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Abstract

In this paper, authors have proposed an in-
terpretable feature recommendation method for
solving sensor signal analytics problem machine
maintenance domain. The basic Wide learning
based architecture for feature recommendation is
out of the scope of discussion in this paper and
authors have emphasized on the interpretation of
the recommended features and how this human
in loop interpretation system can can be used as
a prescriptive system. The proposed system was
deployed in solving a regression problem for one
internal data set of machine maintenance record,
as well as a prescriptive system on the popular
bearing data-set from NASA prognostic reposi-
tory. The proposed system is also used to analyze
the casuality of a machine maintenance problem.

1. Introduction
Development of a sensor data based descriptive and pre-
scriptive system involves machine learning tasks (Goodfel-
low et al., 2016) like classification and regression. Any
such system development requires the involvement of dif-
ferent stake holders like:
Domain expert: who understand the problem domain, like
doctor in case of health care
Signal processing (SP) expert: who can suggest the suitable
signal processing algorithm and corresponding parameters
Machine Learning (ML) expert: who can design the classi-
fier or the regression model
Coder or developer: who can construct a deplorable solu-
tion
Now the problem of developing such a system is that each
of the stake holders speaks their own languages and that
is often difficult to understand for others. So, while we
were trying to make a classifier or a regression problem in
health-care or machine maintenance domain we found that
making such a system so that any domain expert can ex-
plain and understand requires the following steps:

• Domain expert explains the goal of the problem to the
SP and ML person

• SP expert provides a list of algorithms that can be used
as features for this problem

• ML expert recommends the optimal feature set based
on the available data

• SP expert tunes the parameters of those algorithms
(like window size for an FFT algorithm), and the ML
expert tunes the hyper parameters for the ML task.

• Recommended feature set is presented to DE for vali-
dation and verification

• Final system is deployed

The penultimate step is difficult in a Deep Learning based
approach though some works (Kim et al., 2015) can be
found in this area. In this paper we are going to present
how to interpret the recommended features by a wide learn-
ing approach as presented in (Banerjee et al., 2016) can be
used and verified by a domain expert to make a robust sys-
tem. This proposed human in loop interpretable feature rec-
ommendation system can be used in a prescriptive manner
also.

Wide learning is a new term in the ML community with
very less number of related work can be found on it. Ini-
tially this term was used in (Pandey & Dukkipati, 2014)
in 2014. Almost similar two methods has been shown in
(Cheng et al., 2016) and (Banerjee et al., 2016). In the lat-
ter, authors has shown the proposed wide architecture and
its applicability in health care. In this paper we are going
to present the method of interpretation of the recommended
features in domain expert understandable format and its ad-
vantages.

2. Proposed Method
The proposed machine learning based critical feature set
recommendation framework (Banerjee et al., 2016) as
shown in Figure 1 accepts a set of input sensor data. The
input feature set is a combination of derived features ob-
tained by transforming the raw time series data in diverse
domains such as time, frequency and time-frequency do-
mains. Any feature set recommendation framework would
in general recommend only the corresponding indices of
the relevant features. Such feature identification mecha-
nism is sufficient to trace back the recommended features
from the generated feature pool. However such practice
does not leave any room for any further refinement of the
recommendation through incorporation of domain expert
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Figure 1. Proposed Method of Feature Recommendation

opinion, which may be of paramount importance, espe-
cially in safety-critical domains such as machine pyrognos-
tics. In order to address the issue, the proposed feature rec-
ommendation framework consists of a feature interpreta-
tion module. The feature interpretation module accepts the
recommended feature indices as input and returns any gran-
ular information that can be obtained by analysis its genesis
methodology. While feature values were derived to form
input derived feature pool, a mapping table is iteratively
maintained that stores the details of the steps though which
each indexed feature value is being generated. The steps
of each indexed value generation would typically include
information regarding domain of transformation, transfor-
mation technique, location of the feature value in the trans-
formed vector, etc. Utilizing such a mapping table, the
steps followed to arrive at the recommended feature indices
can be traced back reliably. Once the complete informa-
tion regarding the genesis of each recommended feature is
fetched, such information is again passed on another mod-
ule that is designed to return further granular data that may
further aid in proper representation of the recommended
features to the domain experts.

Similarly on the multi-sensor data-set D4 (3.1), the axis
load is required to be predicted by using rest of the sensor

data like relative position, feed data, speed. Here, we have
applied MIC (Reshef et al., 2011) to find the mutual infor-
mation content and the ρ2 parameter between the observed
load data and rest of sensor data. These highly related sen-
sors are then verified by the domain experts and the mod-
ified list of sensors is taken as the input for predicting the
load. Now, similar method is applied on each of the sensor
data to identify the suitable features out of them.

