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Abstract

Automatic segmentation of the liver, spleen and both kidneys is an important
problem allowing to achieve accurate clinical diagnosis and to improve computer-
aided decision support systems. This work presents a computational method for
automatic segmentation of liver, spleen, left and right kidney in abdominal CT
images using deep convolutional neural networks (CNN) which allows the accurate
segmentation of large-scale medical trials. Moreover this work demonstrates the
comparison of several CNN based approaches to perform the segmentation of
required organs. Validation results on the given dataset show that U-Net based
liver, spleen and both kidneys segmentation for transaxial slicing achieves mean
Dice similarity scores (DSC) of 94%, 89% and 88% respectively.

1 Introduction

In clinical trials, the interpretation of CT and MRI images obtained in the diagnosis of liver is usually
done by manual or semi-automatic segmentation techniques. Such methodologies are subjective,
person-dependent and very time-expensive. In order to improve the quality and productivity of
radiologists computer-aided techniques have been developed. These systems recently showed a big
potential for improving the diagnostic accuracy.

However, an automated robust segmentation of liver, spleen and both kidneys remains still an open
problem due to a low-contrast between the organs and lesion, variety of contrast levels, size and
abnormalities in tissues.

Deep learning approaches became the new standards in many traditional domains of computer vision
like image classification, object detection or segmentation. Deep convolutional neural network
methods demonstrated their flexibility and robustness for image processing, what motivates us to
apply them for automatic organs segmentation in abdominal CT images. Many recent segmentation
methods based on CNN and FCNs were developed for medical image analysis claiming highly
competitive results compared to the state-of-the-art [1, 2, 3].

In this work we selected the most popular for biomedical image segmentation U-Net architecture
[4] due to its proven success and extended it with modifications in the layers configuration, specific
image batch generation and loss function.
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Table 1: Comparison of DSCs for single organ (liver,spleen and both kidneys) segmentation with
U-Net, F-Net and BRIEF respectively

DSC Liver Spleen Left kidney Right kidney

F-Net 0.925 0.885 0.890 0.883
BRIEF 0.852 0.751 0.747 0.749
U-Net 0.943 0.887 0.876 0.872

2 Methods

For the segmentation of four organs (liver, spleen and both kidneys) on abdominal CT several deep
convolutional neural network architectures were implemented and compared. The dataset for this
task comprises 70 CT volumes of abdominal region with corresponding number of ground truth
delineations. The original size of images is 512×512×394 which were resampled to 224×224×394
in order to proceed several images in one batch. In order to prevent overfitting of the network and
obtain reproducible results we implemented a 5-fold cross-validation by random splitting the dataset
on training and validation parts with equal size of 14 cases per one fold. The batch normalization
layers were excluded from the configuration of 4-levels depth U-Net because the input data were
normalized to range [-1;1] during the pre-processing step so additional batch normalization was not
necessary.

Initial images were generally normalized by their mean and standard deviation and in order to exclude
the artifacts such as outer air/colon gas and kidney stones their contrast values were clipped to
manually defined low and high threshold of values 845 and 1295 Hounsfield units (HU). Since a
3D processing of the images was not possible due to memory limitations, images were processed
slice-wise as commonly done for medical image processing using deep learning techniques.

Training was performed in mini-batches consisting of 16 images. In medical imaging some masks of
organ segmentation may be empty because the target organ is present in a subset of slices only. In
order to improve the convergence and accuracy of our approach, we created the batches such that
each batch contains at least one image with non-empty mask corresponding to required organ. Since
we can not expect that target organ will be present in the input CT volume we have to keep the empty
slices in the training process. The network was trained by minimizing the loss function with custom
adaptive learning rate scheduler, which decreases the learning rate by the factor of 2 after 5 epochs
stucking on plateau. Parameters were optimized by the use of adaptive gradient descent algorithm
Adam [5]. Segmentation performance was assessed in terms of Dice similarity scores (DSC) [6],
precision and recall rates.

3 Results

For the U-Net type network, DSCs of 0.943, 0.887 and 0.876 were obtained for liver, spleen and both
kidneys for transaxial slicing respectively. The neural network was trained from scratch during the 70
epochs for each of 5-fold splitting. We included the results of another approaches BRIEF [7] and
F-Net [8] obtained by the evaluation of the methods on the same dataset using the cross-validation
with identical split, what allows for a direct comparison.

These network architectures demonstrated similar results – with the use of BRIEF DSCs of 0.852,
0.751, 0.749 were respectively obtained, while for F-Net appropriate scores are 0.925, 0.885, 0.89.
No post-processing was performed in order to fairly compare the performance of different approaches.
More detailed comparisons in terms of DSCs, precision and recall rates between different approaches
for transaxial slicing are presented in the Tables 1, 2 and 3.

In addition, we assessed the impact of using SegNet [9] inspired trick of transferring of maxpooling
indices as additional feature information from each encoder layer to decoder. The additional con-
catenations of this feature maps with standard U-Net concatenated decoder part did not demonstrate
statistically significant improvement and had only a minimal effect on the segmentation aacuracy,
while had a high impact on memory and calculating time consumption.
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Table 2: Comparison of precision rates for single organ (liver,spleen and both kidneys) segmentation
with U-Net, F-Net and BRIEF respectively

DSC Liver Spleen Left kidney Right kidney

F-Net 0.932 0.892 0.904 0.895
BRIEF 0.779 0.668 0.690 0.696
U-Net 0.947 0.910 0.903 0.915

Table 3: Comparison of recall rates for single organ (liver,spleen and both kidneys) segmentation
with U-Net, F-Net and BRIEF respectively

DSC Liver Spleen Left kidney Right kidney

F-Net 0.920 0.887 0.892 0.880
BRIEF 0.947 0.880 0.842 0.831
U-Net 0.940 0.868 0.860 0.854

4 Conclusion

This study indicates that segmentation of liver, spleen, left and right kidney using neural networks
is feasible with very good accuracy by the use of different techniques and approaches. However
depending on specific organ segmentation problem and image type, the choice of the network
architecture as well as the hyperparameters might be more sensitive and requires further investigation.
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