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ABSTRACT

We propose a statistical model applicable to character level language modeling
and show that it is a good fit for both, program source code and English text. The
model is parameterized by a program from a domain-specific language (DSL)
that allows expressing non-trivial data dependencies. Learning is done in two
phases: (i) we synthesize a program from the DSL, essentially learning a good
representation for the data, and (ii) we learn parameters from the training data –
the process is done via counting, as in simple language models such as n-gram.
Our experiments show that the precision of our model is comparable to that of neu-
ral networks while sharing a number of advantages with n-gram models such as
fast query time and the capability to quickly add and remove training data samples.
Further, the model is parameterized by a program that can be manually inspected,
understood and updated, addressing a major problem of neural networks.

1 INTRODUCTION

Recent years have shown increased interest in learning from large datasets in order to make accurate
predictions on important tasks. A significant catalyst for this movement has been the ground break-
ing precision improvements on a number of cognitive tasks achieved via deep neural networks. Deep
neural networks have made substantial inroads in areas such as image recognition (Krizhevsky et al.,
2012) and natural language processing (Józefowicz et al., 2016) thanks to large datasets, deeper net-
works (He et al., 2016) and substantial investments in computational power Oh & Jung (2004).

While neural networks remain a practical choice for many applications, they have been less effective
when used for more structured tasks such as those concerning predictions about programs (Allama-
nis et al., 2016; Raychev et al., 2014). Initially targeting the programming languages domain, a new
method for synthesizing probabilistic models proposed by Bielik et al. (2016), without a neural
network, has shown to be effective for modeling source code, and has gained traction.

In this work, we investigate the applicability of this new method to tasks which have so far been
addressed with recurrent neural networks and n-gram language models. The probabilistic models
we propose are defined by a program from a domain-specific language (DSL). A program in this
DSL describes a probabilistic model such as n-gram language models or a variant of it - e.g. trained
on subsets of the training data, queried only when certain conditions are met and specialized in
making specific classes of predictions. These programs can also be combined to produce one large
program that queries different specialized submodels depending on the context of the query.

For example, consider predicting the characters in an English text. Typically, the first character of
a word is much more difficult to predict than other characters and thus we would like to predict it
differently. Let f be a function that takes a prediction position t in a text x and returns a list of
characters to make prediction on. For example, let f be defined as follows:

f(t, x) = if xt−1 is whitespace then xs else xt−1xt−2

where xs is the first character of the word preceding the predicted word at position t. Now, consider
a model that predicts a character by estimating each character xt from a distribution P (xt|f(t, x)).
For positions that do not follow a whitespace, this distribution uses the two characters preceding
xt and thus it simply encodes a trigram language model (in this example, without backoff, but we
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consider backoff separately). However, P (xt|f(t, x)) combines the trigram model with another
interesting model for the samples in the beginning of the words where trigram models typically fail.

More generally, f is a function that describes a probabilistic model. By simply varying f , we can de-
fine trivial models such as n-gram models, or much deeper and interesting models and combinations.
In this work, we draw f from a domain-specific language (DSL) that resembles a standard program-
ming language: it includes if statements, limited use of variables and one iterator over the text, but
overall that language can be further extended to handle specific tasks depending on the nature of the
data. The learning process now includes finding f from the DSL such that the model P (xt|f(t, x))
performs best on a validation set and we show that we can effectively learn such functions using
Markov chain Monte Carlo (MCMC) search techniques combined with decision tree learning.

Advantages An advantage of having a function f drawn from a DSL is that f becomes humanly
readable, in contrast to neural networks that generally provide non-human readable matrices (Li
et al., 2016). Further, the training procedure is two-fold: first, we synthesize f from the DSL, and
then for a given f , we estimate probabilities for P (xt|f(t, x)) by counting in the training data. This
gives us additional advantages such as the ability to synthesize f and learn the probability distribu-
tion P on different datasets: e.g., we can easily add and remove samples from the dataset used for
computing the probability estimate P . Finally, because the final model is based on counting, esti-
mating probabilities P (xt|f(t, x)) is efficient: applying f and looking up in a hashtable to determine
how frequently in the training data, xt appears in the resulting context of f(t, x).

Before we continue, we note an important point about DSL-based models. In contrast to deep neural
networks that can theoretically encode all continuous functions (Hornik, 1991), a DSL by definition
targets a particular application domain, and thus comes with restricted expressiveness. Increasing
the expressibility of the DSL (e.g., by adding new instructions) can in theory make the synthesis
problem intractable or even undecidable. Overall, this means that a DSL should balance between
expressibility and efficiency of synthesizing functions in it (Gulwani, 2010).

Contributions This work makes two main contributions:

• We define a DSL which is useful in expressing (character level) language models. This
DSL can express n-gram language models with backoff, with caching and can compose
them using if statements in a decision-tree-like fashion. We also provide efficient synthesis
procedures for functions in this DSL.

• We experimentally compare our DSL-based probabilistic model with state-of-the-art neural
network models on two popular datasets: the Linux Kernel dataset (Karpathy et al., 2015)
and the Hutter Prize Wikipedia dataset (Hutter, 2012).

2 A DSL FOR CHARACTER LEVEL LANGUAGE MODELING

We now provide a definition of our domain specific language (DSL) called TChar for learning
character level language models. At a high level, executing a program p ∈ TChar at a position t ∈ N
in the input sequence of characters x ∈ X returns an LMProgram that specifies language model to
be used at position t. That is, p ∈ TChar : N×X → LMProgram. The best model to use at position
t is selected depending on the current program state (updated after processing each character) and
conditioning on the dynamically computed context for position t of the input text x. This allows us
to train specialized models suited for various types of prediction such as for comments vs. source
code, newlines, indentation, opening/closing brackets, first character of a word and many more.
Despite of the fact that the approach uses many specialized models, we still obtain a valid probability
distribution as all of these models operate on disjoint data and are valid probability distributions.
Subsequently, the selected program f ∈ LMProgram determines the language model that estimates
the probability of character xt by building a probability distribution P (xt|f(t, x)). That is, the
probability distribution is conditioned on the context obtained by executing the program f .

