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ABSTRACT

The ability of an agent to discover its own learning objectives has long been
considered a key ingredient for artificial general intelligence. Breakthroughs in
autonomous decision making and reinforcement learning have primarily been in
domains where the agent’s goal is outlined and clear: such as playing a game to
win, or driving safely. Several studies have demonstrated that learning extramural
sub-tasks and auxiliary predictions can improve (1) single human-specified task
learning, (2) transfer of learning, (3) and the agent’s learned representation of the
world. In all these examples, the agent was instructed what to learn about. We
investigate a framework for discovery: curating a large collection of predictions,
which are used to construct the agent’s representation of the world. Specifically,
our system maintains a large collection of predictions, continually pruning and
replacing predictions. We highlight the importance of considering stability rather
than convergence for such a system, and develop an adaptive, regularized algorithm
towards that aim. We provide several experiments in computational micro-worlds
demonstrating that this simple approach can be effective for discovering useful
predictions autonomously.

1 INTRODUCTION

The idea that an agent’s knowledge might be represented as predictions has a long history in machine
learning. The first references to such a predictive approach can be found in the work of Cunningham
(1972), Becker (1973), and Drescher (1991) who hypothesized that agents would construct their
understanding of the world from interaction, rather than human engineering. These ideas inspired
work on predictive state representations (PSRs), as an approach to modeling dynamical systems.
Simply put, a PSR can predict all possible interactions between an agent and it’s environment
by reweighting a minimal collection of core test (sequence of actions and observations) and their
predictions, as an alternative to keeping a finite history or learning the one step latent dynamics of
the world, as in a POMDP. Extensions to high-dimensional continuous tasks have demonstrated that
the predictive approach to dynamical system modeling is competitive with state-of-the-art system
identification methods (Hsu et al., 2012). One important limitation of the PSR formalism is that the
agent’s internal representation of state must be composed exclusively of predictions.

Recently, Sutton et al. (2011) introduced a formalism for specifying and learning large collections
of predictions using value functions from reinforcement learning. These General Value Functions
(GVFs), can represent a wide array of multi-step state contingent predictions (Modayil et al., 2014),
while the predictions made by a collection of GVFs can be used to construct the agent’s state
representation (Schaul and Ring, 2013; White, 2015). State representation’s constructed from
predictions have been shown to be useful for reward maximization tasks (Rafols et al., 2005; Schaul
and Ring, 2013), and transfer learning (Schaul et al., 2015). One of the great innovation of GVFs
is that we can clearly separate (1) the desire to learn and make use of predictions in various ways,
from (2) the construction of the agent’s internal state representation. For example, the UNREAL
learning system (Jaderberg et al., 2016), learns many auxiliary tasks (formalized as GVFs) while
using an actor-critic algorithm to maximize a single external reward signal—the score in an Atari
game. The auxiliary GVFs and the primary task learner share the same deep convolutional network
structure. Learning the auxiliary tasks results in a better state representation than simply learning
the main task alone. GVFs allow an agent to make use of both increased representational power of
predictive representations, and the flexibility of state-of-the-art deep learning systems.
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In all the works described above, the GVFs were manually specified by the designer; an autonomous
agent, however, must discover these GVFs. Most work on discovery has been on the related topics of
temporal difference (TD) networks (Makino and Takagi, 2008) and options (Konidaris et al., 2011;
Mann et al., 2015; Mankowitz et al., 2016; Vezhnevets et al., 2016; Daniel et al., 2016; Bacon et al.,
2017). Discovery for options is more related than TD networks, because similarly to a GVF, an option
(Sutton et al., 1999) specifies small sub-tasks within an environment. Option discovery, however,
has been largely directed towards providing temporally abstract actions, towards solving the larger
task, rather than providing a predictive representation. For example, Bacon et al. (2017) formulated
a gradient descent update on option parameters—policies and termination functions—using policy
gradient objectives. The difficulty in extending such gradient-based approaches is in specifying a
suitable objective for prediction accuracy, which is difficult to measure online.

We take inspiration from ideas from representation search methods developed for neural networks,
to tackle the daunting challenge of GVF discovery for predictive representations. Our approach
is inspired by algorithms that search the topology space of neural networks. One of the first such
approaches, called the cascade correlation network learning typifies this approach (Fahlman and
Lebiere, 1990). The idea is to continually propose new hidden units over time, incrementally growing
the network to multiple levels of abstraction. To avoid the computation and memory required to pose
units whose activation is de-correlated with the network activations, Sutton and Whitehead (1993)
empirically demonstrated that simply generating large numbers of hidden units outperformed equal
sized fixed networks in online supervised learning problems. Related approaches demonstrated that
massive random representations can be highly effective (Rahimi and Recht, 2009; Andoni et al., 2014;
Giryes et al., 2015). This randomized feature search can be improved with the addition of periodic
pruning, particularly for an incremental learning setting.