3. Experiments
3.1. Datasets

The experiment is performed on two well known openly
available 1-D sensor signal data sets, the specification of
each being described in table 2 and one internal titanium
machinery data-set:

(i) D1 and D2: NASA Bearing1 data set contains 4 bearing
data instances each having 984 records, while the first bear-
ing fails after 700th record among the total 984 recorded
readings. The last two readings are not considered due to

1NASA Bearing Set 3 at
https://ti.arc.nasa.gov/tech/dash/pcoe/ prognostic-data-
repository/publications/#bearing
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Table 1. Description of data sets used for experiments
Datasets (D) Total No. of Class-0 No. of Class-1 No. of No. of Sampling Time Window

Instances Instances Instances Samples Rate (Hz) Size (seconds)
D1: NASA All 3932 282 3650 20480 20,000 0.5
D2: NASA Subset 647 282 365 20480 20,000 0.5
D3: Mobifall 258 132 126 230 50 1

* the number of samples per data instance varied in the range of 10612 to 71332, hence truncated for uniformity

presence of missing values. So, we get 282 ‘bad bearing’
(class 0) records as ground truth for a class, while the rest
700 of the first bearing and 982 values each from rest 3
bearings that do not fail form the ‘good bearing’ class 1. To
handle data unbalancing and see its effects, we have created
two data-sets: D1: that contains the full dataset instances,
D2: that contains a randomly selected small subset of the
‘good bearing’ instances along with all the ‘bad bearing’
instances.

(ii) D3: Mobifall2 data set is a popular fall detection data-
set created by volunteers aged 22-47 years. Although the
data-set contains various levels of activities, however we
have portioned the data-set into ‘fall’ (class 0) and ‘not fall’
(class 1), in order to restrict to binary classification.

(iii) D4: Titan PED data-set is used for predicting the axis
load or spindle load at any instance of time depending on
the other sensor data. This data set includes 27 different
sensor data captured at 1 Hz sampling rate but of total du-
ration of 26 days. So the total amount of data is nearly
21,00,000. This data set is not a public one.

3.2. Results and Analysis

Tables [2-4] show some of the sample feature sets obtained
for the classification tasks in the respective data-sets. This
listing of features along with ranges of values obtained
helps the domain experts who maps the obtained values to
the physical world and the problem domain at hand, so that
causal analysis of the problem can be made and deeper in-
sights can be gained.

Table 2. Recommended features for D1 (win=0.5s)
Sl. Feature description
1 Difference of root mean square values of win-

dowed DWT coefficients
2 Difference of Standard deviation values of win-

dowed DWT coefficients
3 Flux of spectral coefficients
4 Mean of STFT coefficients
5 Root mean square of STFT coefficient
6 Variance of STFT coefficients

2http://www.bmi.teicrete.gr/index.php/research/mobiact

Table 3. Recommended features for NASA Bearing data-set, win-
dow size = 0.5 sec

Sl
No.

Feature description

1 STFT

Frequency: 1851.1851 Hz
Frequency: 1853.1853 Hz
Frequency: 1153.1153 Hz
Frequency: 1837.1837 Hz
Frequency: 1845.1845 Hz

2 Difference of standard deviation values
of windowed discrete wavelet transform
(DWT) coefficients

3 Standard deviation of STFT coefficients

Table 4. Recommended features for NASA Bearing data-set, win-
dow size = 1 sec

Sl
No.

Feature description

1 STFT

Frequency: 1613.5807 Hz
Frequency: 1829.5915 Hz
Frequency: 1830.5915 Hz
Frequency: 1837.5919 Hz

2 Kurtosis of DWT coefficients
3 Standard deviation of DWT coefficients
4 Standard deviation of STFT coefficients
5 Zero crossing of DWT coefficients

3.3. Physical interpretation

Traditionally feature selection method is a manual effort
where a domain expert identifies some features from his
domain expertise and experience and then plot them for
both the classes to conclude the feature is relevant or not.
Due to lack of space, we have selected the NASA Bearing
Data-set for interpretation analysis in this paper. Similar
interpretation were also found in the other data-sets. Our
proposed automated feature recommendation method also
predicts the features at 14 Hz (DWT features) as well as in
the even (6th) harmonic space of the fundamental frequen-
cies of the bearings rotating elements as reported below.
Thereby the recommended features can be mapped to the
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Figure 2. Sensors Affecting Axis 1 Servo Load for D4

physical world elements for further introspection and anal-
ysis of the allied domain expert. Now the bearing Physics
suggests fundamental frequencies as:

Outer Race Frequency =236.4 Hz
Inner Race Frequency =296.9 Hz
Rolling Element Frequency =279.8 Hz
Shaft Frequency = 33.33 Hz
Bearing Cage Frequency = 14.7 Hz

Further we can suggest the manufacturer the reason of ex-
act failure obtained from the physical interpretation of the
recommended features. In this case we can predict that the
error may arise because of all possible reasons other than
the problem in Shaft frequency.

Figure 2 shows (for the D4 data-set) that the sensors that
are correlated with axis 1 servo load are feed data, spindle
load, speed data, axis 1 positions, axis 2 positions, but, as
per theory, orthogonal axes can not have impact on each
other. Thus the axis 2 position or load should not have
any impact on axis 1 load, subsequently it was validated by
the domain experts that these situation occurs only when
the cutting is performed at a 45o angle to the axis. This

is exactly used for the operation of rough cut on the outer
diameter. Thus, the interpretable features can also assist
the domain expert to get an insight about the mechanical
process performed.

4. Conclusions
In this paper, we have presented a method to recommend
features using Wide Learning technique that can be inter-
preted to the domain experts. In case of NASA bearing
data-set, this interpretation helps them to analyze the cause
of failure. On the other hand, the recommended sensors for
a regression problem assist the production manager (do-
main expert) of a mechanical plant by providing an insight
about the mechanical process. So this proposes system may
not be optimal but practical for making any deplorable ma-
chine learning based sensor signal analytics prognostic sys-
tem.
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