The syntax of TChar is shown in Fig. 1 and is designed such that it contains general purpose in-
structions and statements that operate over a sequence of characters. One of the advantages of our
approach is that this language can be further refined by adding more instructions that are specialized
for a given domain at hand (e.g., in future versions, we can easily include set of instructions specific
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Program State state ∈ N Accumulated Context v ∈ N∗ Backoff Threshold d ∈ 〈0, 1〉
TChar ::= SwitchProgram | StateProgram | return LMProgram

StateProgram ::= StateUpdate; StateSwitch

StateUpdate ::=

switch SimpleProgram

case v1 then INC (state = state+ 1)

case v2 then DEC (state = max(0, state− 1))

default SKIP (state = state)

StateSwitch ::=

switch state

case v1 then TChar

· · ·
case vn then TChar

default TChar

SwitchProgram ::=

switch SimpleProgram

case v1 or · · · or vk then TChar

· · ·
case vj or · · · or vn then TChar

default TChar

SimpleProgram ::= ε

| Move; SimpleProgram
| Write; SimpleProgram

Move ::= LEFT | RIGHT | PREV CHAR | PREV POS

Write ::= WRITE CHAR | WRITE HASH | WRITE DIST

LMProgram ::= SimpleProgram | SimpleProgram backoff d; LMProgram |
(SimpleProgram, SimpleProgram).

Figure 1: Syntax of TChar language for character level language modeling. Program semantics are
given in the appendix.

to modeling C/C++ source code). We now informally describe the general TChar language of this
work. We provide a formal definition and semantics of the TChar language in the appendix.

2.1 SIMPLEPROGRAMS

The SimpleProgram is a basic building block of the TChar language. It describes a loop-free and
branch-free program that accumulates context with values from the input by means of navigating
within the input (using Move instructions) and writing the observed values (using Write instruc-
tions). The result of executing a SimpleProgram is the accumulated context which is used either to
condition the prediction, to update the program state or to determine which program to execute next.

Move Instructions We define four basic types of Move instructions – LEFT and RIGHT that move to
the previous and next character respectively, PREV CHAR that moves to the most recent position in the
input with the same value as the current character xt and PREV POS which works as PREV CHAR but
only considers positions in the input that are partitioned into the same language model. Additionally,
for each character c in the input vocabulary we generate instruction PREV CHAR(c) that navigates to
the most recent position of character c. We note that all Move instructions are allowed to navigate
only to the left of the character xt that is to be predicted.

Write Instructions We define three Write instructions – WRITE CHAR that writes the value of
the character at current position, WRITE HASH that writes a hash of all the values seen between the
current position and the position of last Write instruction, and WRITE DIST that writes a distance
(i.e., number of characters) between current position and the position of last Write instruction. In
our implementation we truncate WRITE HASH and WRITE DIST to a maximum size of 16.

Example With Write and Move instructions, we can express various programs that extract useful
context for a given position t in text x. For example, we can encode the context used in trigram lan-
guage model with a program LEFT WRITE CHAR LEFT WRITE CHAR. We can also express programs
such as LEFT PREV CHAR RIGHT WRITE CHAR that finds the previous occurrence of the character on
the left of the current position and records the character following it in the context.
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2.2 SWITCHPROGRAMS

A problem of using only one SimpleProgram is that the context it generates may not work
well for the entire dataset, although combining several such programs can generate suitable con-
texts for the different types of predictions. To handle these cases, we introduce SwitchProgram
with switch statements that can conditionally select appropriate subprograms to use depending
on the context of the prediction. The checked conditions of switch are themselves program
pguard ∈ SimpleProgram that accumulate values that are used to select the appropriate branch
that should be executed next. During the learning the goal is then to synthesize best program pguard
to be used as a guard, the values v1, · · · , vn used as branch conditions as well as the programs to
be used in each branch. We note that we support disjunction of values within branch conditions. As
a result, even if the same program is to be used for two different contexts v1 and v2, the synthesis
procedure can decide whether a single model should be trained for both (by synthesizing a single
branch with a disjunction of v1 and v2) or a separate models should be trained for each (by synthe-
sizing two branches).

Example We now briefly discuss some of the BranchProgram synthesized for the Linux Kernel
dataset in our experiments described in Section 3. By inspecting the synthesized program we iden-
tified interesting SimplePrograms building blocks such as PREV CHAR( ) RIGHT WRITE CHAR that
conditions on the first character of the current word, PREV CHAR(\n) WRITE DIST that conditions
on the distance from the beginning of the line or PREV CHAR( ) LEFT WRITE CHAR that checks the
preceding character of a previous underscore (useful for predicting variable names). These are ex-
amples of more specialized programs that are typically found in the branches of nested switches
of a large TChar program. The top level switch of the synthesized program used the character be-
fore the predicted position (i.e. switch LEFT WRITE CHAR) and handles separately cases such as
newline, tabs, special characters (e.g., !#@.∗), upper-case characters and the rest.

2.3 STATEPROGRAMS

A common difficulty in building statistical language models is capturing long range dependencies in
the given dataset. Our TChar language partially addresses this issue by using Move instructions that
can jump to various positions in the data using PREV CHAR and PREV POS instructions. However,
we can further improve by explicitly introducing a state to our programs using StateProgram. The
StateProgram consists of two sequential operations – updating the current state and determining
which program to execute next based on the value of the current state. For both we reuse the switch
construct defined previously for SwitchProgram. In our work we consider integer valued state that
can by either incremented, decremented or left unmodified after processing each input character. We
note that other definitions of the state, such as stack based state, are possible.

Example As an example of a StateProgram consider the question of detecting whether the cur-
rent character is inside a comment or is a source code. These denote very different types of data
that we might want to model separately if it leads to improvement in our cost metric. This can be
achieved by using a simple state program with condition LEFT WRITE CHAR LEFT WRITE CHAR that
increments the state on ’/*’, decrements on ’*/’ and leaves the state unchanged otherwise.

2.4 LMPROGRAMS

The LMProgram describes a probabilistic model trained and queried on a subset of the data as defined
by the branches taken in the SwitchPrograms and StatePrograms. The LMProgram in TChar is
instantiated with a language model described by a SimpleProgram plus backoff. That is, the predic-
tion is conditioned on the sequence of values returned by executing the program, i.e. P (xt|f(t, x)).

