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ABSTRACT

A fundamental challenge in designing brain-computer interfaces (BCIs) is de-
coding behavior from time-varying neural oscillations. In typical applications,
decoders are constructed for individual subjects and with limited data leading
to restrictions on the types of models that can be utilized. Currently, the best
performing decoders are typically linear models capable of utilizing rigid tim-
ing constraints with limited training data. Here we demonstrate the use of Long
Short-Term Memory (LSTM) networks to take advantage of the temporal infor-
mation present in sequential neural data collected from subjects implanted with
electrocorticographic (ECoG) electrode arrays performing a finger flexion task.
Our constructed models are capable of achieving accuracies that are comparable
to existing techniques while also being robust to variation in sample data size.
Moreover, we utilize the LSTM networks and an affine transformation layer to
construct a novel architecture for transfer learning. We demonstrate that in sce-
narios where only the affine transform is learned for a new subject, it is possible
to achieve results comparable to existing state-of-the-art techniques. The notable
advantage is the increased stability of the model during training on novel subjects.
Relaxing the constraint of only training the affine transformation, we establish our
model as capable of exceeding performance of current models across all training
data sizes. Overall, this work demonstrates that LSTMs are a versatile model that
can accurately capture temporal patterns in neural data and can provide a founda-
tion for transfer learning in neural decoding.

1 INTRODUCTION

A fundamental goal for brain-computer interfaces (BCIs) is decoding intent. Neural decoders that
predict behavior address this goal by using algorithms to classify neural patterns. The performance
of a decoder is directly related to its ability to overcome sensor noise and intrinsic variability in
neural response, particularly in situations with constraints on training data availability. Due to lim-
itations imposed in clinical recording settings, available human subject datasets are commonly on
the order of minutes to tens of minutes.

Limited by dataset duration, existing neural decoders achieve reasonable performance by focusing
on constrained model designs (Yanagisawa et al., 2012; Vansteensel et al., 2016). As such, the state-
of-the art decoders are models which only need to learn a small set of parameters (Gilja et al., 2012;
Collinger et al., 2013; Hotson et al., 2016). A limitation of these models is that they rely heavily on
the quality of the training data, informative features, and often have rigid timing constraints which
limit the ability to model neural variability (Vansteensel et al., 2016). Furthermore, these specific
informative features and timing constraints must be hand-tailored to the associated neural prosthetic
task and the corresponding neural activity. Deep learning algorithms, however, have been applied
to similar problems with the goal of learning more robust representations with large amounts of
training data (Graves et al., 2013; Sutskever et al., 2014). Unfortunately, only few studies apply
these techniques to neural decoding (Bashivan et al., 2015; Sussillo et al., 2016); however, they
exploit different measurement modalities - EEG and single neuron recordings, respectively.

Traditionally hidden Markov models (HMMs) have been used in neural decoding while accounting
for temporal variability (Wang et al., 2011; Wissel et al., 2013). Exploring the limitations of these
neural decoders and considering recent advancements in deep learning techniques, we propose a
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framework using Long Short-Term Memory (LSTM) networks for neural decoding. LSTMs have
demonstrated an ability to integrate information across varying timescales and have been used in
sequence modeling problems including speech recognition and machine translation (Graves et al.,
2013; Sutskever et al., 2014; Cho et al., 2014). While previous work using LSTMs has modeled
time varying signals, there has been little focus on applying them to neural signals. To this end, we
establish LSTMs as a promising model for decoding neural signals with classification accuracies
comparable to that of existing state-of-the-art models even when using limited training data.

Furthermore, addressing the limitations of existing models to generalize across subjects, we propose
a sequence transfer learning framework and demonstrate that it is able to exceed the performance
of state-of-the-art models. Examining different transfer learning scenarios, we also demonstrate an
ability to learn an affine transform to the transferred LSTM that achieves performance comparable
to conventional models. Overall, our findings establish LSTMs and transfer learning as powerful
techniques that can be used in neural decoding scenarios that are more data constrained than typical
problems tackled using deep learning.