In this paper, we demonstrate such a curation framework for GVF discovery, with simple algorithms
to propose and prune GVFs. To parallel representation search, we need both a basic functional
form—a GVF primitive—for each unit in the network and an update to adjust the weights on these
units. We propose a simple set of GVF primitives, from which to randomly generate candidate
GVFs. We develop a regularized updating algorithm, to facilitate pruning less useful GVFs, with a
stepsize adaptation approach that maintains stability in the representation. We demonstrate both the
ability for the regularizer to prune less useful GVFs—and the corresponding predictive features—as
well as utility of the GVF primitives as predictive features in several partially observable domains.
Our approach provides a first investigation into a framework for curation of GVFs for predictive
representations, with the aim to facilitate further development.

2 GENERAL VALUE FUNCTION NETWORKS

The setting considered in this paper is an agent learning to predict long-term outcomes in a partially
observable environment. The dynamics are driven by an underlying Markov decision process (MDP),
with potentially (uncountably) infinite state-space S and action-space A, and transitions given by
the density P : S × A × S → [0,∞). The agent does not see the underlying states, but rather
only observes observation vector ot ∈ O ⊂ Rm for corresponding state st ∈ S. The agent follows
a fixed behaviour policy, µ : S × A → [0,∞), taking actions according to µ(st, ·). Though we
write this policy as a function of state, the behaviour policy is restricted to being a function of input
observations—which is itself a function of state—and whatever agent state the agent constructs. The
agent aims to build up a predictive representation, pt = f(ot,pt−1) ∈ Rn for some function f , as a
part of its agent state to overcome the partial observability.

GVF networks provide such a predictive representation, and are a generalization on PSRs and TD
networks. A General Value Function (GVF) consists of a target policy π : S ×A → [0,∞), discount
function γ : S ×A×S → [0, 1] and cumulant r : S ×A×S → R. The value function vπ : S → R
is defined as the expected return, Gt, where

Gt
def
= r(st, at, st+1) + γ(st, at, st+1)Gt+1.

A GVF prediction, for example, could provide the probability of hitting a wall, if the agent goes
forward, by selecting a policy that persistently takes the forward action, a cumulant that equals 1
when a wall is hit and 0 otherwise and a discount of 1, until termination. We direct the reader to prior
work detailing the specification and expressiveness of GVFs (Sutton et al., 2011); we also provide
further examples of GVFs throughout this paper.
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Figure 1: The inputs—observations ot+1 and
GVF predictions pt from the last time step—pass
through a nonlinear expansion, such as a fixed neu-
ral network or tile coding, producing the feature
vector pt+1. The feature vector is weighted lin-
early to produce the next set of predictions pt+1.
This approach decouples the specification of the
representation for the learner, which consist of both
observations and predictive features, and the up-
dating algorithm. Such a framework could be mod-
ified to include a history of observations; for sim-
plicity here, we only consider using predictions to
overcome partial observability and do not maintain
histories of observations.

A GVF network consists of a set of GVFs {(πi, γi, ri)}ni=1 where the prediction vector pt ∈ Rn
consists of the approximate value functions pt = [v̂π1

(st), . . . , v̂πn
(st)] and is computed as a function

of the current observation and predictions of the previous step p = f(ot,pt−1). This network is
depicted in Figure 1. GVF networks can encode both PSRs and TD networks, providing a general
formalism for predictive representations; for space, we more thoroughly describe the relationships to
these approaches in Appendix A.

There has been some work towards the goal of learning f to provide predictions pt, in the original
papers on TD networks and TD networks with options and with a following algorithm using recurrent
gradient updates (Silver, 2012). Additionally, there has been quite a bit of work in off-policy learning,
with gradient temporal difference (GTD) algorithms (Sutton et al., 2009; Maei, 2011), which can be
used to estimate the value functions for a GVF policy π, from experience generated by a different
behaviour policy µ. We leverage these works, to develop a new updating approach for GVF networks
in the next section.

3 STABILITY VERSUS CONVERGENCE

When learning in a partially observable domain, the agent inherently faces a non-stationary problem.
From the agent’s perspective, a similar observation is observed, but the target may vary significantly,
because hidden variables are influencing the outcome. For such settings, tracking has been shown to
be critical for accuracy (Sutton et al., 2007), even when the underlying distribution is in fact stationary.
Tracking—continually updating the weights with recent experience—contrasts the typical goal of
convergence; much of the previous algorithm development, however, has been towards the aim of
convergence (Silver, 2012).

We propose treating the learning system as a dynamical system—where the weight update is based
on stochastic updates known to suitably track the targets—and consider the choice of stepsize as
the inputs to the system to maintain stability. Such updates have been previously considered under
adaptive gain for least-mean squares (LMS) (Benveniste et al., 1990, Chapter 4) (Sutton, 1992),
where weights are treated as state following a random drift. These approaches, however, are designed
particularly for the LMS update and so do not extend to the off-policy temporal difference learning
algorithms needed to learn GVFs. To generalize this idea to other incremental algorithms, we propose
a more general criteria based on the magnitude of the update.