Recall that given a position t in text x, executing a SimpleProgram returns context f(t, x). For
example, executing LEFT WRITE CHAR LEFT WRITE CHAR returns the two characters xt−1xt−2 pre-
ceding xt. In this example P (xt|f(t, x)) is a trigram model. To be effective in practice, however,
such models should support smoothing or backoff to lower order models. We provide backoff in
two ways. First, because the accumulated context by the SimpleProgram is a sequence we simply
backoff to a model that uses a shorter sequences by using Witten-Bell backoff (Witten & Bell, 1991).
Second, in the LMProgram we explicitly allow to backoff to other models specified by a TChar pro-
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gram if the probability of the most likely character from vocabulary V according to the P (xt|f(t, x))
model is less than a constant d. Additionally, for some of our experiments we also consider backoff
to a cache model (Kuhn & De Mori, 1990).

Predicting Out-of-Vocabulary Labels Finally, we incorporate a feature of the language models
as proposed by Raychev et al. (2016a) that enables us not only to predict characters directly but
instead to predict a character which is equal to some other character in the text. This is achieved
by synthesising a pair of (SimpleProgram, SimpleProgram). The first program is called equality
program and it navigates over the text to return characters that may be equal to the character that
we are trying to predict. Then, the second program f describes P (xt|f(t, x)) as described before,
except that a possible output is equality to one of the characters returned by the equality program.

2.5 SYNTHESISING TChar PROGRAMS

The goal of the synthesizer is given a set of training and validation samples D, to find a program:

pbest = arg min
p∈TChar

cost(D, p)

where cost(D, p) = −logprob(D, p) + λ · Ω(p). Here logprob(D, p) is the log-probability of the
trained models on the dataset D and Ω(p) is a regularization that penalizes complex functions to
avoid over-fitting to the data. In our implementation, Ω(p) returns the number of instructions in p.

The language TChar essentially consists of two fragments: branches and straight-line
SimplePrograms. To synthesize branches, we essentially need a decision tree learning algorithm
that we instantiate with the ID3+ algorithm as described in Raychev et al. (2016a). To synthesize
SimplePrograms we use a combination of brute-force search for very short programs (up to 5 in-
structions), genetic programming-based search and Markov chain Monte Carlo-based search. These
procedures are computationally feasible, because each SimpleProgram consists of only a small
number of moves and writes. We provide more details about this procedure in Appendix B.1.

3 EXPERIMENTS

Datasets For our experiments we use two diverse datasets: a natural language one and a structured
text (source code) one. Both were previously used to evaluate character-level language models – the
Linux Kernel dataset Karpathy et al. (2015) and Hutter Prize Wikipedia dataset Hutter (2012). The
Linux Kernel dataset contains header and source files in the C language shuffled randomly, and
consists of 6, 206, 996 characters in total with vocabulary size 101. The Hutter Prize Wikipedia
dataset contains the contents of Wikipedia articles annotated with meta-data using special mark-up
(e.g., XML or hyperlinks) and consists of 100, 000, 000 characters and vocabulary size 205. For
both datasets we use the first 80% for training, next 10% for validation and final 10% as a test set.

Evaluation Metrics To evaluate the performance of various probabilistic language models we use
two metrics. Firstly, we use the bits-per-character (BPC) metric which corresponds to the negative
log likelihood of a given prediction E[− log2 p(xt | x<t)], where xt is character being predicted
and x<t denotes characters preceding xt. Further, we use error rate which corresponds to the ratio
of mistakes the model makes. This is a practical metric that directly quantifies how useful is the
model in a concrete task (e.g., completion). As we will see, having two different evaluation metrics
is beneficial as better (lower) BPC does not always correspond to better (lower) error rate.

3.1 LANGUAGE MODELS

We compare the performance of our trained DSL model, instantiated with the TChar language de-
scribed in Section 2, against two widely used language models – n-gram model and recurrent neural
networks. For all models we consider character level modeling of the dataset at hand. That is, the
models are trained by feeding the input data character by character, without any knowledge of higher
level word boundaries and dataset structure.
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Linux Kernel Dataset (Karpathy et al., 2015)

Bits per Error Training Queries Model
Model Character Rate Time per Second Size

LSTM (Layers×Hidden Size)
2×128 2.31 40.1% ≈28 hours 4 000 5 MB
2×256 2.15 37.9% ≈49 hours 1 100 15 MB
2×512 2.05 38.1% ≈80 hours 300 53 MB

n-gram
4-gram 2.49 47.4% 1 sec 46 000 2 MB
7-gram 2.23 37.7% 4 sec 41 000 24 MB

10-gram 2.32 36.2% 11 sec 32 000 89 MB
15-gram 2.42 35.9% 23 sec 21 500 283 MB

DSL model (This Work)
TCharw/o cache & backoff 1.92 33.3% ≈8 hours 62 000 17 MB
TCharw/o backoff 1.84 31.4% ≈8 hours 28 000 19 MB
TCharw/o cache 1.75 28.0% ≈8.2 hours 24 000 43 MB
TChar 1.53 23.5% ≈8.2 hours 3 000 45 MB

Table 1: Detailed comparison of LSTM, n-gram and DSL models on Linux Kernel dataset.

N-gram We use the n-gram model as a baseline model as it has been traditionally the most widely
used language model due to it simplicity, efficient training and fast sampling. We note that n-
gram can be trivially expressed in the TChar language as a program containing a sequence of LEFT
and WRITE instructions. To deal with data sparseness we have experimented with various smooth-
ing techniques including Witten-Bell interpolation smoothing Witten & Bell (1991) and modified
Kneser-Ney smoothing Kneser & Ney (1995); Chen & Goodman (1998).

