© N O O A~ W N =

w N = O ©

15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30

31
32
33

ToolComp: A Multi-Tool Reasoning & Process
Supervision Benchmark

Anonymous Author(s)
Affiliation
Address

email

Abstract

Despite recent advances in Al the development of systems capable of executing
complex, multi-step reasoning tasks involving multiple tools remains a significant
challenge. Current benchmarks fall short in capturing the real-world complex-
ity of tool-use reasoning, where verifying the correctness of not only the final
answer but also the intermediate steps is important for evaluation, development,
and identifying failures during inference time. To bridge this gap, we introduce
ToolComp, a comprehensive benchmark designed to evaluate multi-step tool-use
reasoning. ToolComp is developed through a collaboration between models and
human annotators, featuring human-edited/verified prompts, final answers, and
process supervision labels, allowing for the evaluation of both final outcomes and
intermediate reasoning. Evaluation across six different model families and 20
total models demonstrates the challenging nature of our dataset, with an average
accuracy of 55% among the frontier models.

1 Introduction

Recent advancements in large language models (LLMs) have demonstrated remarkable progress in a
range of natural language processing tasks. These models have achieved state-of-the-art performance
across diverse benchmarks, including question answering, summarization, and reasoning tasks. In
order to further increase the usefulness of LLMs, a growing area of research is centered around the
development of agentic capabilities, particularly their ability to autonomously interact with external
tools to solve complex, multi-step tasks as well as to interact with human systems such as the web or
mobile devices.

However, evaluating the effectiveness of these tool-use capabilities remains a pressing challenge.
While there have been notable efforts in developing benchmarks for tool-use capability, these often
assess isolated instances of tool use, focusing on whether the model can invoke the correct tool
at the right time (Huang et al.| 2024; [Zhuang et al., 2023} [Peng et al., 2021). Additionally, while
benchmarks for multi-step tool usage exist, most focus only on scoring the correctness of the final
answer (Mialon et al.| |2023)), despite that the complex nature of multi-step reasoning often requires
the evaluation for partial correctness or step-wise correctness of the reasoning trajectories. This can
be valuable for both understanding model failure modes and developing systems that can improve
upon these intermediate reasoning flaws.

To address these shortcomings, we introduce ToolComp, a benchmark comprising 493 complex,
human-verified prompts that require language models to chain together multiple tool calls, accom-
panied by human-edited step-wise and final answers. By demanding intricate tool interactions and

'Code and data is publicly available. A few data examples are shown in the supplementary materials.

Submitted to Workshop on Bridging Language, Agent, and World Models for Reasoning and Planning @
NeurIPS 2025

34
35
36
37

38

39

40
41
42

43
44
45

46
47
48
49
50
51

52

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

75
76
7
78
79
80
81

82
83
84
85

providing human verification, ToolComp offers a rigorous assessment of a model’s ability to perform
complex, multi-step reasoning and tool use. We evaluate the current landscape of state-of-the-art
models on their ability to chain together tool calls to reach the final answer, as well as their step-wise
reasoning ability.

1.1 Contributions and Key Takeaways
Our key contributions and takeaways are summarized as follows:

¢ Introduction of ToolComp We introduce ToolComp, a multi-tool reasoning and process
supervision benchmark with 493 human-edited/verified prompts and final answers, designed
to evaluate a model’s ability to perform multi-step tool-use tasks (Section [3).

* Step-by-Step Process Annotations ToolComp includes 1716 detailed per-step supervision
labels, enabling a comprehensive assessment of a model’s intermediate reasoning when
performing complex, multi-step tool-use tasks (Section [3).

» Assessment of State-of-the-Art Models We evaluate 20 models across 6 different model
families on their ability to perform complex multi-step tool-use tasks as well as their
intermediate reasoning ability. We find that GPT-5 has the best final answer performance,
achieving 79.81% against human-verified final answers, and Gemini 2.5 Pro has the best
performance against process supervision labels, achieving 83.42%. (Sectiondand Section