2 METHODS

2.1 DATA DESCRIPTION

Neural signals were recorded from nine subjects being treated for medically-refractory epilepsy
using standard sub-dural clinical electrocorticography (ECoG) grids. The experiment was a finger
flexion task where subjects wearing a data glove were asked to flex a finger for two seconds based on
a visual cue (Miller et al., 2012). Three subjects are excluded from the analysis due to mismatches
in behavioral measurement and cue markers. Rejecting electrodes containing signals that exceed
two standard deviations from the mean signal, two additional subjects are removed from analysis
due to insufficient coverage of the sensorimotor region. All subjects participated in a purely volun-
tary manner, after providing informed written consent, under experimental protocols approved by
the Institutional Review Board of the University of Washington. All subject data was anonymized
according to IRB protocol, in accordance with HIPAA mandate. This data has been released pub-
licly (Miller & Ojemann, 2016).

Analyzing the neural data from the four remaining subjects, electrodes are rejected using the same
criteria mentioned above. For each subject, 6 - 8 electrodes covering the sensorimotor region are
utilized for their importance in motor planning. They are conditioned to eliminate line noise, and
then instantaneous spectral power in the high frequency band range (70 - 150 Hz) is extracted for use
as the classifier features (Miller et al., 2007). The data is segmented using only the cue information
resulting in 27 - 29 trials per finger (5 classes). The signal power for each trial is binned at 150 ms
yielding an average sequence length of 14 samples.

As model accuracy is evaluated as a function of the number of training samples, shuffled data is
randomly partitioned into train and test sets according to the evaluated training sample count. For
each subject, 25 - 27 training samples per class were used allowing for a test set comprising of at
least 2 samples per class. A validation set is not used due to the limited data size. All experiments
report the average of 20 random partitions of the shuffled data.

2.2 BASELINE MODELS

As linear discriminant analysis (LDA) and Hidden Markov models with Gaussian emissions (HMM)
are commonly used to decode sequence neural signals (Hotson et al., 2016; Wang et al., 2011; Wissel
et al., 2013), we use them for baseline comparisons. Inputs to the HMMs are identical to those used
by the LSTMs. However, as LDA does not have a representation of time, individual time bins for
each electrode are presented as features to the model. LDA was regularized by automatic covariance
shrinkage using Ledoit-Wolf lemma (Ledoit & Wolf, 2004) without using a separate validation set.

The formulation of LDA using time bins as features has been shown to achieve high accuracies with
longer trial lengths (Hotson et al., 2016). As such, we emphasize that this formulation results in
a strong baseline performance because it can explicitly model the temporal response as a function
of neural activity relative to movement onset. To handle varying sequence lengths, an LDA model
must be trained for each of the possible sequence lengths. It would be infeasible to construct a
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Figure 1: A schematic depicting the Long Short-Term Memory (LSTM) model architecture. (A)
Gating and activation functions for a single unit. (B) Unrolled LSTM network with Softmax output
at every time step during training.

model for every possible sequence length, and is susceptible to overfitting as electrode count and
trial duration increase. This is in contrast to the HMM and LSTM models for which the learned
parameters do not change as a function of time relative to movement onset and, instead, temporal
dynamics are captured by parameters that are constant across time. Therefore, while LDA works
well for structured experimental tasks, it would not generalize to unstructured naturalistic scenarios.

The HMM baseline model is analyzed with 1-state and 2-states using Gaussian emissions to explore
if more complex behaviors can be modeled with a more expressive temporal model. For both the
1 and 2-state HMM, a single HMM is trained per class and maximum likelihood decoding is used
to identity the target class. While the 2-state HMM is a standard ergodic HMM (Rabiner, 1989)
allowing transitions between both the states, a 1-state HMM is a special case, it does not have any
state dynamics and makes an independence assumption for samples across time. Thus, the 1-state
HMM is specified by

P ({x} |y) = P (x1|y)P (x2|y) . . . P (xt|y)
xt|y ∼ N (µy,Σy)

where {x} denotes the sequential data and y denotes the class.

The 1-state HMM assumes the features over time are independent and identically distributed Gaus-
sian. While this independence assumption is simplistic, it is closely related to the LDA model and
thus has fewer parameters to estimate. The 2-state HMM on the other hand processes the data as a
true time series model similar to LSTM.

