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ABSTRACT

Sequence-to-sequence (Seq2Seq) models with attention have excelled at tasks
which involve generating natural language sentences such as machine translation,
image captioning and speech recognition. Performance has further been improved
by leveraging unlabeled data, often in the form of a language model. In this work,
we present the Cold Fusion method, which leverages a pre-trained language model
during training, and show its effectiveness on the speech recognition task. We
show that Seq2Seq models with Cold Fusion are able to better utilize language
information enjoying i) faster convergence and better generalization, and ii) al-
most complete transfer to a new domain while using less than 10% of the labeled
training data.

1 INTRODUCTION

Sequence-to-sequence (Seq2Seq) (Bahdanau et al., 2015) models have achieved state-of-the-art re-
sults on many natural language processing problems including automatic speech recognition (Bah-
danau et al., 2016; Chan et al., 2015), neural machine translation (Wu et al., 2016), conversational
modeling (Vinyals & Le, 2015) and many more. These models learn to generate a variable-length se-
quence of tokens (e.g. texts) from a variable-length sequence of input data (e.g. speech or the same
texts in another language). With a sufficiently large labeled dataset, vanilla Seq2Seq can model
sequential mapping well, but it is often augmented with a language model to further improve the
fluency of the generated text.

Because language models can be trained from abundantly available unsupervised text corpora which
can have as many as one billion tokens (Jozefowicz et al., 2016; Shazeer et al., 2017), leveraging the
rich linguistic information of the label domain can considerably improve Seq2Seq’s performance.
A standard way to integrate language models is to linearly combine the score of the task-specific
Seq2Seq model with that of an auxiliary langauge model to guide beam search (Chorowski & Jaitly,
2016; Sutskever et al., 2014a). Gulcehre et al. (2015) proposed an improved algorithm called Deep
Fusion that learns to fuse the hidden states of the Seq2Seq decoder and a neural language model
with a gating mechanism, after the two models are trained independently.

While this approach has been shown to improve performance over the baseline, it has a few limi-
tations. First, because the Seq2Seq model is trained to output complete label sequences without a
language model, its decoder learns an implicit language model from the training labels, taking up
a significant portion of the decoder capacity to learn redundant information. Second, the residual
language model baked into the Seq2Seq decoder is biased towards the training labels of the parallel
corpus. For example, if a Seq2Seq model fully trained on legal documents is later fused with a
medical language model, the decoder still has an inherent tendency to follow the linguistic structure
found in legal text. Thus, in order to adapt to novel domains, Deep Fusion must first learn to discount
the implicit knowledge of the language.

In this work, we introduce Cold Fusion to overcome both these limitations. Cold Fusion encourages
the Seq2Seq decoder to learn to use the external language model during training. This means that
Seq2Seq can naturally leverage potentially limitless unsupervised text data, making it particularly
proficient at adapting to a new domain. The latter is especially important in practice as the domain
from which the model is trained can be different from the real world use case for which it is deployed.
In our experiments, Cold Fusion can almost completely transfer to a new domain for the speech
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recognition task with 10 times less data. Additionally, the decoder only needs to learn task relevant
information, and thus trains faster.

The paper is organized as follows: Section 2 outlines the background and related work. Section 3
presents the Cold Fusion method. Section 4 details experiments on the speech recognition task that
demonstrate Cold Fusion’s generalization and domain adaptation capabilities.

2 BACKGROUND AND RELATED WORK

2.1 SEQUENCE-TO-SEQUENCE MODELS

A basic Seq2Seq model comprises an encoder that maps an input sequence x = (x1, . . . , xT ) into
an intermediate representation h, and a decoder that in turn generates an output sequence y =
(y1, . . . , yK) from h (Sutskever et al., 2014b). The decoder can also attend to a certain part of the
encoder states with an attention mechanism. The attention mechanism is called hybrid attention
(Chorowski et al., 2015b), if it uses both the content and the previous context to compute the next
context. It is soft if it computes the expectation over the encoder states (Bahdanau et al., 2015) as
opposed to selecting a slice out of the encoder states.