2 Related Works

Benchmarks for Complex Tool Use Planning With rising interest in tool-augmented LLMs
(Schick et al., 2023 [Patil et al., [2023}; Qin et al., [2023)), several benchmarks have been introduced
to assess their abilities. Earlier benchmarks were designed to assess a model’s ability to do proper
retrieval, execution, and extraction of one tool call for specific tasks such as general question
answering (Yang et al.,|2018; Joshi et al., 2017), fact verification (Thorne et al., 2018]), or answering
temporal queries (Chen et al., [2021}; [Kasai et al.| 2024} Zhang & Choi, 2021; |Dhingra et al.| [2022; Vu
et al.| 2023)). However, these benchmarks fail to assess a model’s ability to plan and chain together
multiple tool calls to answer more complex queries. More recent benchmarks aimed at evaluating
multiple tool calls are often placed within or dependent on state-full systems (such as a code-base
and/or a dynamic database) (Yan et al., [2024; Jimenez et al., 2024} [Liu et al., 2023). Although
these types of benchmarks assess a language model’s ability to chain together multiple tool calls,
the evaluation may penalize general-purpose language models that are not familiar with the given
environments. Other benchmarks primarily rely on state-based evaluations, where the final state
of the system is assessed against the desired state (Li et al., [2023} |Peng et al.| 2021)), or win-rates
against another reference state-of-the-art model (Qin et al.| 2023)), both of which lack the rigour of
human-verified ground truth final answers. Closest to our work, the GAIA benchmark is a collection
of complex tool-use queries that require multi-step tool-use reasoning and associated ground-truth
answers (Mialon et al.,[2023)). Crucially, it does not contain step-wise labels, which can be important
for identifying where an error occurred and providing precise feedback. Additionally, a significant
portion of GAIA requires specialized capabilities such as web browsing, multi-modality, and diverse
file-type reading. In our work, we focus on text-only tasks in order to disentangle specialized
capabilities and multi-step reasoning, allowing us to focus on the latter.

Process Reward Models Recent work has shown the power of utilizing process supervision
signals, which are granular signals on the step-wise correctness of a solution, as opposed to outcome
supervision signals, which are broad signals on the correctness of the entire solution. Utilizing
these signals, Lightman et al.|(2023)) and Wang et al.| (2024a) have shown dramatic improvements in
performance in ranking solutions to mathematical reasoning tasks and using these signals to further
improve performance in traditional RLHF algorithms such as Proximal Policy Optimization (PPO)
(Schulman et al., [2017).

In this work, through a hybrid human-AI annotation workflow, we generate per-step process su-
pervision labels, which uniquely enable us to rigorously evaluate a model’s intermediate reasoning
capability. Table[I] provides a comparative overview of popular tool-use benchmarks, including our
work, ToolComp.

86

87

88
89
90
91
92
93
94
95
96

97

98
99
100
101
102
103

104

105
106
107
108

Table 1: The contributions and metadata of popular benchmarks in Tool Use. Our work, ToolComp,
is shown in the first column. From left to right, we include work from Mialon et al.|(2023)), Yan et al.
(2024), Qin et al.| (2023)), |Li et al.| (2023)),and | Xu et al.[(2023). * Although 2 of the 8 tools are not
evaluated by simply matching a verified final answer, the remaining 6 have verified final answers.

Resource ToolComp GAIA BFCL ToolBench API-Bank ToolBench
Real-World API Calls
Multi-Tools Scenario X X
Multi-Step Reasoning
Step-Wise Labels X X X X X
Verified Final Answer X X X *
Number of Tools 11 23 3 3451 53 8

3 ToolComp

3.1 Tools

For the creation of this benchmark and evaluation framework, we support 11 tools: Date, Current
Weather, Historical Weather (Zippenfenig| 2024), Calculator, Wiki Search (Majlis, |[2017), Google
Search (SerpApil 2024), Wolfram Alpha (Wolfram Research, [2024), Intra-day Stock Info, Daily
Stock Info, Stock Symbol Search (AlphaVantage)), and Python. There were several considerations
when choosing these set of tools, namely, we wanted to cover a broad range of use cases from fact
retrieval to financial assistant, have some overlap in use cases to encourage various valid trajectories,
ensure the tools are general enough to not require specialized knowledge for LLMs to use, and allow
for interesting interactions between tools. A detailed breakdown of each tool, including descriptions,
parameters, input examples, and output examples are available in Appendix [E]

Action Plan Step 1 Step N
Model Human Corrected \“ {'/ Model Human Corrected
Model ; | :
Thought + — : : Thought » — Thought |
Acton X — Action v | Action v —
Action Plan Human Corrected ; e e — !
X : Action Input ¢ . Action Input v/ | : Action Input v .
— Action Plan -1 1

Tool Observation Tool Observation | ‘ Final Answer Final Answer

Figure 1: An example annotation path for collecting data that provides tool-call trajectories with
human verified-final answers along with step-by-step process supervision labels. Each model gener-
ated step (Action Plan and ReAct steps) are first labelled as correct or incorrect. For the components
labelled incorrect, a rewrite is made to correct the corresponding component. The annotations and
rewrites are made by human annotators for the benchmark. A full annotated trajectory example is

available in Appendix

3.2 ReAct Format

We chose the ReAct format as it is frequently used for tool use and agentic workflows (Wang et al.,
2024bj |[Mekala et al.| 2024} |[Zhuang et al.,|2023). The ReAct format combines reasoning and tool
calls by prompting the model to first generate a thought, which contains the rationale behind the
following tool call action (Yao et al.l 2023)). The structured nature of the ReAct format into a thought,
action, action input, and observation allows us to collect granular signals at each sub-step, and the
relative simplicity of the ReAct format makes it easier to operationalize for annotations.