2.3 NETWORK ARCHITECTURE AND OPTIMIZATION

The single recurrent LSTM cell proposed by Hochreiter & Schmidhuber (1997) is utilized and shown
in Figure 1A. The model is completely specified by

ft = σ(Wxfxt +Whfht−1 + bf )

jt = tanh(Wxjxt +Whjht−1 + bj)

it = σ(Wxixt +Whiht−1 + bi)

ot = σ(Wxoxt +Whoht−1 + bo)

ct = ct−1 � ft + it � jt
ht = tanh(ct)� ot

where σ is the sigmoid function, the W terms are weight matrices, the b terms are biases, and �
represents Hadamard multiplication. To enable gradient flow, the forget gate bias term is initialized
to 1 (Gers et al., 2000; Jozefowicz et al., 2015). At every time step during training, the label is
provided to allow error propagation during intermediate steps rather than only after the full sequence
has been evaluated (Yue-Hei Ng et al., 2015). This is depicted in Figure 1B.

Different weight initialization schemes were analyzed: randomly sampling from a zero-mean Gaus-
sian distribution (Glorot & Bengio, 2010), using a language model (Dai & Le, 2015), and using a
sequence autoencoder (Dai & Le, 2015). Building on the sequence autoencoder, we utilize a modi-
fied version where the encoder and decoder weights are not shared, and is similar to the LSTM au-
toencoder from Srivastava et al. (2015). Additionally, dropout is utilized in the recurrent states (Gal
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& Ghahramani, 2016) with a probability of 0.3, but is not used on the input layer due to the limited
dimensionality. Different model complexities were also explored focusing on network sizes and
stacked architectures. The model used for our analyses was constructed with 100 hidden units with
no performance gain identified using larger or stacked networks. Gated recurrent units (Cho et al.,
2014) were also evaluated with no observed improvement in performance.

Two curriculum learning strategies were identified as potential approaches for improving LSTM
trainability. The standard approach uses the full-sequence during training across all epochs. Cur-
riculum learning, originally proposed by Bengio et al. (2009), increases the difficulty of the training
samples across epochs and Zaremba & Sutskever (2014) proposed adding a probability for selecting
the full-sequence or the curriculum-sequence. This approach is especially useful in situations where
optimization using stochastic gradient descent is difficult (Zaremba & Sutskever, 2014). In our task,
difficulty is directly related to the length of the sequence. Defining L as the full-sequence length,
the curriculum-sequence length, l, is scaled by the current epoch, k, using l = min {k/8 + 3, L}.
Each sample in a batch is randomly chosen to be of length L or l with equal probability.

To prevent overfitting to the training set, training was stopped at 75 epochs for all evaluations and
subjects. Models were trained through backpropagation using Adam (Kingma & Ba, 2014) and
prediction is performed on the test data with accuracies reported using classification at the last time
step, except when specified otherwise.

Briefly summarizing the LSTM model: a single single layer of 100 hidden units with 0.3 probability
hidden unit dropout and weights initialized by a sequence autoencoder is used. Curriculum learning
strategy of Zaremba & Sutskever (2014) with the parameters mentioned was employed for present-
ing the training samples. All hyperparameters including the number of epochs to stop training were
obtained by optimizing a model on 75% of subject Bs data. These selected parameters were kept the
same for all evaluations across all subjects. We emphasize that the chosen hyperparameters, though
potentially suboptimal, help train a model that generalizes well across all subjects. For reporting
accuracies we average results from an evaluation of 20 random partitions of the data. The standard
error is at less than 0.02 for all the reported accuracies.

2.4 TRANSFER LEARNING ARCHITECTURE

We next explored the possibility of transferring the representation learned by the LSTM from a
subject, S1, onto a new subject, S2. Typical transfer learning approaches keep the lower-level layers
fixed, but retrain the higher-level layers (Srivastava et al., 2015; Yosinski et al., 2014). Due to
the unique electrode coverage and count as well as physiological variability across subjects, this
approach yielded poor results. Accounting for these factors, we propose using an affine transform
to project the data from S2 onto the input of an LSTM trained on S1 as we might expect a similar
mixture of underlying neural dynamics across subjects ( Morioka et al. (2015)). The fully connected
affine transformation is specified by

x
S′
2

t = Wxxx
S2
t + bx

where Wx and bx are the weights and biases of the affine mapping, xS2
t and xS

′
2

t are the original and
the transformed sequential data from S2 respectively.

