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ABSTRACT

Computing distances between examples is at the core of many learning algorithms for time
series. Consequently, a great deal of work has gone into designing effective time series dis-
tance measures. We present Jiffy, a simple and scalable distance metric for multivariate time
series. Our approach is to reframe the task as a representation learning problem—rather than
design an elaborate distance function, we use a CNN to learn an embedding such that the Eu-
clidean distance is effective. By aggressively max-pooling and downsampling, we are able to
construct this embedding using a highly compact neural network. Experiments on a diverse set
of multivariate time series datasets show that our approach consistently outperforms existing
methods.

1 INTRODUCTION

Measuring distances between examples is a fundamental component of many classification, clus-
tering, segmentation and anomaly detection algorithms for time series (Rakthanmanon et al., 2012;
Schäfer, 2014; Begum et al., 2015; Dau et al., 2016). Because the distance measure used can have
a significant effect on the quality of the results, there has been a great deal of work developing ef-
fective time series distance measures (Ganeshapillai & Guttag, 2011; Keogh et al., 2005; Bagnall
et al., 2016; Begum et al., 2015; Ding et al., 2008). Historically, most of these measures have been
hand-crafted. However, recent work has shown that a learning approach can often perform better
than traditional techniques (Do et al., 2017; Mei et al., 2016; Che et al., 2017).

We introduce a metric learning model for multivariate time series. Specifically, by learning to embed
time series in Euclidean space, we obtain a metric that is both highly effective and simple to imple-
ment using modern machine learning libraries. Unlike many other deep metric learning approaches
for time series, we use a convolutional, rather than a recurrent, neural network, to construct the em-
bedding. This choice, in combination with aggressive maxpooling and downsampling, results in a
compact, accurate network.

Using a convolutional neural network for metric learning per se is not a novel idea (Oh Song et al.,
2016; Schroff et al., 2015); however, time series present a set of challenges not seen together in other
domains, and how best to embed them is far from obvious. In particular, time series suffer from:

1. A lack of labeled data. Unlike text or images, time series cannot typically be annotated post-hoc
by humans. This has given rise to efforts at unsupervised labeling (Blalock & Guttag, 2016), and
is evidenced by the small size of most labeled time series datasets. Of the 85 datasets in the UCR
archive (Chen et al., 2015), for example, the largest dataset has fewer than 17000 examples, and
many have only a few hundred.

2. A lack of large corpora. In addition to the difficulty of obtaining labels, most researchers have no
means of gathering even unlabeled time series at the same scale as images, videos, or text. Even
the largest time series corpora, such as those on Physiobank (Goldberger et al., 2000), are tiny
compared to the virtually limitless text, image, and video data available on the web.

3. Extraneous data. There is no guarantee that the beginning and end of a time series correspond
to the beginning and end of any meaningful phenomenon. I.e., examples of the class or pattern
of interest may take place in only a small interval within a much longer time series. The rest of
the time series may be noise or transient phenomena between meaningful events (Rakthanmanon
et al., 2011; Hao et al., 2013).
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4. Need for high speed. One consequence of the presence of extraneous data is that many time series
algorithms compute distances using every window of data within a time series (Mueen et al.,
2009; Blalock & Guttag, 2016; Rakthanmanon et al., 2011). A time series of length T has O(T )
windows of a given length, so it is essential that the operations done at each window be efficient.

As a result of these challenges, an effective time series distance metric must exhibit the following
properties:

• Efficiency: Distance measurement must be fast, in terms of both training time and inference time.
• Simplicity: As evidenced by the continued dominance of the Dynamic Time Warping (DTW)

distance (Sakoe & Chiba, 1978) in the presence of more accurate but more complicated rivals, a
distance measure must be simple to understand and implement.

• Accuracy: Given a labeled dataset, the metric should yield a smaller distance between similarly
labeled time series. This behavior should hold even for small training sets.

Our primary contribution is a time series metric learning method, Jiffy, that exhibits all of these
properties: it is fast at both training and inference time, simple to understand and implement, and
consistently outperforms existing methods across a variety of datasets.

We introduce the problem statement and the requisite definitions in Section 2. We summarize ex-
isting state-of-the-art approaches (both neural and non-neural) in Section 3 and go on to detail our
own approach in Section 4. We then present our results in Section 5. The paper concludes with
implications of our work and avenues for further research.