3.3 Prompt Creation

In developing the prompts for this dataset, there are two main criteria we desire each prompt to satisfy:
1) the solution to the prompt contains a chain of dependent tool calls to answer and 2) the final answer
to the prompt can be programmatically verified. To achieve this, we generate a set of candidate
prompts through few-shot prompting which are then refined and validated by human annotators.

109
110
111
112

113

114
115
116
117
118
119
120
121
122

123

124
125
126
127
128
129
130

131
132
133
134
135
136
137
138
139
140
141
142
143

144
145
146
147

148

149
150
151
152

153
154
155
156
157
158

The overall process includes 1) manually developing in-context (IC) examples, 2) generating initial
prompts, 3) an iterative process of filtering prompts, adding filtered prompts as negative IC examples,
and regenerating more prompts, and 4) human refinement. These steps are described in more detail in

Appendix

3.4 Chat vs. Enterprise Use Cases

In creating the benchmark, we developed two subsets of prompts, coined ToolComp-Enterprise
and ToolComp-Chat. ToolComp-Enterprise allows the use of 11 tools and aims to emulate settings
in which LLM agents must compose a larger number of expressive APIs together correctly, such
as in enterprise settings. The second subset, ToolComp-Chat, is designed to test general purpose
chatbots with the minimally sufficient set of tools for information retrieval and processing tasks,
namely Google Search and Python. We chose only google search and python execution as these are
standard tools found in major chat-bot providers. We only allow the respective tools for each subset
during prompt generation, labeling, and evaluation. ToolComp-Enterprise contains 296 examples and
ToolComp-Chat contains 197 examples.

3.5 Label Creation

To create the process supervision labels as well as the final answer for each prompt, we utilize a
hybrid human-AlI approach, where the language model and human annotators use the same tools to
collaborate to get to the final answer. We start by prompting the Policy Model LLM to outline a plan,
called Action Plan, on which tools to call and in what order using the prompt in[C.1] We have human
annotators validate/modify the Action Plan, which is then appended to the sequence before using
the LLM to formulate tool calls. We then use the LLM to call tools in the ReAct format, where the
specific prompt can be found in[C.2]

We asked the annotators to rate if a step is Correct (i.e., the step is a reasonable action towards
achieving the final answer) or Incorrect (i.e., the step is nonsensical, incorrect, or is not a reasonable
action towards acheiving the final answer). All components of the ReAct Step (Thought, Action,
Action Input) must be marked as Correct or Incorrect by the annotator. If the annotator marks a
step as Correct, the model is allowed to proceed further and generate the next step. If the annotator
deems a step as Incorrect, they must modify the step to make it correct. Once corrected, the model is
then prompted to advance to the next step with the human-corrected step as part of its context. This
is repeated until the Finish Action is chosen by the LLM and marked as Correct by the annotator
or until the annotator corrects an Action step to ‘Finish’ because we have enough information to
answer the question. The overall flow is shown in Figure [l An example golden trajectory is
available in Appendix [D.T]and an example annotated trajectory is available in Appendix [D.2] We use
FireFunction-V1 as the Policy Model LLM (at the time, this was the best open-source tool-use LLM)
and humans as the annotators (Fireworks, 2024).

With this process, we retrieve, per task, a valid step-by-step chain of tool calls that successfully
gets to the final answer along with step-wise correct/incorrect labels and associated rewrites. The
correct/incorrect labels and the associated rewrites allow us to assess intermediate reasoning through
LLM-as-judge evaluations (described in Section [4.3).

3.6 Quality Control

To ensure the highest quality of ToolComp, we conduct a thorough manual inspection of all examples.
Any data samples with ambiguous prompts, erroneous process supervision labels, or incorrect final
answers are redone. After the initial creation of the benchmark, the authors collaborated with three
trusted annotators to perform a final re-review of all samples and make any necessary corrections.