Using hyper-parameters outlined in the single subject LSTM model, a two-step training process,
shown in Figure 2A, is utilized. The first step trains the LSTM using all of the data from S1. Upon
fixing the learned weights, the fully connected affine layer is attached to the inputs of the LSTM and
trained on S2 data. To establish that the affine transform is only learning an input mapping and not
representing the neural dynamics, a baseline comparison is utilized where the Step 1 LSTM is fixed
to a random initialization and only the SoftmaxS1 is trained, this is shown in Figure 2B.

All code will be made available.

3 RESULTS

We found that LSTMs trained on an individual subject perform comparable to state-of-the-art models
with sufficient training samples. Additionally, using the proposed transfer learning framework we
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Step 1 Step 2 Step 1 Step 2

Figure 2: A schematic depicting the LSTM transfer learning model architecture. Where gray indi-
cates fixed and white indicates learned weights, both (A) and (B) depict a 2-step training process
with Subject 1 (S1) training in step 1 and Subject 2 (S2) training of only the affine layer in step 2.
(A) Transfer learning model (TL) training the LSTM and Softmax layers for S1 in step 1. (B) Ran-
domly initialized LSTM layer and training only the Softmax layer for S1 in step 1.
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Figure 3: Model performance comparison for representative Subject C. (A) Accuracy as a function
of the amount of training samples and (B) Accuracy as a function of time with respect to movement
onset evaluated for different models and using all available training data. Error bars show standard
error of mean using 20 random partitions of the shuffled data.

observe that LSTMs provide a principled, robust, and scalable approach for decoding neural signals
that can exceed performance of state-of-the-art models.

Table 1: Summary comparing the average accuracy of the LSTM model with existing approaches
after 20 random partitions of all the shuffled training data.

Model Subject A Subject B Subject C Subject D
LDA 0.50 0.53 0.79 0.64

HMM - 1s 0.51 0.61 0.69 0.65
HMM - 2s 0.53 0.59 0.68 0.60

LSTM 0.51 0.62 0.75 0.69
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3.1 LSTM PERFORMANCE

First we establish the performance of the baseline models (Table 1). Interestingly, we observe that
increasing the complexity of the HMM marks little improvement in the classification accuracy and
typically results in decreased accuracy at low sample counts due to the increased complexity. Ad-
ditionally, while LDA performs comparably for three subjects, it performs much better than the
other models for Subject C due to the increased alignment between cue and observed behavior. This
is expected because, as noted, the LDA formulation is better suited to take advantage of the time
alignment in the experiment.

Examining the performance of the LSTMs (Table 1), we demonstrate that the proposed model is
better able to extract information from the temporal variability in the signals than HMMs and is
able to achieve performance comparable to the best baseline for each of the subjects. Consequently,
we observe across most subjects LSTMs are able to exceed performance of both HMM models and
LDA. Even for Subject C, the LSTM model is comparable to LDA without making the temporal
alignment assumption.

Further investigating model time dependence, accuracy is evaluated using neural activity preceding
and following behavioral onset. As LDA explicitly models time, a series of models for each possible
sequence length are constructed. Depicted in Figure 3B, we observe that the LSTM is slightly better
able to predict the behavioral class at earlier times compared to HMMs and is comparable to LDA
across all times.

3.2 TRANSFER LEARNING PERFORMANCE

Historically, neural prostheses must be tuned frequently for individual subjects to account for neural
variability (Simeral et al., 2011; Pandarinath et al., 2017). Establishing LSTMs as a suitable model
for decoding neural signals, we explored their ability to learn more robust, generalized representa-
tions that can be utilized across subjects.