2 PROBLEM DEFINITION

We first define relevant terms, frame the problem, and state our assumptions.
Definition 2.1. Time Series A D-variable time series X of length T is a sequence of real-valued
vectors x1, . . . ,xT ,xi ∈ RD. If D = 1, we call X “univariate”, and if D > 1, we call X “multi-
variate.” We denote the space of possible D-variable time series T D.

Definition 2.2. Distance Metric A distance metric is defined a distance function d : S × S → R
over a set of objects S such that, for any x, y ∈ S, the following properties hold:

• Symmetry: d(x, y) = d(y, x)

• Non-negativity: d(x, y) ≥ 0

• Triangle Inequality: d(x, z) + d(y, z) ≥ d(x, z)

• Identity of Indiscernibles: x = y ⇔ d(x, y) = 0

Our approach to learning a metric is to first learn an embedding into a fixed-size vector space, and
then use the Euclidean distance on the embedded vectors to measure similarity. Formally, we learn
a function f : T D → RN and compute the distance between time series X,Y ∈ T D as:

d(X,Y ) , ‖f(X)− f(Y )‖2 (1)

2.1 ASSUMPTIONS

Jiffy depends on two assumptions about the time series being embedded. First, we assume that
all time series are primarily “explained” by one class. This means that we do not consider multi-
label tasks or tasks wherein only a small subsequence within each time series is associated with
a particular label, while the rest is noise or phenomena for which we have no class label. This
assumption is implicitly made by most existing work (Hu et al., 2013) and is satisfied whenever one
has recordings of individual phenomena, such as gestures, heartbeats, or actions.

The second assumption is that the time series dataset is not too small, in terms of either number of
time series or their lengths. Specifically, we do not consider datasets in which the longest time series
is of length T < 40 or the number of examples per class is less than 25. The former number is the
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smallest number such that our embedding will not be longer than the input in the univariate case,
while the latter is the smallest number found in any of our experimental datasets (and therefore the
smallest on which we can claim reasonable performance).

For datasets too small to satisfy these constraints, we recommend using a traditional distance mea-
sure, such as Dynamic Time Warping, that does not rely on a learning phase.

3 RELATED WORK

3.1 HAND-CRAFTED DISTANCE MEASURES

Historically, most work on distance measures between time series has consisted of hand-crafted
algorithms designed to reflect prior knowledge about the nature of time series. By far the most
prevalent is the Dynamic Time Warping (DTW) distance (Sakoe & Chiba, 1978). This is obtained
by first aligning two time series using dynamic programming, and then computing the Euclidean
distance between them. DTW requires time quadratic in the time series’ length in the worst case, but
is effectively linear time when used for similarity search; this is thanks to numerous lower bounds
that allow early abandoning of the computation in almost all cases (Rakthanmanon et al., 2012).

Other handcrafted measures include the Uniform Scaling Distance (Keogh, 2003), the Scaled
Warped Matching Distance (Fu et al., 2008), the Complexity-Invariant Distance (Batista et al., 2011),
the Shotgun Distance (Schäfer, 2014), and many variants of DTW, such as weighted DTW (Gane-
shapillai & Guttag, 2011), DTW-A (Shokoohi-Yekta et al., 2015), and global alignment kernels
(Cuturi, 2011). However, nearly all of these measures are defined only for univariate time series, and
generalizing them to multivariate time series is not trivial (Shokoohi-Yekta et al., 2015).

3.2 HAND-CRAFTED REPRESENTATIONS

In addition to hand-crafted functions of raw time series, there are numerous hand-crafted represen-
tations of time series. Perhaps the most common are Symbolic Aggregate Approximation (SAX)
(Lin et al., 2003) and its derivatives (Camerra et al., 2010; Senin & Malinchik, 2013). These are dis-
cretization techniques that low-pass filter, downsample, and quantize the time series so that they can
be treated as strings. Slightly less lossy are Adaptive Piecewise Constant Approximation (Keogh
et al., 2001a), Piecewise Aggregate Approximation (Keogh et al., 2001b), and related methods,
which approximate time series as sequences of low-order polynomials.