As a final quality control step, we evaluate the entire benchmark using GPT-40 (May 2024), GPT-4
Turbo, Claude 3.5 Sonnet, and Llama 3.1 405b (OpenAl et al., 2024} |Dubey et al., 2024; |Anthropic).
We identify the set of data samples where all models’ answers differed from the ground truth final
answers. We then repeated the refinement process on these samples, as they represented the most
challenging and/or potentially mislabeled data points. This iterative approach yielded the final version
of ToolComp.

159

160

161
162
163
164

165
166
167
168
169
170
171
172
173
174

175

176
177
178
179
180

4 ToolComp Evaluations

4.1 Evaluation Metric

We have two metrics to evaluate the quality or the correctness of a model’s final answers: LLM
Grading and Exact Match. For the final answer evaluations in this section (Table [2)), we use LLM
Grading since it rewards correct answers without penalizing minor formatting issues. Our Exact
Match evaluation methodology and the corresponding results are shown in Appendix[A.1]

LLM Grading By using LLM grading against ground truth answers we opt to be charitable to exact
formatting and focus on assessing the tool use capabilities of the model. We intentionally choose not
to focus on final answer formatting given that (1) there are existing benchmarks that assess formatting
ability (e.g. FOFO (Xia et al.,[2024)) and (2) our final answers are quite complex, containing multiple
elements, lists which may or may not be sorted, and dictionaries. This approach prompts an LLM
Judge to look at the prompt, the ground truth answer, and the model’s answer and asks the model to
classify it as Incorrect, Correct, or Correct with Bad Formatting. We use GPT-4 Turbo as the de-facto
judge for all of our models (OpenAlI et al.l 2024). The prompt used is shown in Appendix [C.5] We
consider both Correct and Correct with Bad Formatting as a win (accurate) and Incorrect as a loss
(inaccurate).

4.2 Final Answer Evaluations

Table 2: Accuracy and the 95% Cls of all selected models using the final answer and scored using
an LLM judge (Dubey et al., 2024} OpenAl et al., [2024; |Gemini et al., [2024; |Anthropic; |[Mistral;
Cohere). We combined the results of each subset to give an overall score for the entire benchmark.
Exact Match results are reported in Appendix [A.T]but the rankings do not significantly differ.

Model Family Model Name Total (%) Chat (%) Enterprise (%)

GPT-5 79.81 £5.00 76.92 +591 81.75 £4.40

03 7829 +£5.12 76.14 £5.95 79.72 + 4.57

OpenAl ol 66.25+5.92 60.41 £+ 6.82 70.14 £ 5.32

P GPT-40 (Aug 2024) 58.68 =4.39 56.85 + 6.92 59.93 £+ 5.67

GPT-4 45.89 +4.43 3788 £6.78 51.39 £ 5.77

GPT-40 Mini 44.03 +-4.41 32.83 +6.54 51.74 £ 5.77

Claude 4.1 Opus 75.85+530 76.14 595 75.67 - 4.88

Anthropic Claude 4 Sonnet 75.65 +4.39 74.61 £6.91 76.35 £+ 5.67

p! Claude 3.5 Sonnet 58.03 £4.39 56.06 + 691 59.38 + 5.67

Claude 3 Opus 51.03 =4.44 48.49 £+ 6.96 52.78 &£ 5.77

Claude 3 Sonnet 4856 +-4.44 404 4+ 6.84 54.17 +5.78

Gemini 2.5 Pro 77.07 £521 77.15+5.86 77.02 £ 4.79

Google Gemini 1.5 Pro (Aug 2024) 56.61 £4.41 51.27 +6.98 60.28 £ 5.66

Gemini 1.5 Pro (May 2024) 38.43 +4.34 3550 4+ 6.57 40.42 £+ 5.68

Mistral Mistral Large 2 46.30 £4.43 404+ 6.84 50.35 £5.78

Llama 4 Scout 17B Instruct 61.64 +4.44 61.42 +£6.79 61.82 +£5.53

Met Llama 3.1 405B Instruct 46.19 +=4.44 40.10 = 6.84 50.35 £ 5.78

e Llama 3.1 70B Instruct 3574 +£427 3350+£659 37.23 +5.60

Llama 3.1 8B Instruct 12.81 £2.98 6.090 & 3.34 17.42 +4.39

Cohere Command R+ 26.13 £3.91 20.20 £+ 5.59 30.21 £5.3
Average 55.46 51.10 56.94

The overall scores of the various state-of-the-art tool-use models are shown in Table 2l We combine
ToolComp-Chat and ToolComp Enterprise subsets to get an overall score and 95% confidence-
intervals (Cls) for the entire benchmark. We use native function calling for all the models and we
allow each model to retry up to 3 times if it fails to output a final answer. This is determined by
whether there is a parse-able JSON object in the final output with the key "final_answer". To ensure

181
182
183
184

186
187
188
189
190

191

192
193
194
195
196
197
198
199

200

201
202

Table 3: Accuracy and the 95% CIs (third column) of all of our models on the process supervision
labels in ToolComp. We evaluate the model’s effectiveness as a pairwise judge in selecting the
human-corrected answer versus the model-generated incorrect answer. We show judge accuracy
using the ReAct steps (fourth column) and the Action Plan (fifth column).