We demonstrate that learning the affine transformation for the input, it is possible to relax the con-
straint of knowing exactly where the electrodes are located without having to retrain the entire
network. First examining the baseline condition in order to assess the ability for the affine layer to
learn the underlying neural dynamics, the S1 LSTM weights were randomly initialized and fixed as
outlined in Figure 2B. Looking at Figure 4A, the model performs slightly above chance, but clearly
is unable to predict behavior from the data. The TL model where only the affine layer is trained in
Step 2 for S2 (Figure 2A) performs comparably to the subject specific model for S2. The notable
advantage provided by TL is that there is an increase in loss stability over epochs, which indicates
a robustness to overfitting. Finally, relaxing the fixed LSTMS1 and SoftmaxS1 constraints, we
demonstrate that the TL-Finetuned model achieves significantly better accuracy than both the best
existing model and subject specific LSTM.

Detailing the performance for each TL and TL-Finetuned, we evaluate all 3 remaining subjects
for each S2. For the TL model, we found that the transfer between subjects is agnostic of S1

specific training and performs similarly across all 3 subjects. The performance of TL-Finetuned
is similarly evaluated, but has trends unique to TL. In particular, we observe that transferring from
Subject A always provides the best results followed by transferring from Subject B. Accuracies using
the maximum permissible training data for all four subjects comparing the two transfer learning
approaches and the best existing model as well as the subject specific LSTM are reported in Table 2.

3.3 MODEL ANALYSIS

For the transfer learning models, we explored the stability of the affine layer and analyzed the learned
LSTM weights between subjects. Examining the learned affine mapping, we can see that the layer
resembles a projection of electrodes to the appropriate brain regions. In Figure 5A, we show the
mapping for two cases: a projection from sensorimotor cortex (RMotor, RSensory) between the
two subjects, and a projection also adding the occipital lobe electrodes (ROccipital) for S2. As
the occipital lobe is involved with integrating visual information, and contains information unique
from the trained regions, we would expect and do observe, there to be an affine transformation
with weights for ROccipital closer to zero indicating an absence of electrodes in S1 that contain
similar information. Considering the findings by Haufe et al. (2014), it is important to note that
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Figure 4: Transfer learning LSTM performance comparison for a representative subject. The TL-
Finetuned, TL, and random LSTM all utilize Subject B as S1 and Subject C as S2. The subject
specific model uses Subject C. (A) Accuracy as a function of the amount of training samples. (B)
Cross-entropy error on the test set across epochs, using 10 training samples per class. Error bars
show standard error of mean averaging results from 20 random partitions of the shuffled data.

Table 2: Summary comparing the average accuracy of transfer learning with subject specific training,
using all training data across 20 random partitions of the shuffled data.

Model Subject A Subject B Subject C Subject D
Best Existing Model 0.53 0.61 0.79 0.65

Subject Specific 0.51 0.62 0.75 0.69
TL (S1 = Subject A) - 0.66 0.72 0.60
TL (S1 = Subject B) 0.40 - 0.70 0.46
TL (S1 = Subject C) 0.44 0.63 - 0.59
TL (S1 = Subject D) 0.44 0.67 0.73 -

TL-Finetuned (S1 = Subject A) - 0.71 0.82 0.70
TL-Finetuned (S1 = Subject B) 0.46 - 0.75 0.62
TL-Finetuned (S1 = Subject C) 0.44 0.63 - 0.66
TL-Finetuned (S1 = Subject D) 0.53 0.71 0.79 -
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Figure 5: Visualizations of model parameters. (A) Weights of the learned affine mapping from S2

(Subject C) to S1 (Subject B). Electrodes mapped from motor to sensorimotor and sensorimotor +
occipital to sensorimotor regions of S2 to S1, respectively. Both TL and TL-Finetuned weights are
depicted. (B) Two-dimensional t-SNE embedding of the learned signal representation corresponding
to different fingers for both subjects.

we know apriori from neurophysiology that the occipital region in motor movement tasks should
be less informative. Therefore, we would expect the affine mapping to learn to reject the signals
from occipital region which we observe in our model. Additionally, we can qualitatively observe
the stability of the affine transform after the fixed LSTMS1 and SoftmaxS1 are relaxed. It is clear
by looking between the left and right columns of Figure 5A that the learned weights from TL are a
good representation and only require minor modification in TL-Finetuned.