The most effective of these representations tend to be extremely complicated; the current state-of-
the-art (Schäfer & Leser, 2017), for example, entails windowing, Fourier transformation, quantiza-
tion, bigram extraction, and ANOVA F-tests, among other steps. Moreover, it is not obvious how to
generalize them to multivariate time series.

3.3 METRIC LEARNING FOR TIME SERIES

A promising alternative to hand-crafted representations and distance functions for time series is
metric learning. This can take the form of either learning a distance function directly or learning a
representation that can be used with an existing distance function.

Among the most well-known methods in the former category is that of (Ratanamahatana & Keogh,
2004a), which uses an iterative search to learn data-dependent constraints on DTW alignments. More
recently, Mei et al. (2016) use a learned Mahalanobis distance to improve the accuracy of DTW. Both
of these approaches yield only a pseudometric, which does not obey the triangle inequality. To come
closer to a true metric, Che et al. (2017) combined a large-margin classification objective with a
sampling step (even at test time) to create a DTW-like distance that obeys the triangle inequality
with high probability as the sample size increases.

In the second category are various works that learn to embed time series into Euclidean space. Pei
et al. (2016) use recurrent neural networks in a Siamese architecture (Bromley et al., 1994) to learn
an embedding; they optimize the embeddings to have positive inner products for time series of the
same class but negative inner products for those of different classes. A similar approach that does
not require class labels is that of Arnaud et al. (2017). This method trains a Siamese, single-layer
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CNN to embed time series in a space such that the pairwise Euclidean distances approximate the
pairwise DTW distances. Lei et al. (2017) optimize a similar objective, but do so by sampling the
pairwise distances and using matrix factorization to directly construct feature representations for the
training set (i.e., with no model that could be applied to a separate test set).

These methods seek to solve much the same problem as Jiffy but, as we show experimentally, pro-
duce metrics of much lower quality.

4 METHOD

We learn a metric by learning to embed time series into a vector space and comparing the resulting
vectors with the Euclidean distance. Our embedding function is takes the form of a convolutional
neural network, shown in Figure 1. The architecture rests on three basic layers: a convolutional layer,
maxpooling layer, and a fully connected layer.

The convolutional layer is included to learn the appropriate subsequences from the input. The net-
work employs one-dimensional filters convolved over all time steps, in contrast to traditional two-
dimensional filters used with images. We opt for one-dimensional filters because time series data is
characterized by infrequent sampling. Convolving over each of the variables at a given timestep has
little intuitive meaning in developing an embedding when each step measurement has no coherent
connection to time. For discussion regarding the mathematical connection between a learned convo-
lutional filter and traditional subsequence-based analysis of time series, we direct the reader to (Cui
et al., 2016).

The maxpooling layer allows the network to be resilient to translational noise in the input time
series. Unlike most existing neural network architectures, the windows over which we max pool are
defined as percentages of the input length, not as constants. This level of pooling allows us to heavily
downsample and denoise the input signal and is fed into the final fully connected layer.

We downsample heavily after the filters are applied such that each time series is reduced to a fixed
size. We do so primarily for efficiency—further discussion on parameter choice for Jiffy may be
found in Section 6.

We then train the network by appending a softmax layer and using cross-entropy loss with the
ADAM (Kingma & Ba, 2014) optimizer. We experimented with more traditional metric learning loss
functions, rather than a classification objective, but found that they made little or no difference while
adding to the complexity of the training procedure; specific loss functions tested include several
variations of Siamese networks (Bromley et al., 1994; Pei et al., 2016) and the triplet loss (Hoffer &
Ailon, 2015).

4.1 COMPLEXITY ANALYSIS

For ease of comparison to more traditional distance measures, such as DTW, we present an analysis
of Jiffy’s complexity.

Let T be the length of the D-variable time series being embedded, let F be the number of length
K filters used in the convolutional layer, and Let L be the size of the final embedding. The time
to apply the convolution and ReLU operations is Θ(TDFK). Following the convolutional layer,
the maxpooling and downsampling require (T2DF) time if implemented naively, but (TDF) if an
intelligent sliding max function is used, such as that of (Lemire, 2006). Finally, the fully connected
layer, which constitutes the embedding, requires Θ(TDFL) time.