Model Family Model Name Total (%) ReAct (%) Action Plan (%)

GPT-5 78.64 +1.93 77.08 +2.25 82.96 + 3.53

03 75.58 2196 72.56 +2.32 83.95 + 3.49

OpenAl ol 7692 +1.89 78.15+2.22 73.51 4+ 3.55

P GPT-4o (Aug 2024) 72.61 =211 72.84 +2.46 71.98 +4.13

GPT-40 Mini 63.02 +2.28 64.27 +2.64 59.56 4+ 4.51

GPT4 60.02 £2.32 5587 +2.74 71.54 £ 4.15

Claude 4.1 Opus 82.31 £2.19 80.25 +2.53 88.02 + 4.36

Anthropic Claude 4 Sonnet 80.06 +=2.23 84.50 £+ 2.58 78.47 + 4.44

P Claude 3.5 Sonnet 66.46 +£2.23 67.74 +2.58 62.97 + 4.44

Claude 3 Opus 64.28 +2.27 64.55 +2.64 63.52 +4.42

Claude 3 Sonnet 61.10 231 6293 +2.67 56.04 + 4.56

Gemini 2.5 Pro 8342 +2.12 80.924+2.23 90.32 +4.31

Google Gemini 1.5 Pro (Aug 2024) 69.11 +£2.19 68.48 +2.56 70.88 +4.17

Gemini 1.5 Pro (May 2024) 67.89 £2.21 67.72 +2.58 68.35 +4.27

Mistral Mistral Large 2 72.67 £2.11 73.16 +£245 7132 £ 4.16

Llama 4 Scout 17B Instruct 75.45 £+£2.13 76.23 +£2.42 73.30 £+ 4.37

Met Llama 3.1 405B Instruct 71.62 +2.13 73.87 +£2.42 65.39 £+ 4.37

cta Llama 3.1 70B Instruct 70.75 £2.15 71.33 +£2.50 69.12 + 4.25

Llama 3.1 8B Instruct 57.63 =234 59.60 £+ 2.71 52.20 4 4.56

Cohere Command R+ 61.31 230 6491 +2.63 51.32 +4.59
Average 70.64 70.85 70.32

scores are not indicative of tool or endpoint failures due to rate limiting, we use verbose logging to
log all failures and retry any prompt where a tool or model outputs failed due to rate/load limits. In
addition, we run error analysis on the types of failures for each model. A description of the error
category taxonomy and the breakdown of failure modes for each model can be found in Appendix
A2

We also show exact match evaluation numbers in Table f] of Appendix [A.T]to ensure that our LLM
Judge (OpenATl’s ol) isn’t biased in favor of outputs from the same model family. Upon inspection of
the discrepancies (i.e., examples marked correct by the LLM judge but incorrect under exact match),
we find that they are all due to issues with the model’s formatting of the final answer despite getting
to the correct answer.

4.3 LLM-as-Judge Evaluations

We further evaluate these models using our process supervision labels, aiming to assess each model’s
effectiveness as a pairwise judge in selecting the human-corrected step over the step generated by the
original policy used during annotation. To mitigate position bias, we swap the order of the human-
corrected and model-generated steps and conduct two separate predictions for each arrangement.
Additionally, models are permitted to indicate a tie. If a model designates a tie at least once, or
consistently predicts the same position (before and after swapping) for a given data sample, we
classify the outcome as a tie. Mirroring the methodology used in RewardBench (Lambert et al.
(2024)), we score losses as 0, ties as 0.5, and wins as 1. We show the results below in TableE}

4.4 Intermediate Reasoning vs. Final Answer

Figure [2] shows the correlation between a model’s intermediate reasoning performance and final
answer accuracy based on the multi-step tool-use tasks in ToolComp. The standard Pearson correlation

203
204
205
206
207
208

210

211

212

213
214
215
216
217

218

219
220
221
222
223

coefficient is 7 = 0.83 with a statistical p-value of 0.000005, which makes the correlation statistically
significant under a significance level of 0.05 (Freedman et al.,[2007)). Intuitively, this suggests that
with stronger step-wise performance as assessed by our LLM-as-judge evaluations, we can expect an
increased likelihood of reaching the correct final answer. However, the moderate magnitude of the
correlation value could be due to additional signals captured by the step-wise reasoning evaluations
that are not captured by evaluating final answers. Work done by Havrilla et al.|(2024) similarly
suggests that there is complementary and non-overlapping information in step-wise and final answer
refinement, further highlighting the importance of assessing intermediate reasoning.