Consider a generic update wt+1 = wt + α∆t (1)

where ∆t ∈ Rd is the update for this step, for weights wt ∈ Rd and constant stepsize α. Typically
the update includes a normalization constant ct, dependent on the norm of the features and target. For
example, for normalized LMS predicting target yt from observation vector ot, ∆t = ot(yt − o>t wt)
and ct = ‖o>t ot‖22+ an estimate of the variance of the noise in the targets. Such normalization
ensures the update appropriately reflects descent direction, but is invariant to scale of the features
and targets. The weights wt evolve as a function of the previous weights, with stepsize α acting as a
control input for how this system evolves.
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A criteria for α to maintain stability in the system is to keep the norm of the update small

min
α≥ε

E
[
‖∆t(α)‖22

∣∣ w0

]
(2)

for a small ε > 0 that provides a minimum stepsize. The update ∆t(α) on this time step is dependent
on the stepsize α, because that stepsize influences wt and past updates. The expected value is over
all possible update vectors ∆t(α), for the given stepsize and assuming the system started in some
w0. If α is small enough to ensure updates are bounded, and policy π and MDP satisfy the standard
requirements for ergodicity, a stationary distribution exists, with ∆t(α) not dependent on the initial
w0 and instead only driven by the underlying state dynamics and target for the weights.

In the next sections, we derive an algorithm to estimate α for this dynamical system, first for a general
off-policy learning update and then when adding regularization. We call this algorithm AdaGain:
Adaptive Gain for Stability.

3.1 ADAPTIVE GAIN FOR STABILITY WITH FIXED FEATURES

We generically consider an update ∆t in (1) that includes both TD and GTD. Before deriving the
algorithm, we demonstrate concrete updates for the stepsize. For TD(0), the update is

δt
def
= rt+1 + γt+1x

>
t+1wt − x>t wt with γt

def
= γ(St, At, St+1)

∆t
def
= c−1t δtxt with ct

def
= ‖xt‖22 + 1

αt = (αt−1 + ᾱc−1t 〈∆t,xt〉〈dt,ψt〉)ε with dt
def
= xt − γt+1xt+1

ψt+1 = (1− β)ψt + βc−1t
(
δt − αt(x>t ψt)

)
xt

where α0 = 1.0, ψ1 = 0, ᾱ is a meta-stepsize and β is a forgetting parameter to forget old gradient
information (e.g., β = 0.01). The operator (·)ε thresholds any values below ε > 0 to ε (e.g.,
ε = 0.001), ensuring nonzero stepsizes.

Another canonical algorithm for learning value functions is GTD(λ), with trace parameter λt
def
=

λ(St, At, St+1) for a trace function λ : S ×A× S → [0, 1].

et
def
= ρt(λtγtet−1 + xt) with importance sampling correction ρt

def
= π(St,At)

µ(St,At)

ht+1 = ht + α
(h)
t c−1t (δtet − (x>t ht)xt)

∆t = c−1t
[
δtet − γt+1(1− λt+1)xt+1(e>t ht)

]
αt =

(
αt−1 + ᾱc−1t 〈∆t, et〉〈dt,ψt〉+ ᾱc−1t γt+1(1− λt+1)〈∆t,xt+1〉〈et, ψ̄t〉

)
ε

(3)

ψt+1 = ((1− β)I− βαtc−1t etd
>
t )ψt − βαtc−1t γt+1(1− λt+1)xt+1e

>
t ψ̄t + β∆t

ψ̄t+1 = (1− β)ψ̄t − βα
(h)
t c−1t etd

>
t ψt − βα

(h)
t c−1t xtx

>
t ψ̄t

For the auxiliary weights ht—which estimate a part of the GTD objective—we use a small, fixed
stepsize α(h)

t = 0.01, previously found to be effective (White and White, 2016).

We consider the derivation more generally for such temporal difference methods, where both TD and
GTD arise as special cases. Consider any update of the form

∆t = c−1t
[
δtet + ut(e

>
t ht)

]
for vectors et,ut not dependent on wt. For GTD(λ), ut = −γt+1(1− λt+1)xt+1. We minimize (2)
using stochastic gradient descent, with gradient for one sample of the norm of the update

1
2∂‖∆t(α)‖22

∂α
= ∆t(α)

∆t(α)

∂α

= c−1t ∆t(α)>
[
et
∂δt(α)

∂α
+ ut

(
e>t

∂ht
∂α

)]
.