The total time to generate the embedding is therefore Θ(TDF (K + L)). Given the embeddings,
computing the distance between two time series requires Θ(L) time. Note that T no longer appears
in either expression thanks to the max pooling.

With F = 16, K = 5, L = 40, this computation is dominated by the fully connected layer. Con-
sequently, when L � T and embeddings can be generated ahead of time, this enables a significant
speedup compared to operating on the original data. Such a situation would arise, e.g., when per-
forming a similarity search between a new query and a fixed or slow-changing database (Blalock
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Figure 1: Architecture of the proposed model. A single convolutional layer extracts local fea-
tures from the input, which a strided maxpool layer reduces to a fixed-size vector. A fully
connected layer with ReLU activation carries out further, nonlinear dimensionality reduction
to yield the embedding. A softmax layer is added at training time.

& Guttag, 2017). When both embeddings must be computed on-the-fly, our method is likely to be
slower than DTW and other traditional approaches.

5 EXPERIMENTS

Before describing our experiments, we first note that, to ensure easy reproduction and extension of
our work, all of our code is freely available.1 All of the datasets used are public, and we provide
code to clean and operate on them.

We evaluate Jiffy-produced embeddings through the task of 1-nearest-neighbor classification, which
assesses the extent to which time series sharing the same label tend to be nearby in the embedded
space. We choose this task because it is the most widely used benchmark for time series distance
and similarity measures (Ding et al., 2008; Bagnall et al., 2016).

5.1 DATASETS

To enable direct comparison to existing methods, we benchmark Jiffy using datasets employed by
Mei et al. (2016). These datasets are taken from various domains and exhibit high variability in the
numbers of classes, examples, and variables. We briefly describe each dataset below, and summarize
statistics about each in Table 1.

Table 1: Summary of Multivariate Time Series Datasets.

Dataset # Variables # Classes Length # Time Series
Libras 2 15 45 360
AUSLAN 22 25 47-95 675
CharacterTrajectories 3 20 109-205 2858
ArabicDigits 13 10 4 - 93 8800
ECG 2 2 39 - 152 200
Wafer 6 2 104 - 198 1194

• ECG: Electrical recordings of normal and abnormal heartbeats, as measured by two electrodes
on the patients’ chests.

• Wafer: Sensor data collected during the manufacture of semiconductor microelectronics, where
the time series are labeled as normal or abnormal.

1http://smarturl.it/jiffy
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• AUSLAN: Hand and finger positions during the performance of various signs in Australian Sign
Language, measured via instrumented gloves.

• Trajectories: Recordings of pen (x,y) position and force application as different English charac-
ters are written with a pen.

• Libras: Hand and arm positions during the performance of various signs in Brazilian Sign Lan-
guage, extracted from videos.

• ArabicDigits: Audio signals produced by utterances of Arabic digits, represented by Mel-
Frequency Cepstral Coefficients.

5.2 COMPARISON APPROACHES

We compare to recent approaches to time series metric learning, as well as popular means of gener-
alizing DTW to the multivariate case:

1. MDDTW (Mei et al., 2016) - MDDTW compares time series using a combination of DTW and
the Mahalanobis distance. It learns the precision matrix for the latter using a triplet loss.

2. Siamese RNN (Pei et al., 2016) - The Siamese RNN feeds each time series through a recurrent
neural network and uses the hidden unit activations as the embedding. It trains by feeding pairs of
time series through two copies of the network and computing errors based on their inner products
in the embedded space.

3. Siamese CNN The Siamese CNN is similar to the Siamese RNN, but uses convolutional, rather
than recurrent, neural networks. This approach has proven successful across several computer
vision tasks (Bromley et al., 1994; Taigman et al., 2014).

4. DTW-I, DTW-D - As pointed out by Shokoohi-Yekta et al. (2015), there are two straightforward
ways to generalize DTW to multivariate time series. The first is to treat the time series as D
independent sequences of scalars (DTW-I). In this case, one computes the DTW distance for
each sequence separately, then sums the results. The second option is to treat the time series as
one sequence of vectors (DTW-D). In this case, one runs DTW a single time, with elementwise
distances equal to the squared Euclidean distances between the D-dimensional elements.