Recurrent Neural Networks To evaluate the effectiveness of the DSL model we compare to a re-
current network language model shown to produce state-of-the-art performance in various natural
language processing tasks. In particular, for the Linux Kernel dataset we compare against a variant
of recurrent neural networks with Long Short-Term Memory (LSTM) proposed by Hochreiter &
Schmidhuber (1997). To train our models we follow the experimental set-up and use the implemen-
tation of Karpathy et al. (2015). We initialize all parameters uniformly in range [−0.08, 0.08], use
mini-batch stochastic gradient descent with batch size 50 and RMSProp Dauphin et al. (2015) per-
parameter adaptive update with base learning rate 2 × 10−3 and decay 0.95. Further, the network
is unrolled 100 time steps and we do not use dropout. Finally, the network is trained for 50 epochs
(with early stopping based on a validation set) and the learning rate is decayed after 10 epochs by
multiplying it with a factor of 0.95 each additional epoch. For the Hutter Prize Wikipedia dataset
we compared to various other, more sophisticated models as reported by Chung et al. (2017).

DSL model To better understand various features of the TChar language we include experiments
that disable some of the language features. Concretely, we evaluate the effect of including cache
and backoff. In our experiments we backoff the learned program to a 7-gram and 3-gram mod-
els and we use cache size of 800 characters. The backoff thresholds d are selected by evaluating
the model performance on the validation set. Finally, for the Linux Kernel dataset we manually
include a StateProgram as a root that distinguishes between comments and code (illustrated in
Section 2.3). The program learned for the Linux Kernel dataset contains ≈ 700 BranchPrograms
and ≈ 2200 SimplePrograms and has over 8600 Move and Write instructions in total. We pro-
vide an interactive visualization of the program and it’s performance on the Linux Kernel dataset
online at:

www.srl.inf.ethz.ch/charmodel.html
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Hutter Prize Wikipedia Dataset (Hutter, 2012)

Metric n-gram DSL model Stacked LSTM MRNN MI-LSTM HM-LSTM†

n = 7 This Work Graves (2013) Sutskever et al. (2011) Wu et al. (2016) Chung et al. (2017)

BPC 1.94 1.62 1.67 1.60 1.44 1.34

Table 2: Bits-per-character metric for various neural language models (as reported by Chung et al.
(2017)) achieved on Hutter Prize Wikipedia dataset where the TChar model achieves competitive
results. †State-of-the-art network combining character and word level models that are learned from
the data.

3.2 MODEL PERFORMANCE

We compare the performance of the DSL model, n-gram and neural networks for the tasks of learn-
ing character level language models by discussing a number of relevant metrics shown in Table 1
and Table 2.

Precision In terms of model precision, we can see that as expected, the n-gram model performs
worse in both BPC and error rate metrics. However, even though the best BPC is achieved for
a 7-gram model, the error rate decreases up to 15-gram. This suggests that none of the smoothing
techniques we tried can properly adjust to the data sparsity inherent in the higher order n-gram mod-
els. It is however possible that more advanced smoothing techniques such as one based on Pitman-
Yor Processes (Teh, 2006) might address this issue. As the DSL model uses the same smoothing
technique as n-grams, any improvement to smoothing is directly applicable to it.

As reported by Karpathy et al. (2015), the LSTM model trained on the Linux Kernel dataset improves
BPC over the n-gram. However, in our experiments this improvement did not translate to lower error
rate. In contrast, our model is superior to n-gram and LSTM in all configurations, beating the best
other model significantly in both evaluation metrics – decreasing BPC by over 0.5 and improving
error rate by more than 12%.

For the Hutter Prize Wikipedia dataset, even though the dataset consists of natural language text and
is much less structured than the Linux Kernel, our model is competitive with several neural network
models. Similar to the results achieved on Linux Kernel, we expect the error rate of the DSL model
for Hutter Prize Wikipedia dataset, which is 30.5%, to be comparable to the error rate achieved by
other models. However, this experiment shows that our model is less suitable to unstructured text
such as the one found on Wikipedia.

Training Time Training time is dominated by the LSTM model that takes several days for the
network with the highest number of parameters. On the other hand, training n-gram models is
extremely fast since the model is trained simply by counting in a single pass over the training data.
The DSL model sits between these two approaches and takes ≈ 8 hours to train. The majority of
the DSL training time is spent in the synthesis of SwitchPrograms where one needs to consider
a massive search space of possible programs from which the synthesis algorithm aims to find one
that is approximately the best (e.g., for Linux Dataset the number of basic instructions is 108 which
means that naive enumeration of programs up to size 3 already leads to 1083 different candidate
programs). All of our experiments were performed on a machine with Intel(R) Xeon(R) CPU E5-
2690 with 14 cores. All training times are reported for parallel training on CPU. Using GPUs for
training of the neural networks might provide additional improvement in training time.

Query (Sampling) Time Sampling the n-gram is extremely fast, answering≈ 46, 000 queries per
second, as each query corresponds to only a several hash look-ups. The query time for the DSL
model is similarly fast, in fact can be even faster, by answering ≈ 62, 000 queries per second. This
is because it consists of two steps: (i) executing the TChar program that selects a suitable language
model (which is very fast once the program has been learned), and (ii) querying the language model.
The reason why the model can be faster is that there are fewer hash lookups which are also faster
due to the fact that the specialized language models are much smaller compared to the n-gram (e.g.,
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≈ 22% of the models simply compute unconditioned probabilities). Adding backoff and cache to the
DSL model decreases sampling speed, which is partially because our implementation is currently
not optimized for querying and fully evaluates all of the models even though that is not necessary.

Model Size Finally, we include the size of all the trained models measured by the size in MB of the
model parameters. The models have roughly the same size except for the n-gram models with high
order for which the size increases significantly. We note that the reason why both the n-gram and
DSL models are relatively small is that we use hash-based implementation for storing the prediction
context. That is, in a 7-gram model the previous 6 characters are hashed into a single number. This
decreases the model size significantly at the expense of some hash collisions.