4



Under review as a conference paper at ICLR 2018

We can compute the gradient of the TD-error, using

∂

∂α
δt =

∂

∂α
(rt+1 + γt+1x

>
t+1wt − x>t wt)

= (γt+1x
>
t+1 − x>t )>

∂wt

∂α

where dt
def
= γt+1x

>
t+1 − x>t and we can recursively define ∂wt

∂α as

ψt
def
=
∂wt

∂α
=
∂(wt−1 + α∆t−1(α))

∂α

=
∂wt−1

∂α
+ α

∂∆t−1(α)

∂α
+ ∆t−1(α)

= ψt−1 − αc−1t−1et−1d>t−1ψt−1 + αc−1t−1ute
>
t−1

∂

∂α
ht−1 + ∆t−1(α)

We obtain a similar such recursive relationship for ∂
∂αht−1

ψ̄t
def
=

∂

∂α
ht =

∂

∂α

(
ht−1 + α

(h)
t−1c

−1
t−1
[
δt−1et−1 − (x>t−1ht−1)xt−1

])
= ψ̄t−1 + α

(h)
t−1c

−1
t−1

∂

∂α
(δt−1et−1)− α(h)

t−1c
−1
t−1xt−1x

>
t−1ψ̄t−1

= ψ̄t−1 − α
(h)
t−1c

−1
t−1et−1d

>
t−1ψt−1 − α

(h)
t−1c

−1
t−1xt−1x

>
t−1ψ̄t−1

where the last line follows from the fact that ∂
∂αδt−1 = d>t−1ψt−1.

This recursive form provides a mechanism to avoid storing all previous samples and eligibility traces,
and still approximate the stochastic gradient update for the stepsize. Though the above updates are
exact, when implementing such a recursive form in practice, we can only obtain an estimate of ψt, if
we want to avoid storing all past data. In particular, when using ψt−1 computed on the last time step
t− 1, this gradient estimate is in fact w.r.t. to the previous stepsize αt−2, rather than αt−1. Because
these stepsizes are slowly changing, this gradient still provides a reasonable estimate of the actual
ψt−1 for the current stepsize. However, for many steps into the past, these accumulates gradients
in ψt and ψ̄t are inaccurate. For example, even if the stepsize is nearing the optimal value, ψt will
include larger gradients from the first step when the stepsizes where inaccurate.

To forget these outdated gradients, we maintain an exponential moving average, which focuses the
accumulation of gradients in ψt to a more recent window. The adjusted update with forgetting
parameter 0 < β < 1 gives the recursive form for ψt+1 and ψ̄t+1 in (3).

3.2 EXTENDING TO PROXIMAL OPERATORS

A regularized GTD update for the weights can both reduce variance from noisy predictions and reduce
weight on less useful features to facilitate pruning. To add regularization to GTD, for regularizer
R(w) and regularization parameter η ≥ 0, we can use proximal updates (Mahadevan et al., 2014),

wt+1 = proxαηR(wt + α∆t)

where proxαηR is the proximal operator for function αηR. The proximal operator acts like a
projection, first updating the weights according to the GTD objective and then projecting the weights
back to a solution that appropriately reflects the properties encoded by the regularizer. A proximal
operator exists for our proposed regularizer, the clipped `2 regularizer

R(w) = 1
2

d∑
i=1

min(w2
i , ε)

where ε > 0 is the clipping threshold above which wi has a fixed regularization.

Though other regularizers are possible, we select this clipped `2 regularizer for two reasons. The
clipping ensures that high magnitude weights are not prevented for being learned, and reduces bias
from shrinkage. Because the predictive representation requires accurate GVF predictions, we found
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Figure 2: (a) An example trajectory for a single run on the robotic platform. The True Return is
computed after collecting the data, and the blue and red lines corresponds to the predictions of the
expected return, from that given time step. (b) We test how much the magnitude of the weights is
spread across the features. With more spread, it becomes more difficult to identify the important
features. The solid lines depict the number of features with weight magnitude above the threshold
0.001/the number of active features. AdaGain-R spreads out values less, choosing to place higher
magnitude on a subset of features. Nonetheless, AdaGain-R does not suffer in performance, as shown
in the dotted lines corresponding to the y-axis on the left.

the bias without clipping prevented learning. Additionally, we chose `2 in the clipping, rather than `1,
because the clipping already facilitates pruning, and does not introduce additional non-differentiability.
The regularization below ε still prefers to reduce the magnitude of less useful features. For example,
if two features are repeated, such a regularizer will prefer to have a higher magnitude weight on
one feature, and zero weight on the other; no regularizer, or `2 without clipping, will needlessly use
both features. We provide the derivation—which closely parallels the one above—and updates in
Appendix B.

4 USING REGULARIZATION TO PRUNE FEATURES

In this section we show that AdaGain with regularization (AdaGain-R) reduces the weights on less
useful features. This investigation demonstrates the utility of the algorithm for pruning features, and
so also for pruning proposed GVFs. We first test AdaGain-R on a robot platform—which is partially
observable—with fixed image features. We provide additional experiments in two micro-worlds in
Appendix C for pruning GVFs.