For the automatic speech recognition (ASR) task, the Seq2Seq model is called an acoustic model
(AM) and maps a sequence of spectrogram features extracted from a speech signal to characters.

2.2 INFERENCE AND LANGUAGE MODEL INTEGRATION

During inference, we aim to compute the most likely sequence ŷ:

ŷ = argmax
y

log p(y|x). (1)

Here, p(y|x) is the probability that the task-specific Seq2Seq model assigns to sequence y given
input sequence x. The argmax operation is intractable in practice so we use a left-to-right beam
search algorithm similar to the one presented in Sutskever et al. (2014a). We maintain a beam of
K partial hypothesis starting with the start symbol 〈s〉. At each time-step, the beam is extended by
one additional character and only the top K hypotheses are kept. Decoding continues until the stop
symbol 〈/s〉 is emitted, at which point the hypothesis is added to the set of completed hypotheses.

A standard way to integrate the language model with the Seq2Seq decoder is to change the inference
task to:

ŷ = argmax
y

log p(y|x) + λ log pLM(y), (2)

where pLM(y) is the language model probability assigned to the label sequence y. Chorowski &
Jaitly (2016); Wu et al. (2016) describe several heuristics that can be used to improve this basic
algorithm. We refer to all of these methods collectively as Shallow Fusion, since pLM is only used
during inference.

Gulcehre et al. (2015) proposed Deep Fusion for machine translation that tightens the connection
between the decoder and the language model by combining their states with a parametric gating:

gt = σ(v>sLMt + b) (3a)

sDF
t = [st; gts

LM
t ] (3b)

yt = softmax(DNN(sDF
t )), (3c)

where st, sLMt and sDF
t are the states of the task specific Seq2Seq model, language model and the

overall deep fusion model. In (3c), DNN can be a deep neural network with any number of layers.
[a; b] is the concatenation of vectors a and b.

In Deep Fusion, the Seq2Seq model and the language model are first trained independently and later
combined as in Equation (3). The parameters v and b are trained on a small amount of data keeping
the rest of the model fixed, and allow the gate to decide how important each of the models are for
the current time step.
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Model Prediction

Ground Truth where’s the sport in that greer snorts and leaps greer hits the dirt
hard and rolls

Plain Seq2Seq where is the sport and that through snorks and leaps clear its the
dirt card and rules

Deep Fusion where is the sport and that there is north some beliefs through its
the dirt card and rules

Cold Fusion where’s the sport in that greer snorts and leaps greer hits the dirt
hard and rolls

Cold Fusion (Fine-tuned) where’s the sport in that greer snorts and leaps greer hits the dirt
hard and rolls

Ground Truth jack sniffs the air and speaks in a low voice
Plain Seq2Seq jacksonice the air and speech in a logos
Deep Fusion jacksonice the air and speech in a logos
Cold Fusion jack sniffs the air and speaks in a low voice
Cold Fusion (Fine-tuned) jack sniffs the air and speaks in a low voice

Ground Truth skipper leads her to the dance floor he hesitates looking deeply into
her eyes

Plain Seq2Seq skip er leadure to the dance floor he is it takes looking deeply into
her eyes

Deep Fusion skip er leadure to the dance floor he has it takes looking deeply
into her eyes

Cold Fusion skipper leads you to the dance floor he has a tates looking deeply
into her eyes

Cold Fusion (Fine-tuned) skipper leads her to the dance floor he hesitates looking deeply into
her eyes

Table 1: Some examples of predictions by the Deep Fusion and Cold Fusion models.

The biggest disadvantage with Deep Fusion is that the task-specific model is trained independently
from the language model. This means that the Seq2Seq decoder needs to learn a language model
from the training data labels, which can be rather parsimonious compared to the large text corpora
available for language model training. So, the fused output layer of (3) should learn to overcome
this bias in order to incorporate the new language information. This also means that a considerable
portion of the decoder capacity is wasted.

2.3 SEMI-SUPERVISED LEARNING IN SEQ2SEQ MODELS

A few methods have been proposed for leveraging unlabeled text corpora in the target domain, for
both better generalization and domain transfer.