4 RELATED WORK

Program Synthesis Program synthesis is a well studied research field in which the goal is to au-
tomatically discover a program that satisfies a given specification that can be expressed in various
forms including input/output examples, logical formulas, set of constraints or even natural language
description.In addition to the techniques that typically scale only for smaller programs and attempt
to satisfy the specification completely (Alur et al., 2013; Solar-Lezama et al., 2006; Solar-Lezama,
2013; Jha et al., 2010) a recent line of work considers a different setting consisting of large (e.g.,
millions of examples) and noisy (i.e., no program can satisfy all examples perfectly) datasets. This
is the setting that needs to be considered when synthesizing programs in our setting and in a lan-
guage such as TChar. Here, the work of Raychev et al. (2016b) showed how to efficiently synthesize
straight-line programs and how to handle noise, then Raychev et al. (2016a) showed how to synthe-
size branches, and thework of Heule et al. (2015) proposed a way to synthesize loops.

In our work we take advantage of these existing synthesis algorithms and use them to efficiently
synthesize a program in TChar. We propose a simple extension that uses MCMC to sample from
a large amount of instructions included in TChar (many more than prior work). Apart from this,
no other modifications were required in order to use existing techniques for the setting of character
level language modeling we consider here.

Recurrent Neural Networks Recent years have seen an emerging interest in building a neural
language models over words (Bengio et al., 2003), characters (Karpathy et al., 2015; Sutskever
et al., 2011; Wu et al., 2016) as well as combination of both (Chung et al., 2017; Kim et al., 2015;
Mikolov et al., 2012). Such models have been shown to achieve state-of-the-art performance in
several domains and there is a significant research effort aimed at improving such models further.

In contrast, we take a very different approach, one that aims to explain the data by means of syn-
thesizing a program from a domain specific language. Synthesising such programs efficiently while
achieving competitive performance to the carefully tuned neural networks creates a valuable re-
source that be used as a standalone model, combined with existing neural language models or even
used for their training. For example, the context on which the predictions are conditioned is similar
to the attention mechanism (Sukhbaatar et al., 2015; Bahdanau et al., 2014) and might be incorpo-
rated into that training in the future.

5 CONCLUSION

In this paper we proposed and evaluated a new approach for building character level statistical lan-
guage models based on a program that parameterizes the model. We design a language TChar for
character level language modeling and synthesize a program in this language. We show that our
model works especially well for structured data and is significantly more precise that prior work.
We also demonstrate competitive results in the less structured task of modeling English text.

Expressing the language model as a program results in several advantages including easier inter-
pretability, debugging and extensibility with deep semantic domain knowledge by simply incorpo-
rating a new instruction in the DSL. We believe that this development is an interesting result in
bridging synthesis and machine learning with much potential for future research.
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APPENDIX

We provide three appendices. In Appendix A, we describe how to obtain a probabilistic model from
a LMProgram. In Appendix B, we provide details on how TChar programs are synthesized from
data. Finally, in Appendix C, we provide detailed formal semantics of TChar programs.

A OBTAINING A PROBABILISTIC MODEL FROM TChar

We start by describing the program formulation used in the learning and then describe how a proba-
bility distribution is obtained from a program in TChar.

Dataset Given an input sentence s = x1 · x2 · ... · xn, the training dataset is defined as D =
{(xt, x<t)}nt=1, where xt is the character to be predicted at position t and x<t are all the preceding
characters seen in the input (x<1 is ε – the empty sequence).

Cost function Let r : ℘(charpairs) × TChar → R+ be a cost function. Here, charpairs =
(char, char∗) is the set containing of all possible pairs of a character and a sequence of characters
(char can be any single character). Conceptually, every element from charpairs is a character and
all the characters that precede it in a text. Then, given a dataset D ⊆ charpairs and a learned
program p ∈ TChar, the function r returns the cost of p onD as a non-negative real number – in our
case the average bits-per-character (BPC) loss:

r(D, p) =
1

n

n∑
t=1

− log2 P (xt | x<t, p) (1)

Problem Statement The learning problem is the following:

find a program pbest = arg min
p∈TChar

r(D, p) + λ · Ω(p) (2)

where Ω: TChar → R+ is a regularization term used to avoid over-fitting to the data by penalizing
complex programs and λ ∈ R is a regularization constant. We instantiate Ω(p) to return the number
of instruction in a program p. The objective of the learning is therefore to find a program that
minimizes the cost achieved on the training dataset D such that the program is not overly complex
(as controlled by the regularization).

Obtaining the Probability Distribution P (xt | x<t, p). We use P (xt | x<t, p) above to denote
the probability of label xt in a probability distribution specified by program p when executed on
context x<t at position t. As described in Section 2 this probability is obtained in two steps:

• Execute program p(t, x<t) to obtain a program f ∈ LMProgram.
• Calculate the probability Pf (xt | f(t, x<t)) using f .

The semantics of how programs p and f are executed are described in detail in Appendix C.1. In
the remained of this section we describe how the probability distribution Pf is obtained. We note
that P (xt | x<t, p) is a valid probability distribution since p(t, x<t) always computes a unique
program f and the distributions Pf (xt | f(t, x<t)) are valid probability distributions as defined
below.

Obtaining the Probability Distribution Pf (xt | f(t, x<t)). As discussed in Section 2, a function
f ∈ LMProgram is used to define a probability distribution. Let us show how we compute this
distribution for both cases, first, when f ∈ SimpleProgram and then, when f consists of several
SimplePrograms connected via backoff.

Assume we are given a function f ∈ SimpleProgram and a training sample (xt, x<t), where xt is
a character to be predicted at position t and x<t are all the preceding characters seen in the input
(x<1 is ε). The probability of label xt is denoted as Pf (xt | f(t, x<t)) – that is, we condition the
prediction on a context obtained by executing program f from position t in input x<t (the formal
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semantics of executing such programs are defined in Section C.1). This probability is obtained using
a maximum likelihood estimation (counting):

Pf (xt | f(t, x<t)) =
Count(f(t, x<t) · xt)
Count(f(t, x<t))

where Count(f(t, x<t) ·xt) denotes the number of times label xt is seen in the training dataset after
the context produced by f(t, x<t). Similarly, f(t, x<t) denotes the number of times the context was
seen regardless of the subsequent label. To deal with data sparseness we additionally adjust the
obtained probability by using Witten-Bell interpolation smoothing Witten & Bell (1991).

Now lets us consider the case when f consists of multiple SimplePrograms with backoff, i.e.,
f = f1 backoff d; f2, where f1 ∈ SimpleProgram and f2 ∈ LMProgram.