The first experiment is learning a GVF prediction on a robot, using a nonlinear expansion on input
pixels. The robotic platform is a Kabuki rolling robot with an added ASUS XtionPRO RGB and
Depth sensor. The agent receives a new image every 0.05 seconds and 100 random pixels are sampled
to construct the state. Each pixel’s RGB values are tiled with 4 tiles and 4 tilings on each colour
channel, resulting in 4800 bit values. A bias bit is also included, with a value of 1 on each time step.
The fixed behaviour policy is to move forward until a wall is hit and then turn for a random amount
of time. The goal is to learn the value function for a policy that always goes forward; with a cumulant
of 1 when the agent bumps a wall and otherwise 0; and a discount of 0.97 everywhere except when
the agent bumps the wall, resulting in a discount of 0 (termination). The GVF is learned off-policy,
with GTD(λ) and AdaGain-R with the GTD(λ) updates. Both GTD(λ) and AdaGain-R receive the
same experience from the behaviour policy. Results are averaged over 7 runs.

Our goal is to ascertain if AdaGain-R can learn in this environment, and if the regularization enables
it to reduce magnitude on features without affecting performance. Figure 2(a) depicts a sample
trajectory of the predictions made by both algorithms, after about 40k learning steps; both are able to
track the return accurately. This is further emphasized in Figure 2(b), where averaged error decreases
over time. Additionally, though they reach similar performance, AdaGain-R only has significant
magnitude on about half of the features.
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5 DISCOVERING GVF NETWORKS

Our approach to generating a predictive representation is simple: we generate a large collection
of GVFs and iteratively refine the representation through replacing the least used GVFs with new
GVFs. In the previous section, we provided evidence that our AdaGain-R algorithm effectively
prunes features; we now address the larger curation framework in this section. We provide a set of
GVF primitives, that enable candidates to be generated for the GVF network. We demonstrate the
utility of this set, and that iteratively pruning and generating GVFs in our GVF network builds up an
effective predictive representation.

5.1 A SIMPLE SCHEME FOR PROPOSING NEW PREDICTIONS

To enable generation of GVFs for this discovery approach, we introduce GVF primitives. The goal is
to provide modular components that can be combined to produce different structures. For example,
within neural networks, it is common to modularly swap different activation functions, such as
sigmoidal or tanh activations. For networks of GVFs, we similarly need these basic units to enable
definition of the structure.

We propose basic types for each component of the GVF: discount, cumulant and policy. For discounts,
we consider myopic discounts (γ = 0), horizon discounts (γ ∈ (0, 1)) and termination discounts (the
discount is set to 1 everywhere, except for at an event, which consists of a transition (o, a, o′)). For
cumulants, we consider stimuli cumulants (the cumulant is one of the observations, or inverted, where
the cumulant is zero until an observation goes above a threshold) and compositional cumulants (the
cumulant is the prediction of another GVF). We also investigate random cumulants (the cumulant
is a random number generated from a zero-mean Gaussian with a random variance sampled from
a uniform distribution); we do not expect these to be useful, but they provide a baseline. For the
policies, we propose random policies (an action is chosen at random) and persistent policies (always
follows one action). For example, a GVF could consist of a myopic discount, with stimuli cumulant
on observation bit one and a random policy. This would correspond to predicting the first component
of the observation vector on the next step, assuming a random action is taken. As another example, a
GVF could consist of a termination discount, an inverted stimuli cumulant for observation one and a
persistent policy with action forward. If observation can only be ‘0’ or ‘1’, this GVF corresponds to
predicting the probability of seeing observation one changing to ‘0’ (inactive) from ‘1’ (active), given
the agent persistently drives forward.

5.2 EXPERIMENTS ON DISCOVERING GVF NETWORKS IN COMPASS WORLD

We conduct experiments on our discovery approach for GVF networks in Compass World (Rafols,
2006), a partially observable grid-world where the agent can only see the colour immediately in front
of it. There are four walls, with different colours; the agent observes this colour if it takes the action
forward in front of the wall. Otherwise, the agent just sees white. There are five colours in total,
with one wall having two colours and so more difficult to predict. The observation vector is five-
dimensional, consisting of an indicator bit if the colour is observed or not. We test the performance
of the learned GVF network for answering five difficult GVF predictions about the environment, that
cannot be learned using only the observations. Each difficult GVF prediction corresponds to a colour,
with the goal to predict the probability of seeing that colour, if the agent always goes forward. These
GVFs are not used as part of the representation. A priori, it is not clear that the GVF primitives are
sufficient to enable prediction in the Compass World, particularly as using just the observations in
this domain enables almost no learning of these five difficult GVFs.

The GVFs for the network are generated uniformly randomly from the set of GVF primitives. Because
the observations are all one bit (0 or 1), the stimuli cumulants are generated by selecting a bit index i
(1 to 5) and then either setting the cumulant to that observation value, oi, or to the inverse of that value,
1− oi. The events for termination are similarly randomly generated, with the event corresponding to
a bit oi flipping. The nonlinear transformation used for this GVF network is the hyperbolic tangent.
Every two million steps, the bottom 10% of the current GVFs are pruned and replaced with newly
generated GVFs. Results are averaged over 10 runs.