5. Zero Padding - One means of obtaining a fixed-size vector representation of a multivariate time
series is to zero-pad such that all time series are the same length, and then treat the “flattened”
representation as a vector.

6. Upsampling - Like Zero Padding, but upsamples to the length of the longest time series rather
than appending zeros. This approach is known to be effective for univariate time series (Ratanama-
hatana & Keogh, 2004b).

5.3 ACCURACY

As shown in Table 2, we match or exceed the performance of all comparison methods on each of
the six datasets. Although it is not possible to claim statistical significance in the absence of more
datasets (see Demsar (2006)), the average rank of our method compared to others is higher than its
closest competitors at 1.16. The closest second, DTW-I, has an average rank of 3.33 over these six
datasets.

Not only does Jiffy attain higher classification accuracies than competing methods, but the method
also remains consistent in its performance across datasets. This can most easily be seen through
the standard deviation in classification accuracies across datasets for each method. Jiffy’s standard
deviation in accuracy (0.026) is approximately a third of DTWI’s (0.071). The closest method in
terms of variance is MDDTW with a standard deviation of 0.042 , which exhibits a much lower rank
than our method. This consistency suggests that Jiffy generalizes well across domains, and would
likely remain effective on other datasets not tested here.

6 HYPERPARAMETER EFFECTS

A natural question when considering the performance of a neural network is whether, or to what
extent, the hyperparameters must be modified to achieve good performance on a new dataset. In
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Table 2: 1NN Classification Accuracy. The proposed method equals or exceeds the accuracies
of all others on every dataset.

Dataset Jiffy MDDTW DTW-D DTW-I Siamese
CNN

Siamese
RNN

Zero
Pad Upsample

ArabicDigits 0.974 0.969 0.963 0.974 0.851 0.375 0.967 0.898
AUSLAN 1.000 0.959 0.900 1.000 1.000 1.000 1.000 1.000
ECG 0.925 0.865 0.825 0.810 0.756 0.659 0.820 0.820
Libras 1.000 0.908 0.905 0.979 0.280 0.320 0.534 0.534
Trajectories 0.979 0.961 0.956 0.972 0.933 0.816 0.936 0.948
Wafer 0.992 0.988 0.984 0.861 0.968 0.954 0.945 0.936
Mean Rank 1.67 3.67 4.67 3.33 6.0 6.5 4.17 4.5

this section, we explore the robustness of our approach with respect to the values of the two key
parameters: embedding size and pooling percentage. We do this by learning metrics for a variety
of parameter values for ten data sets from the UCR Time Series Archive (Chen et al., 2015), and
evaluating how classification accuracy varies.

6.1 EMBEDDING SIZE

Figure 2.left shows that even a few dozen neurons are sufficient to achieve peak accuracy. As a result,
an embedding layer of 40 neurons is sufficient and leads to an architecture that is compact enough
to run on a personal laptop.

Figure 2: Effect of fully connected layer size and degree of max pooling on model accuracy
using held-out datasets. Even small fully connected layers and large amounts of max pooling—
up to half of the length of the time series in some cases—have little or no effect on accuracy.
For ease of visualization, each dataset’s accuracies are scaled such that the largest value is 1.0.

6.2 POOLING PERCENTAGE

The typical assumption in machine learning literature is that max pooling windows in convolutional
architectures should be small to limit information loss. In contrast, time series algorithms often max
pool globally across each example (e.g. (Grabocka et al., 2014)). Contrary to the implicit assump-
tions of both, we find that the level of pooling that results in the highest classification often falls in
the 10-25% range, as shown by Figure 2.right
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7 CONCLUSION

We present Jiffy, a simple and efficient metric learning approach to measuring multivariate time
series similarity. We show that our method learns a metric that leads to consistent and accurate
classification across a diverse range of multivariate time series. Jiffy’s resilience to hyperparameter
choices and consistent performance across domains provide strong evidence for its utility on a wide
range of time series datasets.

Future work includes the extension of this approach to multi-label classification and unsupervised
learning. There is also potential to further increase Jiffy’s speed by replacing the fully connected
layer with a structured (Bojarski et al., 2016) or binarized (Rastegari et al., 2016) matrix.
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