GPT-5

03

ol

GPT-40 (Aug 2024)
GPT-40 Mini

GPT-4

Claude 4.1 Opus
Claude 4 Sonnet
Claude 3.5 Sonnet
Claude 3 Opus
Claude 3 Sonnet
Gemini 2.5 Pro
Gemini 1.5 Pro (Aug.)
Gemini 1.5 Pro (May)
Mistral Large 2
Llama 4 Scout
Llama 3.1 405B
Llama 3.1 70B
Llama 3.1 8B
Command R+

80 1

70 A

(=]
o
L

50

40

30

Final Answer Accuracy

4d9Hm0o00c0OoFLBRETOOVADIAODO

204 Pearson r = 0.83
p-value = 0.000005
Slope = 1.97

10 +

T T

60 65 70 75 80

Step-Wise Reasoning Accuracy

Figure 2: Comparison of step-wise reasoning accuracy (x-axis) and final answer accuracy (y-axis) on
ToolComp across 6 different model families.

5 Limitations and Biases

5.1 Methodological Limitations

Limited Tool Scope This work focuses on a restricted set of tools primarily designed for information
retrieval and data processing. In contrast, many state-of-the-art systems employ specialized models
for diverse tasks such as image generation, translation, and complex reasoning. This limitation raises
important questions about how process supervision could scale to more nuanced capabilities when
integrating with other specialized models and broader tool ecosystems.

5.2 Dataset Construction Biases

Human Preference Bias in Step Correction During the step correction process, human annotators
naturally gravitated toward tools that were more intuitive or convenient to use. This preference created
a systematic skew in the Step-Wise Reasoning data, with certain tools becoming overrepresented.
We deliberately preserved this bias as it reflects authentic human (and likely model) tool selection
patterns, prioritizing convenience and practical usability over uniform tool distribution.

224
225
226
227
228

229

231
232
233
234

235
236
237

239

240

241
242
243
244
245
246
247

248

249
250
251
252

253

254
255

256
257

258
259

261
262
263
264

265
266
267
268
269

Programmatic Verification Constraints Each ToolComp prompt was engineered to have an
unambiguous, programmatically verifiable ground truth answer. This design requirement necessitated
somewhat artificial output formats that strictly conform to automated evaluation criteria. While this
constraint ensures reliable evaluation metrics, it may not capture the natural variability and ambiguity
present in real-world task specifications.

Compositional Focus Limitations Given ToolComp’s primary objective of evaluating tool compo-
sition abilities, the benchmark systematically excludes several categories of prompts: tasks requiring
no tool usage; tasks falling outside the scope of provided tools; and tasks requiring clarifying ques-
tions or iterative dialogue. These exclusions ensure focused evaluation of compositional reasoning but
limit the dataset’s coverage of broader real-world use cases where tool selection and usage patterns
may differ significantly.

Generator Model Bias The use of Firefunction-v1 as the base model for generating initial trajec-
tories introduces potential systematic biases into the dataset. This model’s inherent preferences for
certain tools, input formats, or reasoning patterns may propagate through the human annotation pro-
cess, potentially skewing the final dataset distribution in ways that reflect the base model’s limitations
rather than optimal tool usage patterns.

6 Ethics Statement

We ensure all prompts in this dataset do not contain any harmful or sensitive material by requiring
annotators to flag any such prompts. The authors of this paper have also manually inspected all the
prompts and tool calls for harmful content. In addition, we applied best practices for code execution,
ensuring that all the code execution is done in a sand-boxed environment for any past and/or future
benchmark evaluations. We also ensured that all tools used have a permissive license for research
purposes, and we plan to open-source both the code for running evaluations and the full benchmark
dataset.

7 Reproducibility

For the creation of the benchmark, we detail the exact process by which we create the dataset in
Section[3 We also detail the exact evaluation method used to evaluate each model in Sectiondl and
Appendix We have open sourced both the code for evaluation and the benchmark dataset for the
final answer evaluation as well as the intermediate reasoning evaluation.