Figure 3 demonstrates that AdaGain-R with randomly generated GVF primitives learns a GVF
network—and corresponding predictive representation—that can accurately predict the five difficult
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Figure 3: (a) Prediction error on the five difficult GVFs for variously sized networks. Solid lines
correspond to networks where compositional GVFs were not generated, and dotted to networks where
compositional GVFs were generated. Using only the observations (black line) results in almost no
learning. (b) Composition of GVF network after 100 million steps of learning.

GVFs. The results show that with as few as 100 GVFs in the network, accurate predictions can be
learned, though increasing to 200 is a noticeable improvement. The results also indicate that random
cumulants were of no benefit, as expected, and that our system appropriately pruned those GVFs.
Finally, compositional GVFs were particularly beneficial in later learning, suggesting that the system
started to make better use of these compositions once the GVFs became more accurate.

6 DISCUSSION AND CONCLUSION

In this paper, we proposed a discovery methodology for GVF networks, to learn of predictive
representations. The strategy involves iteratively generating and pruning GVF primitives for the GVF
network, with a new algorithm called AdaGain to promote stability and facilitate pruning. The results
demonstrate utility of this curation strategy for discovering GVF networks. There are many aspects
of our system that could have been designed differently, namely in terms of the learning algorithm,
generation approach and pruning approach; here, our goal was to provide a first such demonstration,
with the aim to facilitate further development. We discuss the two key aspects in our system below,
and potential avenues to expand along these dimensions.

In the development of our learning strategy, we underline the importance of treating the predictive
representation as a dynamical system. For a standard supervised learning setting, the representation is
static: the network can be queried at any time with inputs. The predictive representations considered
here cannot be turned off and on, because they progressively build up accurate predictions. This
dynamic nature necessitates a different view of learning. We proposed a focus on stability of the
predictive system, deriving an algorithm to learn a stepsize. The stepsize can be seen as a control input,
to stabilize the system, and was obtained with a relatively straightforward descent algorithm. More
complex control inputs, however, could be considered. For example, a control function outputting a
stepsize based on the current agent state could be much more reactive. Such an extension would the
necessitate a more complex stability analysis from control theory.

Our discovery experiments reflect a life-long learning setting, where the predictive representation is
slowly built up over millions of steps. This was slower than strictly necessary, because we wanted to
enable convergence for each GVF network before culling. Further, the pruning strategy was simplistic,
using a threshold of 10%; more compact GVF networks could likely be learned—and learned more
quickly—with a more informed pruning approach. Nonetheless, even when designing learning with
less conservative learning times, building such representations should be a long-term endeavour.
A natural next step is to more explicitly explore scaffolding. For example, without compositional
GVFs, myopic discounts were less frequently kept; this suggests initially preferring horizon and
termination discounts, and increasing preference on myopic discounts once compositional GVFs
are added. Further, to keep the system as simple as possible, we did not treat compositional GVFs
differently when pruning. For example, there is a sudden rise in prediction error at about 80 million
steps in Figure 3(b); this was likely caused by pruning a GVF whose prediction was the cumulant for
a critical compositional GVF. Finally, we only considered a simple set of GVF primitives; though this
simple set was quite effective, there is an opportunity to design other GVF primitives, and particularly
those that might be amenable to composition.
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A OTHER APPROACHES TO HANDLE PARTIAL OBSERVABILITY

There have been several approaches proposed to deal with partial observability. A common approach
has been to use history: the most recent p observations ot−1, . . . ,ot−p. For example, a blind agent
in the middle of an empty room can localize itself using a history of information. Once it reaches
a wall, examining its history can determine how far away it is from a wall. This could clearly fail,
however, if the history is too short. Predictive approaches, like PSRs and TD networks, have been
shown to overcome this issue. Further, PSRs have been shown to more compactly represent state,
than POMDPs (Littman et al., 2001).

A PSR is composed of a set of action-observations sequences and the corresponding probability of
these observations occurring given the sequence of actions. The goal is to find a sufficient subset
of such sequences (core tests) to determine the probability of all possible observations given any
action sequence. PSRs have been extended with the use of options (Wolfe and Singh, 2006), and
discovery of the core tests (McCracken and Bowling, 2005). A PSR can be represented as a GVF
network by using myopic γ = 0 and compositional predictions. For a test a1o1, for example, to
compute the probability of seeing o1, the cumulant is 1 if o1 is observed and 0 otherwise. To get a
longer test, say a0o0a1o1, a second GVF can be added which predicts the output of the first GVF
(i.e., the probability of seeing o1 given a1 is taken), with fixed action a0. This equivalence is only for
computing probabilities of sequences of observations, given sequences of actions. GVF networks
specify the question, not the answer, and so GVF networks do not encompass the discovery methods
or other nice mathematical properties of PSRs, such as can be obtained with linear PSRs.