Sennrich et al. (2015) proposed backtranslation as a way of using unlabeled data for machine trans-
lation. Backtranslation improves the BLEU score by increasing the parallel training corpus of the
neural machine translation model by automatically translating the unlabeled target domain text.
However, this technique does not apply well to other tasks where backtranslation is infeasible or of
very low quality (like image captioning or speech recogntion).

Ramachandran et al. (2016) proposed warm starting the Seq2Seq model from language models
trained on source and target domains separately. Unsupervised pre-training shows improvements
in the BLEU scores. Ramachandran et al. (2016) also show that this improvement is from improved
generalization, and not only better optimization. While this is a promising approach, the method is
potentially difficult to leverage for the transfer task since training on the parallel corpus could end up
effectively erasing the knowledge of the language models. Both back-translation and unsupervised
pre-training are simple methods that require no change in the architecture.
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3 COLD FUSION

Our proposed Cold Fusion method is largely motivated from the Deep Fusion idea but with some
important differences. The biggest difference is that in Cold Fusion, the Seq2Seq model is trained
from scratch together with a fixed pre-trained language model.

Because the Seq2Seq model is aware of the language model throughout training, it learns to use
the language model for language specific information and capture only the relevant information
conducive to mapping from the source to the target sequence. This disentanglement can increase
the effective capacity of the model significantly. This effect is demonstrated empirically in Section
4 where Cold Fusion models perform well even with a very small decoder.

We also improve on some of the modeling choices of the fusion mechanism.

1. First, both the Seq2Seq hidden state st and the language model hidden state sLMt can be
used as inputs to the gate computation. The task-specific model’s embedding contains
information about the encoder states which allows the fused layer to decide its reliance on
the language model in case of input uncertainty. For example, when the input speech is
noisy or a token unseen by the Seq2Seq model is presented, the fusion mechanism learns
to pay more attention to the language model.

2. Second, we employ fine-grained (FG) gating mechanism as introduced in Yang et al.
(2016). By using a different gate value for each hidden node of the language model’s
state, we allow for greater flexibility in integrating the language model because the fusion
algorithm can choose which aspects of the language model it needs to emphasize more at
each time step.

3. Third, we replace the language model’s hidden state with the language model probability.
The distribution and dynamics of sLMt can vary considerably across different language
models and data. As a concrete example, any fusion mechanism that uses the LM state is
not invariant to the permutation of state hidden nodes. This limits the ability to generalize to
new LMs. By projecting the token distribution onto a common embedding space, LMs that
model novel uses of the language can still be integrated without state discrepancy issues.
This also means that we can train with or swap on n-gram LMs during inference.

The Cold Fusion layer (Figure 1) works as follows:

hLMt = DNN(`LMt ) (4a)

gt = σ(W [st;h
LM
t ] + b) (4b)

sCF
t = [st; gt ◦ hLMt ] (4c)

rCF
t = DNN(sCF

t ) (4d)

P̂ (yt|x, y<t) = softmax(rCF
t ) (4e)

`LMt is the logit output of the language model, st is the state of the task specific model, and sCF
t is the

final fused state used to generate the output. Since logits can have arbitrary offsets, the maximum
value is subtracted off before feeding into the layer. In (4a), (4d), the DNN can be a deep neural
network with any number of layers. In our experiments, we found a single affine layer, with ReLU
activation prior to softmax, to be helpful.

4 EXPERIMENTS

4.1 SETUP

For our experiments, we tested the Cold Fusion method on the speech recognition task. The results
are compared using the character error rate (CER) and word error rate (WER) on the evaluation
sets. For all models which were trained on the source domain, the source CER and WER indicate
in-domain performance and the target CER and WER indicate out-of-domain performance.

We collected two data sets: one based on search queries which served as our source domain, and
another based on movie transcripts which served as our target domain. For each dataset, we used

4



Under review as a conference paper at ICLR 2018

Figure 1: Cold Fusion Architecture

Figure 2: Cross-entropy loss on the dev set for the
baseline model (orange) and the proposed model
(purple) as a function of training iteration. Train-
ing with a language model speeds up convergence
considerably.