Recall from Section 2 that we backoff to the next model if the probability of the most likely character
according to the current model is less than a constant d. More formally:

Pf (xt | f(t, x<t))f=f1 backoff d; f2 =

{
Pf1(xt | f1(t, x<t)) if d ≥ arg maxy∈V Pf1(y | f1(t, x<t))

Pf2(xt | f2(t, x<t)) otherwise

This means that if f1 produces a probability distribution that has confidence greater than d about
its best prediction, then f1 is used, otherwise a probability distribution based on f2 is used. When
backoff is used, both probabilities are estimated from the same set of training samples (the dataset
that would be used if there was no backoff).

From Programs to Probabilistic Models: an Illustrative Example We illustrate how programs
in TChar are executed and a probability distribution is built using a simple example shown in Fig. 2.
Consider the program p ∈ TChar containing two LMPrograms f1 and f2 that define two probability
distributions Pf1 and Pf2 respectively.

The program p determines which one to use by inspecting the previous character in the input. Let
the input sequence of characters be “a1a2b1b2” where each character corresponds to one training
sample. Given the training samples, we now execute p to determine which LMProgram to use as
shown in Fig. 2 (left). In our case this splits the dataset into two parts – one for predicting letters
and one for numbers.

For numbers, the model based on f1 = LEFT LEFT WRITE CHAR conditions the prediction on the
second to left character in the input. For letters, the model based on f2 = empty is simply an un-
conditional probability distribution since executing empty always produces empty context. As can
be seen, the context obtained from f1 already recognizes that the sequence of numbers is repeat-
ing. The context from f2 can however be further improved, especially upon seeing more training
samples.

B SYNTHESIZING TChar PROGRAMS

In this section we describe how programs in our TChar language are synthesized.

B.1 LEARNING SIMPLEPROGRAMS

We next describe the approach to synthesize good programs f ∈ SimpleProgram such that they
minimize the objective function:

fbest = arg min
f∈SimpleProgram

1

n

n∑
t=1

− log2 P (xt | f(t, xt)) + λ · Ω(f)

We use a combination of three techniques to solve this optimization problem and find f≈best – an
exact enumeration, approximate genetic programming search, and MCMC search.
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Input:
“a1a2b1b2”

t x<t xt p(t, x<t)

1 a f2

2 a 1 f1

3 a1 a f2

4 a1a 2 f1

5 a1a2 b f2

6 a1a2b 1 f1

7 a1a2b1 b f2

8 a1a2b1b 2 f1

t f1(t, x<t) Pf1(xt | f1(t, x<t))

2 unk
Count(unk·1)
Count(unk)

= 1
1
= 1.0

4 1
Count(1·2)
Count(1)

= 2
2
= 1.0

6 2
Count(2·1)
Count(2)

= 1
1
= 1.0

8 1
Count(1·2)
Count(1)

= 2
2
= 1.0

t f2(t, x<t) Pf2(xt | f2(t, x<t))

1 ε Count(ε·a)
Count(ε)

= 2
4
= 0.5

3 ε Count(ε·a)
Count(ε)

= 2
4
= 0.5

5 ε Count(ε·b)
Count(ε)

= 2
4
= 0.5

7 ε Count(ε·b)
Count(ε)

= 2
4
= 0.5

p ::= switch LEFT WRITE CHAR

case ‘a‘ or ‘b‘ then LEFT LEFT WRITE CHAR (f1)

default empty (f2)

Figure 2: Illustration of a probabilistic model built on an input sequence ′a1a2b1b2′ using pro-
gram p. (Left) The dataset of samples specified by the input and the result of executing program p
on each sample. (Top Right) The result of executing program f1 on a subset of samples selected by
program p and the corresponding probability distribution Pf1 . (Bottom Right) The result of execut-
ing empty program f2 and it’s corresponding unconditioned probability distribution Pf2 . We use the
notation ε to describe an empty sequence.

Enumerative Search We start with the simplest approach that enumerates all possible programs
up to some instruction length. As the number of programs is exponential in the number of instruc-
tions, we enumerate only short programs with up to 5 instructions (not considering PREV CHAR(c))
that contain single Write instruction. The resulting programs serve as a starting population for
a follow-up genetic programming search.

The reason we omit the PREV CHAR(c) instruction is that this instruction is parametrized by a charac-
ter c that has a large range (of all possible characters in the training data). Considering all variations
of this instruction would lead to a combinatorial explosion.

Genetic Programming Search The genetic programming search proceeds in several epochs,
where each epoch generates a new set of candidate programs by randomly mutating the programs in
the current generation. Each candidate program is generated using following procedure:

1. select a random program f from the current generation

2. select a random position i in f , and

3. apply mutation that either removes, inserts or replaces the instruction at position i with
a randomly selected new instruction (not considering PREV CHAR(c)).

These candidate programs are then scored with the objective function (2) and after each epoch
a subset of them is retained for the next generation white the rest is discarded. The policy we use
to discard programs is to randomly select two programs and discard the one with worse score. We
keep discarding programs until the generation has less than 25 candidate programs. Finally, we do
not apply a cross-over operation in the genetic search procedure.

Markov Chain Monte Carlo Search (MCMC) Once a set of candidate programs is generated
using a combination of enumerative search and genetic programming, we apply MCMC search to
further improve the programs. This procedure is the only one that considers the PREV CHAR(c)
instruction (which has 108 and 212 variations for the Linux Kernel and Hutter Prize Wikipedia
datasets respectively).
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The synthesized program is a combination of several basic building blocks consisting of a few in-
structions. To discover a set of good building blocks, at the beginning of the synthesis we first build
a probability distribution I that determines how likely a building block will be the one with the best
cost metric, as follows:

• consider all building blocks that consist of up to three Move and one Write instruction,
B : {empty, Move}3 × Write.

• score each building block b ∈ B on the full dataset D by calculating the bits-per-character
(BPC) bbpc as defined in (1) and the error rate berror rate (as usually defined) on dataset D.