A TD network is similarly composed of n predictions on each time step, and more heavily uses
compositional questions to obtain complex predictions. Similarly to GVF networks, on each step, the
predictions from the previous step and the current observations are used for this step. The targets for
the nodes can be a function of the observation, and/or a function of another node (compositional).
TD networks are restricted to asking questions about the outcomes from particular actions, rather
than about outcomes from policies. TD networks with options (Sutton et al., 2005; Rafols, 2006)
were introduced, to generalize to temporally extended actions. TD networks with options are
almost equivalent to GVF networks, but have small differences due to generalizations to return
specifications—in GVFs—since then. For example, options have terminating conditions, which
corresponds to having a fixed discount during execution of the option and a termination discount
of 0 at the end of the options. GVFs allow for more general discount functions. Additionally, TD
networks, both with and without options, have a condition function. The generalization to policies,
to allowing action-values to be learned rather than just value functions and the use of importance
sampling corrections, encompasses these functions.

The key differences, then, between GVF networks and TD networks is in how the question networks
are expressed and subsequently how they can be answered. GVF networks are less cumbersome
to specify, because they use the language of GVFs. Further, once in this language, it is more
straightforward to apply algorithms designed for learning GVFs. There are some algorithmic
extensions to TD networks that are not encompassed by GVFs, such as TD networks with traces
(Tanner and Sutton, 2005b).

B ADAGAIN WITH PROXIMAL OPERATORS

A proximal operator for a function R with weighting αη is defined as

proxαηR(w)
def
= arg min

u

1

2
‖u−w‖22 + αηR(u)

Though proximal gradient algorithsm are typically considered for convex regularizers, the proximal
gradient update can be applied for our nonconvex regularizer because our proximal operator has a
unique solution (Yu et al., 2015). The proximal operator for the clipped `2 regularizer is defined
element-wise, for each entry in w:

proxαηR(w)i =

{
wi : if w2

i > (1 + αη)2ε
(1 + αη)−1wi : otherwise

The derivation of AdaGain with a proximal operator is similar to the derivation of AdaGain without
regularization. The only difference is in the gradient of the weights, ψt = ∂

∂αwt, with no change in
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the gradients of δt and of ht (i.e., ψ̄t). Because the proximal operator has non-differentiable points,
we can only obtain a subderivative of the proximal operator w.r.t. to the stepsize. For gradient descent,
we do need to more carefully use this subderivative; in practice, however, using a subderivative within
the stochastic gradient descent update seems to perform well. We similarly found this to be the case,
and so simply use the subderivative in our stochastic gradient descent update.

To derive the update, let w̃ = wt + α∆t be the weights before applying the proximal operator. The
subderivative of the proximal operator w.r.t. α, which we call dproxαηR, is

ψt+1 = dproxαηR(w̃)
def
=

∂

∂α
proxαηR(wt + α∆t)

dproxαηR(w̃)i =

{
∂
∂αw̃i : if w̃2

i > (1 + αη)2ε
∂
∂α (1 + αη)−1w̃i : otherwise

=

{
ψ̃i : if w̃2

i > (1 + αη)2ε

−(1 + αη)−2ηw̃i + (1 + αη)−1ψ̃i : otherwise

where ψ̃t
def
= ∂

∂αw̃t. The proximal operator uses w̃t,i and ψ̃t,i for the element-wise update.

The resulting updates, including the exponential average with forgetting parameter β, is

w̃t+1 = wt + α∆t

wt+1 = proxαtηR
(w̃t+1)

ψ̃t+1 = ((1− β)I− βαtc−1t etd
T
t )ψt − βαtc−1t ut+1e

T
t ψ̄t + β∆t

ψ̄t+1 = (1− β)ψ̄t − βα
(h)
t c−1t

[
etd
>
t ψt + xtx

>
t ψ̄t

]
ψt+1 = dproxα(w̃t+1) =

{
ψ̃t+1,i : if w̃2

t+1,i > (1 + αη)2ε

−(1 + αη)−2ηw̃t+1,i + (1 + αη)−1ψ̃t+1,i : otherwise

with ψ1 = ψ̃1 = ψ̄1 = 0.

C RESULTS ON PRUNING WITH ADAGAIN-R

C.1 EXPERIMENT DETAILS FOR ROBOTIC PLATFORM

The initial step size for GTD(λ) and AdaGain-R was chosen to be 0.1, with the step size of GTD(λ)
normalized over the number of active features (same as AdaGain-R’s normalization factor). AdaGain-
R has a regularization parameters τ = 0.001, η = 1 normalized over the number of active features,
and a meta-stepsize ᾱ = 1.0.

C.2 PRUNING DYSFUNCTIONAL PREDICTIVE FEATURES IN CYCLE WORLD

When generating questions on the fly it is hard to know if certain questions will be learnable, or if
their answers are harmful to future learning. To investigate the utility of our system for ignoring
dysfunctional predictive features within the network, we conducted a small experiment in a six state
cycle world domain (Tanner and Sutton, 2005a). Cycle World consists of six states where the agent
progresses through the cycle deterministically. Each state has a single observation bit set to zero
except for a single state with an observation of one.