Furthermore, exploring the use of LSTMs for transfer learning, a two-dimensional embedding of the
LSTM output using t-SNE (Maaten & Hinton, 2008) on the training data was created. We use the
LSTMS1 outputs for S1 data and LSTMS1 outputs for S2 data after passing it through the learned
affine layer on S2. All the data between -300 ms to 900 ms, relative to behavioral onset, is embedded
in the two-dimensional space. From the summary image, Figure 5B, it is clear that the model is able
to separate classes for both subjects well and that the projections for both the subjects are clustered
together. Identifying the source of the noise in the figure, we project the output at different time
steps and see that the majority of the confusion occurs at the start of the sequences.

4 DISCUSSION

Although many neural decoding models and processing techniques have been proposed, little work
has focused on efficient modeling of time-varying dynamics of neural signals. In this work, we have
shown that LSTMs can model the variation within a neural sequence and are a good alternative to
state-of-the-art decoders. Even with a low sample count and comparably greater number of param-
eters, the model is able to extract useful information without overfitting. Moreover, LSTMs provide
a robust framework that is capable of scaling with large sample counts as opposed to the the limited
scalability provided by existing approaches. Considering the limitations imposed on our model by
stopping at a fixed evaluation epoch, it would be possible to further boost performance by utilizing
early stopping with a validation set. And while the input features were selected from empirical ob-
servations made in previous studies, the results could be improved by extracting the features in an
unsupervised manner using autoencoders (Poultney et al., 2007; Le et al., 2011) or by training the
decoder end-to-end using convolutional LSTMs (Shi et al., 2015; Zhang et al., 2016).

Establishing the LSTM as a good approach for neural decoding, we explored utilizing the model
in transfer learning scenarios. Exploring a less constrained model where the LSTM weights are
relaxed, the performance is shown to exceed that of both the subject specific training and the best
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decoder models. This robustness against subject specific neural dynamics even when only the affine
transform is learned indicates that the LSTM is capable of extracting useful information that gen-
eralizes to the new subject with limited impact due to the original subject’s relative performance.
When exploring the tradeoffs between TL and TL-Finetuned, the latter provides performance that
exceeds the current state-of-the-art models with fewer subject-specific training samples where the
former is able to achieve comparable performance. However, because TL only requires training of
the affine layer, the computation is less expensive than the TL-Finetuned. From Figure 4, it could be
seen when learning only the affine transformation the cross-entropy loss is still decreasing after 500
epochs suggesting that with better optimization methods, the TL model by itself may outperform
the subject-specific model. This motivates the statement that the LSTM is capable of extracting a
representation of the neural variability between behaviors that generalizes across subjects. While
this may be specific to the behavior being measured, it posits potential scenarios for using sequence
transfer learning.

Exploring the reasoning behind the affine layer, we consider relaxing the structured mapping of
electrodes between the subjects required by typical transfer learning models. While the structured
mapping would intuitively yield good results if electrode placement is the sole factor influencing
neural variability, we see that it leads to suboptimal performance due to limited alignment capabil-
ities as well as the underlying neural representation being unique. The addition of an affine layer,
however, provides sufficient flexibility for the input remapping to account for this variability and
matches the new subjects input electrodes based on error minimization. Moreover, the weights that
are produced through backpropagation are able to optimize the weights regardless of S2 input di-
mensionality and thus allows for eliminating use of non-informative electrodes. This input gating
leads to model training stability and is shown to be a valid mapping due to the minimal weight up-
date when transitioning from TL to TL-Finetuned. Furthermore, exploring the relationship between
subjects 1 and 2, the t-SNE analysis shows that the learned parameters for the affine layer provide
a meaningful mapping between the two subjects likely indicating an underlying physiological basis
rooted in the structure of the sensorimotor cortex that has been shown to exist.

We believe that the approaches established in this paper provide techniques for decoding neural sig-
nals that had not yet been explored in detail. Particularly, the insights gained from exploring neural
decoding leveraging the expressibility and generalizability of LSTMs yielded techniques that pro-
vide more accurate and robust models compared to current state-of-the-art decoders. Consequently,
the strategies of applying LSTMs to sequence learning and sequence transfer learning problems will
be useful in a variety of neural systems.
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