Amazon Mechanical Turk to collect audio recordings of speakers reading out the text. We gave
identical instructions to all the turkers in order to ensure that the two datasets only differed in the
text domain. The source dataset contains 411,000 utterances (about 650 hours of audio), and the
target dataset contains 345,000 utterances (about 676 hours of audio). We held out 2048 utterances
from each domain for evaluation.

The text of the two datasets differ significantly. Table 2 shows results of training character-based
recurrent neural network language models (Mikolov, 2012) on each of the datasets and evaluating
on both datasets. Language models very easily overfit the training distribution, so models trained on
one corpus will perform poorly on a different distribution. We see this effect in Table 2 that models
optimized for the source domain have worse perplexity on the target distribution.

Model Domain Word Perplexity
Count Source Target

GRU (3× 512) Source 5.73M 2.670 4.463
GRU (3× 512) Target 5.46M 3.717 2.794

GRU (3× 1024) Full 25.16M 2.491 2.325

Table 2: Dev set perplexities for character RNN language models trained on different datasets on
source and target domain. Note that i) the model trained on source domain does poorly on target
domain and vice-versa indicating that the two domains are very different, and ii) the best model on
both domains is a larger model trained on a superset of both corpuses. We use the model trained on
the full dataset (which contains the source and target datasets along with some additional text) for
all of the LM integration experiments.

4.2 NEURAL NETWORK ARCHITECTURES

The language model described in the final row of Table 2 was trained on about 25 million words.
This model contains three layers of gated recurrent units (GRU) (Chung et al., 2014) with a hidden
state dimension of 1024. The model was trained to minimize the cross-entropy of predicting the
next character given the previous characters. We used the Adam optimizer (Kingma & Ba, 2014)
with a batch size of 512. The model gets a perplexity of 2.49 on the source data and 2.325 on the
target data.
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Model Train Domain Test on Source Test on Target
CER WER CER WER Domain Gap

Baseline CTC Model
+ Shallow Fusion Source 8.38% 14.85% 18.92% 47.46%

Baseline Attention Model Source 7.54% 14.68% 23.02% 43.52% 100%
Baseline Attention Model Target 8.84% 17.61% 0%

Baseline + Deep Fusion Source 7.64% 13.92% 22.14% 37.45% 76.57%
+ sAM in gate Source 7.61% 13.92% 21.07% 37.9% 78.31%
+ Fine-Grained Gating Source 7.47% 13.61% 20.29% 36.69% 73.64%
+ ReLU layer Source 7.50% 13.54% 21.18% 38.00% 78.70%

Baseline + Cold Fusion
+ sAM in gate Source 7.25% 13.88% 15.63% 30.71% 50.56%
+ Fine-Grained Gating Source 6.14% 12.08% 14.79% 30.00% 47.82%
+ ReLU layer Source 5.82% 11.52% 14.89% 30.15% 48.40%
+ Probability Projection Source 5.94% 11.87% 13.72% 27.50% 38.17%

Table 3: Speech recognition results for the various models discussed in the paper. The CTC model
is based on Deep Speech 2 (Amodei et al., 2015) architecture.

Model Libris Test-Clean WSJ Eval-92 Target
CER WER CER WER CER WER

Wav2Letter + Shallow Fusion
MFCC 6.9% 7.2%
Power Spectrum 9.1% 9.4%
Raw Wave 10.6% 10.1%

Baseline Attention 5.99% 12.00% 6.77% 20.77% 19.97% 40.02%
Baseline + Deep Fusion 5.75% 11.31% 6.23% 18.82% 18.62% 37.21%
Baseline + Cold Fusion 5.13% 9.92% 5.47% 16.68% 17.37% 34.20%

Table 4: Results from models trained on the publicly available Librispeech data. All of the acoustic
models were trained on Librispeech training data and evaluated on librispeech test-clean, WSJ test-
92 and our proprietary target domain data. Results from the Wav2Letter model (Collobert et al.
(2016)) are presented for reference

For the acoustic models, we used the Seq2Seq architecture with soft attention based on Bahdanau
et al. (2016). The encoder consists of 6 bidirectional LSTM (BLSTM) (Hochreiter & Schmidhuber,
1997) layers each with a dimension of 480. We also use max pooling layers with a stride of 2 along
the time dimension after the first two BLSTM layers, and add residual connections (He et al., 2015)
for each of the BLSTM layers to help speed up the training process. The decoder consisted of a
single layer of 960 dimensional Gated Recurrent Unit (GRU) with a hybrid attention (Chorowski
et al., 2015b).