We define seven GVFs for the GVF network to learn in Cycle World. Six of the GVFs correspond
to the states of the cycle. The first of these GVFs has the observation bit as its cumulant, and a
discount of zero. The goal for this GVF prediction is to predict the observation bit it expects to see
on the next time step, which must be a ‘0’ or a ‘1’. The second GVF predicts the prediction of this
first GVF on the next steps: it’s cumulant is the prediction from the first GVF on the next step. For
example, imagine that on this step the first GVF accurately predicts a ‘1’ will be observed on the next
step. This means that on the next step, to be accurate the first GVF should predict that a ‘0’ will be
observed. Since the second GVF gets this prediction for the next time step, its target will be a ‘0’ for
this time step, and it will be attempting to predict the observation bit in two time steps. Similar, the
cumulant for the third GVF is the second GVFs prediction on the next time step, and so it is aiming
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prediction 
error

0 100 200 300 400
0.00

0.05

0.10

0.15

0.20

0.25

0 100 200 300 400
0

1

2

3

4

prediction 
error

Average use of GVF #7 feature

error of 
GVF #7

error average over
GVF’s #1, #2, … #6

50000 200K 400K

0.05

0.10

0

4

regularized 
weight

1

0.25

(b) No nonlinear transform,
With regularization, ᾱ = 0.001
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Figure 4: The progression of improved stability, with addition of components of our system. Even
without a nonlinear transformation, AdaGain can maintain stability in the system (in (a)), though the
meta-step size needs to be set more aggressively small. Interestingly, the addition of regularization
significantly improved stability, and even convergence rate (in (b)). The seventh GVF is used more
aggressively after Phase 1—once it becomes useful. The addition of a nonlinear transformation (in
(c)) then finally lets the system react quickly once the seventh GVF becomes accurate. Again, without
regularization, the magnitude of weights is more spread out, but otherwise the performance is almost
exactly the same as (c). For both (b) and (c), the meta-parameters are η = 0.1, ε = 0.01 normalized
with the number of features.

to predict the observation bit in three time steps. The fourth, fifth and sixth GVFs correspondingly
aim to predict the observation bit in four, five and six time steps respectively. These six GVFs all
have a discount of 0, since they are predicting immediate next observations. Finally, the seventh GVF
reflects the likelihood of seeing a ‘1’ within a short horizon, where the cumulant is the observation
bit on the next step and the discount is 0.9 when the observation is ‘0’ and 0.0 when the observation
is ‘1’. With only the first six GVFs in the GVF network, the network cannot learn to make accurate
predictions (Tanner and Sutton, 2005a; Silver, 2012). By adding the seventh GVF, the whole network
can reach zero error; we add this GVF, therefore, to make this domain suitable to test the algorithms.
Though not the intended purpose of this experiment, it is illuminating to see the immediate benefits
of the expanded flexibility of the language of GVFs beyond TD networks.

In these experiments we want to measure our system’s ability to stabilize learning in a situation where
a GVF in the representation is dysfunctional. To simulate the circumstance of a harmful question, we
replace the seventh GVF—the critical GVF for reducing error—with random noise sampled from
a Gaussian of mean and variance 0.5. When this first phase is complete, after 50k time steps, we
replace the noise with the unlearned critical GVF and measure the prediction error of the system.

From Figure 4, we demonstrate that AdaGain enables stable learning under this perturbed learning
setting. When the seventh GVF contained noise, AdaGain quickly dropped the step size for the
others GVFs to the lower threshold ε. This also occurred when learning without the seventh GVF,
and would prevent the instability seen in Cycle World in previous work (Tanner and Sutton, 2005a;
Silver, 2012). After Phase 1, once the seventh GVF begins to learn, the step-sizes are increased. In
this case, the addition of a regularizer also seems to improve stability. For this experiment, there is
not as clear a separation between the adapting the step-size for stability and using regularization to
prune features; in fact, they both seem to play this role to some extent. The overall system, though,
effectively handles this dysfunctional feature.

C.3 PRUNING RANDOM GVFS IN COMPASS WORLD

We demonstrate the ability of our system to put higher preference on more useful GVFs in the
compass world domain, and the effect of pruning less used GVFs. We construct a network with 45
expert GVFs defined in (Rafols, 2006), and 155 GVFs which produce noise sampled from a gaussian
of mean 0 and variance randomly select by a uniform distribution. We prune 20 GVFs every two
million steps based on the average magnitude of the feature weights, all other parameters are the
same for the experiments above. Because the handcrafted expert GVFs contain useful information
they should be used more by our system. Similarly to the experiments in section 5.2, we use the five
evaluation GVFs to measure the representation. As we can see in figure 5, AdaGain-R does mostly
remove the dysfunctional GVFs first, and when the expert GVFs are pruned the representation isn’t
damaged until the penultimate prune. These results also show how pruning dysfunctional or unused
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Figure 5: 45 expert GVFs and 155 random GVFs, pruning 20 GVFs every 2 million steps averaged over 10
runs.

GVFs from a representation is not harmful to the learning task. The instability seen in the ends of
learning can be overcome by allowing the system to generate new GVFs to replace those that were
pruned and by pruning a small amount based on the size of network used as a representation.
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