• accept the building block with probability min(1.0, emptybpc/bbpc) where emptybpc is the
score for the unconditioned empty program. Note that for the BPC metric, lower is better.
That is, if the program has better (lower) BPC than the empty program it is always accepted
and accepted otherwise with probability emptybpc/bbpc.

• for an accepted building block b, set the score as I ′(b) = 1.0− berror rate, that is, the score
is proportional to the number of samples in the dataset D that are classified correctly using
building block b.

• set the probability with which a building block b ∈ B will be sampled by normalizing the
distribution I ′, that is, I(b) = I ′(b)/

∑
b′∈B I

′(b′).

Given the probability distribution I , we now perform random modifications of a candidate program p
by appending/removing such blocks according to the distribution I in a MCMC procedure that does
a random walk over the set of possible candidate programs. That is, at each step we are given
a candidate program, and we sample a random piece from the distriution I to either randomly add it
to the candidate program or remove it (if present) from the candidate program. Then, we keep the
updated program either if the score (2) of the modified candidate program improves, or sometimes
we randomly keep it even if the score did not improve (in order to avoid local optimums).

Backoff Programs The synthesis procedure described above can be adapted to synthesize
SimplePrograms with backoff using a simple greedy technique that synthesizes the backoff pro-
grams one by one. In our implementation we however synthesize only a single SimpleProgram
and then backoff to n-grams as described in Section 3. We optimize the backoff threshold d ∈ 〈0, 1〉
using a grid search with a step size 0.02 on a validation dataset.

B.2 LEARNING SWITCHPROGRAMS

Recall from Fig. 1 that the SwitchPrograms have the following syntax:

SwitchProgram ::= switch SimpleProgram

case v1 or · · · or vk then TChar

· · ·
case vj or · · · or vn then TChar

default TChar

To synthesize a SwitchProgram we need to learn the following components: (i) the predicate in the
form of a SimpleProgram, (ii) the branch targets v1, v2, ..., vn that match the values obtained by
executing the predicate, and (iii) a program for each target branch as well as a program that matches
the default branch. This is a challenging task as the search space of possible predicates, branch
targets and branch programs is huge (even infinite).

To efficiently learn SwitchProgram we use a decision tree learning algorithm that we instantiate
with the ID3+ algorithm from Raychev et al. (2016a). The main idea of the algorithm is to syn-
thesize the program in smaller pieces, thus making the synthesis tractable in practice by using the
same idea as in the ID3 decision tree learning algorithm. This synthesis procedure runs in two steps
– a top-down pass that synthesizes branch predicates and branch targets, followed by a bottom-up
pass that synthesizes branch programs and prunes unnecessary branches.

14



Published as a conference paper at ICLR 2017

The top-down pass considers all branch programs to be an unconditioned probability distribution
(which can be expressed as an empty SimpleProgram) and searches for best predicates and branch
targets that minimize our objective function (i.e., regularized loss of the program on the training
dataset). For a given predicate we consider the 32 most common values obtained by executing the
predicate on the training data as possible branch targets. We further restrict the generated program to
avoid over-fitting to the training data by requiring that each synthesized branch contains either more
than 250 training data samples or 10% of the samples in the training dataset. Using this approach
we search for a good predicate using the same techniques as described in Appendix B.1 and then
apply the same procedure recursively for each program in the branch. The synthesis stops when no
predicate is found that improves the loss over a program without branches. For more details and
analysis of this procedure, we refer the reader to the work of Raychev et al. (2016a).

The bottom-up pass then synthesizes approximately best programs for individual branches by in-
voking the synthesis as described in Appendix B.1. Additionally, we prune branches with higher
loss compared to a single SimpleProgram trained on the same dataset.

C FORMAL SEMANTICS OF THE TChar LANGUAGE

This section provides the formal semantics of TChar.

C.1 SMALL-STEP SEMANTICS OF TChar.

We formally define TChar programs to operate on a state σ = 〈x, i, ctx, counts〉 ∈ States where
the domain States is defined as States = char∗ × N × Context × Counts, where x ∈ char∗ is
an input sequence of characters, i ∈ N is a position in the input sequence, Context : (char∪N)∗ is
a list of values accumulated by executing Write instructions and Counts : StateSwitch → N is
mapping that contains a value denoting current count for each StateSwitch program. Initially, the
execution of a program p ∈ lang starts with the empty context [] ∈ Context and counts initialized to
value 0 for every StateSwitch program, i.e., counts0 = ∀sp ∈ StateSwitch . 0. For a program
p ∈ TChar, an input string x, and a position i in x, we say that p computes a program m ∈
LMProgram, denoted as p(i, x) = m, iff there exists a sequence of transitions from configuration
〈p, x, i, [], countsi−1〉 to configuration 〈m,x, i, [], countsi〉. As usual, a configuration is simply
a program coupled with a state. The small-step semantics of executing a TChar program are shown
in Fig. 3. These rules describe how to move from one configuration to another configuration by
executing instructions from the program p. We next discuss these semantics in detail.

C.1.1 SEMANTICS OF Write INSTRUCTIONS

The semantics of the Write instructions are described by the [WRITE] rule in Fig. 3. Each write
accumulates a value c to the context ctx according to the function wr:

wr : Write× char∗ × N→ char ∪ N
defined as follows:

• wr(WRITE CHAR, x, i) returns character at position i in the input string x. If i is not within
the bounds of x (i.e., i < 1 or i ≥ len(x)) then a special unk character is returned.
• wr(WRITE HASH, x, i) returns the hash of all characters seen between the current posi-

tion i and the position of the latest Write instruction that was executed. More for-
mally, let iprev be the position of the previous write. Then wr(WRITE HASH, x, i) =
H(x, i,min(i + 16, iprev)), where H : char∗ × N × N → N is a hashing function that
hashes characters in the string from the given range of positions. The hashing function used
in our implementation is defined as follows:

H(x, i, j) =


xi if i = j

H(x, i, j − 1) ∗ 137 + xj if i < j

⊥ otherwise

where we use ⊥ to denote that the hash function returns no value. This happens in case
i > j (i.e., i > iprev).
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x ∈ char∗ i, n ∈ N ctx ∈ Context s ∈ TChar
op ∈ {SwitchProgram, StateUpdate, StateSwitch} op.guard ∈ SimpleProgram
op.cases ∈ Context ↪→ TChar op.default ∈ TChar counts : StateSwitch→ N

w ∈ Write v = wr(w, x, i)