The final Cold Fusion mechanism had one dense layer of 256 units followed by ReLU before soft-
max.

4.3 TRAINING

The input sequence consisted of 40 mel-scale filter bank features. We expanded the datasets with
noise augmentation; a random background noise is added with a 40% probability at a uniform ran-
dom SNR between 0 and 15 dB. We did not use any other form of regularization.

We trained the entire system end-to-end with Adam (Kingma & Ba, 2014) with a batch size of 64.
The learning rates were tuned separately for each model using random search. To stabilize training
early on, the training examples were sorted by increasing input sequence length in the first epoch
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(Amodei et al., 2015). During inference, we used beam search with a fixed beam size of 128 for all
of our experiments.

We also used scheduled sampling (Bengio et al., 2015) with a sampling rate of 0.2 which was kept
fixed throughout training. Scheduled sampling helped reduce the effect of exposure bias due to the
difference in the training and inference mechanisms.

4.4 IMPROVED GENERALIZATION

Leveraging a language model that has a better perplexity on the distribution of interest should di-
rectly mean an improved WER for the ASR task. In this section, we compare how the different
fusion methods fare in achieving this effect.

Swapping the language model is not possible with Deep Fusion because of the state discrepancy
issue motivated in Section 3. All fusion models were therefore trained and evaluated with the same
language model that achieved a low perplexity on both the source and target domains (See Table 2).
This way, we can measure improvements in transfer capability over Deep Fusion due to the training
and architectural changes.

Table 3 compares the performance of Deep Fusion and Cold Fusion on the source and target held-out
sets. Clearly, Cold Fusion consistently outperforms on both metrics on both domains than the base-
lines. For the task of predicting in-domain, the baseline model gets a word error of 14.68%, while
our best model gets a relative improvement of more than 21% over that number. Even compared to
the recently proposed Deep Fusion model (Gulcehre et al., 2015), the best Cold Fusion model gets
a relative improvement of 15%.

We get even bigger improvements in out-of-domain results. The baseline attention model, when
trained on the source domain but evaluated on the target domain gets, 43.5% WER. This is signifi-
cantly worse than the 17.6% that we can get by training the same model on the target dataset. The
goal of domain adaptation is to bridge the gap between these numbers. The final column in Table 3
shows the remaining gap as a fraction of the difference for each model.

Table 5: Effect of decoder dimension on the
model’s performance. The performance of cold fu-
sion models degrades more slowly as the decoder
size decreases. This corroborates the fact that the
decoder only needs to learn the task not label gen-
eration. Its effective task capacity is much larger
than without fusion.

Model Decoder size Source
CER WER

Attention 64 16.33% 33.98%
128 11.14% 24.35%
256 8.89% 18.74%
960 7.54% 14.68%

Cold Fusion 64 9.47% 17.42%
128 7.96% 15.15%
256 6.71% 13.19%
960 5.82% 11.52%

The Deep Fusion models can only narrow
the domain gap to 76.57% while Cold Fusion
methods can reduce it to 38.17%. The same
table also shows the incremental effects of the
three architectural changes we have made to
the Cold Fusion method. Note that applying
the same changes to the Deep Fusion method
does not yield much improvements, indicat-
ing the need for cold starting Seq2Seq training
with language models. The use of probability
projection instead of the language model state
in the fusion layer substantially helps with
generalization. Intuitively, the character prob-
ability space shares the same structure across
different language models unlike the hidden
state space.