References

Inc. AlphaVantage. Alphavantage - stock api. https://www.alphavantage.co/. Accessed:
February 2023—September 2024.

Anthropic. Claude 3: An ai assistant by anthropic. https://www.anthropic.com. Accessed:
2024-02 to 2024-10.

Wenhu Chen, Xinyi Wang, and William Yang Wang. A dataset for answering time-sensitive questions,
2021. URL https://arxiv.org/abs/2108.06314,

Cohere. Cohere command r+ model. https://cohere.com. Accessed: 2024-10-01.

Bhuwan Dhingra, Jeremy R. Cole, Julian Martin Eisenschlos, Daniel Gillick, Jacob Eisenstein, and
William W. Cohen. Time-aware language models as temporal knowledge bases. Transactions
of the Association for Computational Linguistics, 10:257-273, 2022. ISSN 2307-387X. doi:
10.1162/tacl_a_00459. URL http://dx.doi.org/10.1162/tacl_a_00459.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn,
Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston
Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere, Bethany Biron,
Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris

https://www.alphavantage.co/
https://www.anthropic.com
https://arxiv.org/abs/2108.06314
https://cohere.com
http://dx.doi.org/10.1162/tacl_a_00459

270
271
272
273
274
275
276
277
278
279
280
281
282

284
285
286
287
288

290
291
292
293
294
295

297
298
299
300
301

303
304
305
306
307
308
309
310
311
312
313
314

316
317
318
319
320
321
322
323
324
325
326
327
328

McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton
Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, David
Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip
Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Graeme
Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu,
Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov,
Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah,
Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu
Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph
Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Kartikeya Upasani,
Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz
Malik, Kuenley Chiu, Kunal Bhalla, Lauren Rantala-Yeary, Laurens van der Maaten, Lawrence
Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas
Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri,
Marcin Kardas, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis,
Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov,
Nikolay Bogoycheyv, Niladri Chatterji, Olivier Duchenne, Onur Celebi, Patrick Alrassy, Pengchuan
Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan,
Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy,
Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohit Girdhar, Rohit
Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou,
Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia
Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye Wan,
Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla,
Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek
Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao,
Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent
Gonguet, Virginie Do, Vish Vogeti, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu,
Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaoqing Ellen Tan, Xinfeng Xie, Xuchao Jia,
Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen
Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe
Papakipos, Aaditya Singh, Aaron Grattafiori, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya
Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alex
Vaughan, Alexei Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Anam Yunus, Andrei
Lupu, Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew
Ryan, Ankit Ramchandani, Annie Franco, Aparajita Saraf, Arkabandhu Chowdhury, Ashley
Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin
Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu,
Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt
Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Changhan Wang, Changkyu Kim, Chao
Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Damon
Civin, Dana Beaty, Daniel Kreymer, Daniel Li, Danny Wyatt, David Adkins, David Xu, Davide
Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le,
Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
Hahn, Emily Wood, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun, Felix
Kreuk, Feng Tian, Firat Ozgenel, Francesco Caggioni, Francisco Guzman, Frank Kanayet, Frank
Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee, Gil Halpern,
Govind Thattai, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hamid
Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison Rudolph, Helen
Suk, Henry Aspegren, Hunter Goldman, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Irina-
Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James Kohli, Japhet Asher, Jean-Baptiste
Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul,
Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie,
Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou U, Karan Saxena, Karthik
Prasad, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly
Michelena, Keqgian Li, Kun Huang, Kunal Chawla, Kushal Lakhotia, Kyle Huang, Lailin Chen,
Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu,
Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish Bhatt, Maria

329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347

349
350
351
352
353

354
355

356
357

358
359
360
361
362
363
364
365
366
367
368
369

371
372
373
374
375

377
378
379
380
381
382
383
384
385

Tsimpoukelli, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev,
Maxim Naumov, Maya Lathi, Meghan Keneally, Michael L. Seltzer, Michal Valko, Michelle
Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang,
Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini Santhanam,
Natascha Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier,
Nikolay Pavlovich Laptev, Ning Dong, Ning Zhang, Norman Cheng, Oleg Chernoguz, Olivia
Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro
Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani,
Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy,
Raghu Nayani, Rahul Mitra, Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Rohan
Maheswari, Russ Howes, Ruty Rinott, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara
Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Verma, Seiji Yamamoto, Sharadh
Ramaswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha,
Shiva Shankar, Shugiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe,
Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan
Govindaprasad, Sumit Gupta, Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury,
Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo Kohler, Thomas Robinson, Tianhe
Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi,
Victoria Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vitor Albiero, Vlad Ionescu,
Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang,
Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiaofang Wang, Xiaojian Wu, Xiaolan Wang,
Xide Xia, Xilun Wu, Xinbo Gao, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang,
Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yuchen Hao, Yundi Qian, Yuzi He, Zach Rait,
Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, and Zhiwei Zhao. The llama 3 herd
of models, 2024. URL https://arxiv.org/abs/2407.21783,

Al Fireworks. Firefunction-vl: Gpt-4 level function calling. https://fireworks.ai/blog/

firefunction-vi-gpt-4-level-function-calling, 2024.