〈w :: s, x, i, ctx, counts〉 −→ 〈s, x, i, ctx · v, counts〉 [WRITE]

m ∈ Move i′ = mv(m,x, i)

〈m :: s, x, i, ctx, counts〉 −→ 〈s, x, i′, ctx, counts〉
[MOVE]

op ∈ SwitchProgram

〈op.guard, x, i, []〉 → 〈ε, x, i′, ctxguard〉 ctxguard ∈ dom(op.cases)

〈op, x, i, ctx, counts〉 −→ 〈op.cases(ctxguard), x, i, [], counts〉
[SWITCH]

op ∈ SwitchProgram

〈op.guard, x, i, []〉 → 〈ε, x, i′, ctxguard〉 ctxguard /∈ dom(op.cases)

〈op, x, i, ctx, counts〉 −→ 〈op.default, x, i, [], counts〉 [SWITCH-DEF]

op ∈ StateUpdate

〈op.guard, x, i, []〉 → 〈ε, x, i′, ctxguard〉 ctxguard ∈ dom(op.cases)

〈op :: s, x, i, ctx, counts〉 −→ 〈op.cases(ctxguard) :: s, x, i, [], counts〉
[STATEUPDATE]

op ∈ StateUpdate

〈op.guard, x, i, []〉 → 〈ε, x, i′, ctxguard〉 ctxguard /∈ dom(op.cases)

〈op :: s, x, i, ctx, counts〉 −→ 〈s, x, i, [], counts〉 [STATEUPDATE-DEF]

op1 ∈ {Inc, Dec} n = update(op1, counts(op2)) counts′ = counts[op2 → n]

〈op1 :: op2, x, i, ctx, counts〉 −→ 〈op2, x, i, [], counts′〉
[UPDATE]

op ∈ StateSwitch counts[op] ∈ dom(op.cases)

〈op, x, i, ctx, counts〉 −→ 〈op.cases(counts(op)), x, i, [], counts〉 [STATESWITCH]

op ∈ StateSwitch counts[op] /∈ dom(op.cases)

〈op, x, i, ctx, counts〉 −→ 〈op.default, x, i, [], counts〉 [STATESWITCH-DEF]

Figure 3: TChar language small-step semantics. Each rule is of the type: TChar × States →
TChar× States.

• wr(WRITE DIST, x, i) returns a distance (i.e., the number of characters) between the cur-
rent position and the position of latest Write instruction. In our implementation we limit
the return value to be at most 16, i.e., wr(WRITE DIST, x, i) = min(16, |i− iprev|).

C.1.2 SEMANTICS OF Move INSTRUCTIONS

The semantics of Move instructions are described by the [MOVE] rule in Fig. 3. Each Move instruc-
tion changes the current position in the input by using the following function mv:

mv : Move× char∗ × N→ N

defined as follows:

• mv(LEFT, x, i) = max(1, i− 1), that is, we move to the position of the previous character
in the input.

• mv(RIGHT, x, i) = min(len(x) − 1, i + 1), that is, we move to the position of the next
character in the input. We use len(x) to denote the length of x.

• mv(PREV CHAR, x, i) = i′, where i′ is the position of the most recent character with the
same value as the character at position i, i.e., maximal i′ such that xi′ = xi and i′ < i. If
no such character is found in x, a value −1 is returned.

16



Published as a conference paper at ICLR 2017

• mv(PREV CHAR(c), x, i) = i′, where i′ is the position of the most recent character with the
same value as character c, i.e., maximal i′ such that xi′ = c and i′ < i. If no such character
c is found in x a value −1 is returned.

• mv(PREV POS, x, i) = i′, where i′ is the position of the most recent character for which
executing program p results in the same f ∈ LMProgram, i.e., maximal i′ such that
p(i′, x<i′) = p(i, x<i) and i′ < i. This means that the two positions fall into the same
branch of the program p. If no such i′ is found in x a value −1 is returned. We note that
two LMPrograms are considered equal if they have the same identity and not only when
they contain same sequence of instructions (e.g., programs f1 and f2 in the example from
Section A are considered different even if they contain same sequence of instructions).

C.1.3 SEMANTICS OF SwitchProgram

The semantics of SwitchProgram are described by the [SWITCH] and [SWITCH-DEF] rules. In
both cases the guard of the SwitchProgram denoted as op.guard ∈ SimpleProgram is executed
to obtain the context ctxguard. The context is then matched against all the branch targets in op.cases
which is a partial function from contexts to TChar programs. If an exact match is found, that is the
function is defined for a given context ctxguard denoted as ctxguard ∈ dom(op.cases), then the
corresponding program is selected for execution (rule [SWITCH]). If no match is found, the default
program denotes as op.default is selected for execution (rule [SWITCH-DEF]).

In both cases, the execution continues with the empty context and with the original position i with
which SwitchProgram was called.

C.1.4 SEMANTICS OF StateProgram

The semantics of StateProgram are described by rules [STATEUPDATE], [UPDATE] and
[STATESWITCH]. In our work the state is represented as a set of counters associated with each
SwitchProgram. First, the rule [STATEUPDATE] is used to execute StateUpdate program which
determines how the counters should be updated. The execution of StateUpdate is similar to
SwitchProgram and results in selecting one of the update operations INC, DEC or SKIP to be exe-
cuted next.

The goal of the update instructions is to enable the program to count (e.g. opening, closing brackets
and others). Their semantics are described by the [UPDATE] rule and each instruction computes
value of the updated counter and is described by following function update:

update : {INC, DEC, SKIP} × N→ N

defined as follows:

• update(INC, n) = n+ 1 increments the value.
• update(DEC, n) = max(0, n− 1) decrements the value. Bounded from below by value 0.
• update(SKIP, n) = n keeps the value unchanged.

After the value of counter for given SwitchProgram is updated, then depending on its value
next program to execute is selected by executing the SwitchProgram as described by rules
[STATESWITCH] and [STATESWITCH-DEF].
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