We present additional results on the publicly
available Librispeech dataset (Panayotov et al.
(2015)) in Table 4. Librispeech contains 1000
hours of read audio speech and comes with
train, development and test splits. We used
similar architectures for the Seq2Seq model
and the language model as in the previous experiments, but we trained the Seq2Seq model only on
the 960 hour Librispeech training dataset.

Table 4 demonstrates that Cold Fusion can improve generalization compared to Deep Fusion on
Librispeech data. We also demonstrate the superior domain adaptation capability of Cold Fusion
by evaluating these models on the standard Wall Street Journal (WSJ) corpus and the target domain
data described above.
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Table 6: Results for fine tuning the acoustic model (final row from Table 3) on subsets of the target
training data. ∗The final row represents an attention model that was trained on all of the target
domain data.

Model Target Target
Data CER WER Domain Gap

Cold Fusion 0% 13.72% 27.50% 38.17%

Cold Fusion 0.6% 11.98% 23.13% 21.30%
+ finetuning 1.2% 11.62% 22.40% 18.49%

2.4% 10.79% 21.05% 13.28%
4.8% 10.46% 20.46% 11.00%
9.5% 10.11% 19.68% 7.99%

Attention∗ 100% 8.84% 17.61% 0.00 %

4.5 DECODER EFFICIENCY

We test whether cold fusion does indeed relieve the decoder of learning a language model. We do
so by checking how a decrease in the decoder capacity affected the error rates. As evidenced in
Table 5, the performance of the Cold Fusion models degrades gradually as the decoder cell size is
decreased whereas the performance of the attention models deteriorates abruptly beyond a point. It
is remarkable that the Cold Fusion decoder still outperforms the full attentional decoder with 4×
fewer number of parameters.

Also, we find that training is accelerated by a factor of 3 (see Figure 2). Attention models typically
need hundreds of thousands of iterations to converge (Chorowski et al., 2015a). Most of the training
time is spent in learning the attention mechanism. One can observe this behavior by plotting the
attention context over time and seeing that the diagonal alignment pattern emerges in later iterations.
Because the pretrained, fixed language model infuses the model with lower level language features
like the likely spelling of a word, error signals propagate more directly into the attention context.

4.6 FINE-TUNING FOR DOMAIN ADAPTATION

In the presence of limited data from the target distribution, fine tuning a model for domain transfer is
often a promising approach. We test how much labeled data from the target distribution is required
for Cold Fusion models to effectively close the domain adaptation gap.

The same language model from Section 4.4 trained on both the source and target domains was used
for all fine-tuning experiments. The learning rate was restored to its initial value. Then, we fine-
tuned only the fusion mechanism of the best Cold Fusion model from Table 3 on various amounts
of the labeled target dataset.

Results are presented in Table 6. With just 0.6% of labeled data, the domain gap decreases from
38.2% to 21.3%. With less than 10% of the data, this gap is down to only 8%. Note that because
we keep the Seq2Seq parameters fixed during the fine-tuning stage, all of the improvements from
fine-tuning come from combining the acoustic and the language model better. It’s possible that we
can see bigger gains by fine-tuning all the parameters. We do not do this in our experiments because
we are only interested in studying the effects of language model fusion in the Seq2Seq decoder.

Some examples are presented in Table 1. Recall that all models are trained on the source domain
consisting of the read speech of search queries and evaluated on the read speech of movie scripts
to measure out-of-domain performance. Because search queries tend to be sentence fragments, we
see that the main mode of error for vanilla attention and Deep Fusion is due to weak grammar
knowledge. Cold Fusion on the other hand demonstrates a better grasp of grammar and is able to
complete sentences.
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5 CONCLUSION

In this work, we presented a new general Seq2Seq model architecture where the decoder is trained
together with a pre-trained language model. We study and identify architectural changes that are
vital for the model to fully leverage information from the language model, and use this to generalize
better; by leveraging the RNN language model, Cold Fusion reduces word error rates by up to 18%
compared to Deep Fusion. Additionally, we show that Cold Fusion models can transfer more easily
to new domains, and with only 10% of labeled data nearly fully transfer to the new domain.
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