari. Text classification: A sequential
reading approach. In ECIR, pp. 411–423. Springer, 2011.

Michael Figurnov, Maxwell D Collins, Yukun Zhu, Li Zhang, Jonathan Huang, Dmitry Vetrov, and
Ruslan Salakhutdinov. Spatially adaptive computation time for residual networks. arXiv preprint
arXiv:1612.02297, 2016.

Alex Graves. Adaptive computation time for recurrent neural networks. arXiv preprint
arXiv:1603.08983, 2016.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa
Suleyman, and Phil Blunsom. Teaching machines to read and comprehend. In Advances in
Neural Information Processing Systems, pp. 1693–1701, 2015.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Nal Kalchbrenner and Phil Blunsom. Recurrent continuous translation models. In EMNLP, vol-
ume 3, pp. 413, 2013.

Yoon Kim. Convolutional neural networks for sentence classification. arXiv preprint
arXiv:1408.5882, 2014.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Vijay R Konda and John N Tsitsiklis. Actor-critic algorithms. In Advances in neural information
processing systems, pp. 1008–1014, 2000.

Kenton Lee, Shimi Salant, Tom Kwiatkowski, Ankur Parikh, Dipanjan Das, and Jonathan Be-
rant. Learning recurrent span representations for extractive question answering. arXiv preprint
arXiv:1611.01436, 2016.

Tao Lei, Regina Barzilay, and Tommi Jaakkola. Rationalizing neural predictions. arXiv preprint
arXiv:1606.04155, 2016.

10

Workshop track - ICLR 2018

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies, pp. 142–150,
Portland, Oregon, USA, June 2011. Association for Computational Linguistics. URL http:
//www.aclweb.org/anthology/P11-1015.

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ, and Sanjeev Khudanpur. Recurrent
neural network based language model. In Interspeech, volume 2, pp. 3, 2010.

Ramesh Nallapati, Bowen Zhou, Caglar Gulcehre, Bing Xiang, et al. Abstractive text summarization
using sequence-to-sequence rnns and beyond. arXiv preprint arXiv:1602.06023, 2016.

Alexander M Rush, Sumit Chopra, and Jason Weston. A neural attention model for abstractive
sentence summarization. arXiv preprint arXiv:1509.00685, 2015.

Cicero D Santos and Bianca Zadrozny. Learning character-level representations for part-of-speech
tagging. In Proceedings of the 31st International Conference on Machine Learning (ICML-14),
pp. 1818–1826, 2014.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Fabrizio Sebastiani. Machine learning in automated text categorization. ACM computing surveys
(CSUR), 34(1):1–47, 2002.

Iulian Vlad Serban, Alessandro Sordoni, Yoshua Bengio, Aaron C Courville, and Joelle Pineau.
Building end-to-end dialogue systems using generative hierarchical neural network models. In
AAAI, pp. 3776–3784, 2016.

Yelong Shen, Po-Sen Huang, Jianfeng Gao, and Weizhu Chen. Reasonet: Learning to stop reading
in machine comprehension. In Proceedings of the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 1047–1055. ACM, 2017.

Richard Socher, Jeffrey Pennington, Eric H Huang, Andrew Y Ng, and Christopher D Manning.
Semi-supervised recursive autoencoders for predicting sentiment distributions. In Proceedings of
the conference on empirical methods in natural language processing, pp. 151–161. Association
for Computational Linguistics, 2011.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
In Advances in neural information processing systems, pp. 3104–3112, 2014.

D. Weiss and B. Taskar. Learning Adaptive Value of Information for Structured Prediction. In Proc.
NIPS, 2013.

Jason Weston, Antoine Bordes, Sumit Chopra, Alexander M Rush, Bart van Merriënboer, Armand
Joulin, and Tomas Mikolov. Towards ai-complete question answering: A set of prerequisite toy
tasks. arXiv preprint arXiv:1502.05698, 2015.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256, 1992.

Adams Wei Yu, Hongrae Lee, and Quoc V Le. Learning to skim text. arXiv preprint
arXiv:1704.06877, 2017.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text clas-
sification. In Advances in neural information processing systems, pp. 649–657, 2015.

11

http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015

Workshop track - ICLR 2018

6 APPENDIX

6.A COMPARISON OF DIFFERENT CHUNK SIZE

To illustrate that our model’s performance is robust to the choice of chunk size, we investigate
the model performance with a variety of chunk sizes on the IMDB dataset. The result is shown
in Figure 8. Here the red curve denotes the performance of the partial reading baseline, and the
other three curves denote the performance of our full-action model with three chunk sizes 8, 20, 40,
respectively. It is clear that our model outperformes the baselines significantly with different choices
of chunk size.

In addition, we found that if the chunk size is too small, there are more decision steps inside each
sentence, resulting the policy optimization more difficult. For instance, the performance of the chunk
size 8 seems worse than two larger chunk sizes. We believe this issue may be overcome by applying
more advanced policy optimization algorithms such as proximal policy optimization (Schulman
et al., 2017). On the other hand, if the chunk size is too large, there were fewer decision steps,
making the model not flexible enough. Among all three choices, we found that setting chunk size
20 leads to best practice in our experiments.

30 35 40 45 50 55 60 65 70
FLOPs(M)

76

78

80

82

84

86

88

90

Ac
cu

ra
cy

Chunk Size: 8
Chunk Size: 20
Chunk Size: 40
Partial Reading

Figure 8: Comparison between different chunk sizes: Here the x-axis and y-axis are the same as
previous figures. The red curve denotes the partial reading baseline, while the grey, blue, purple
curves denote our models with chunk size 8, 20, 40, respectively. We found that our model is robust
to different chunk sizes.

12

	Introduction
	Methods
	Model Overview
	Model specification and training

	Experiments
	Results
	Ablation Analysis
	Case studies

	Related Work
	Conclusions
	APPENDIX
	Comparison of different chunk size