David Freedman, Robert Pisani, and Roger Purves. Statistics (international student edition). Pisani,

R. Purves, 4th edn. WW Norton & Company, New York, 2007.

Gemini, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,

Damien Vincent, Zhufeng Pan, Shibo Wang, Soroosh Mariooryad, Yifan Ding, Xinyang Geng, Fred
Alcober, Roy Frostig, Mark Omernick, Lexi Walker, Cosmin Paduraru, Christina Sorokin, Andrea
Tacchetti, Colin Gaffney, Samira Daruki, Olcan Sercinoglu, Zach Gleicher, Juliette Love, Paul
Voigtlaender, Rohan Jain, Gabriela Surita, Kareem Mohamed, Rory Blevins, Junwhan Ahn, Tao
Zhu, Kornraphop Kawintiranon, Orhan Firat, Yiming Gu, Yujing Zhang, Matthew Rahtz, Manaal
Faruqui, Natalie Clay, Justin Gilmer, JD Co-Reyes, Ivo Penchev, Rui Zhu, Nobuyuki Morioka,
Kevin Hui, Krishna Haridasan, Victor Campos, Mahdis Mahdieh, Mandy Guo, Samer Hassan,
Kevin Kilgour, Arpi Vezer, Heng-Tze Cheng, Raoul de Liedekerke, Siddharth Goyal, Paul Barham,
DJ Strouse, Seb Noury, Jonas Adler, Mukund Sundararajan, Sharad Vikram, Dmitry Lepikhin,
Michela Paganini, Xavier Garcia, Fan Yang, Dasha Valter, Maja Trebacz, Kiran Vodrahalli,
Chulayuth Asawaroengchai, Roman Ring, Norbert Kalb, Livio Baldini Soares, Siddhartha Brahma,
David Steiner, Tianhe Yu, Fabian Mentzer, Antoine He, Lucas Gonzalez, Bibo Xu, Raphael Lopez
Kaufman, Laurent El Shafey, Junhyuk Oh, Tom Hennigan, George van den Driessche, Seth Odoom,
Mario Lucic, Becca Roelofs, Sid Lall, Amit Marathe, Betty Chan, Santiago Ontanon, Luheng He,
Denis Teplyashin, Jonathan Lai, Phil Crone, Bogdan Damoc, Lewis Ho, Sebastian Riedel, Karel
Lenc, Chih-Kuan Yeh, Aakanksha Chowdhery, Yang Xu, Mehran Kazemi, Ehsan Amid, Anastasia
Petrushkina, Kevin Swersky, Ali Khodaei, Gowoon Chen, Chris Larkin, Mario Pinto, Geng Yan,
Adria Puigdomenech Badia, Piyush Patil, Steven Hansen, Dave Orr, Sebastien M. R. Arnold,
Jordan Grimstad, Andrew Dai, Sholto Douglas, Rishika Sinha, Vikas Yadav, Xi Chen, Elena
Gribovskaya, Jacob Austin, Jeffrey Zhao, Kaushal Patel, Paul Komarek, Sophia Austin, Sebastian
Borgeaud, Linda Friso, Abhimanyu Goyal, Ben Caine, Kris Cao, Da-Woon Chung, Matthew
Lamm, Gabe Barth-Maron, Thais Kagohara, Kate Olszewska, Mia Chen, Kaushik Shivakumar,
Rishabh Agarwal, Harshal Godhia, Ravi Rajwar, Javier Snaider, Xerxes Dotiwalla, Yuan Liu,
Aditya Barua, Victor Ungureanu, Yuan Zhang, Bat-Orgil Batsaikhan, Mateo Wirth, James Qin, Ivo
Danihelka, Tulsee Doshi, Martin Chadwick, Jilin Chen, Sanil Jain, Quoc Le, Arjun Kar, Madhu
Gurumurthy, Cheng Li, Ruoxin Sang, Fangyu Liu, Lampros Lamprou, Rich Munoz, Nathan Lintz,
Harsh Mehta, Heidi Howard, Malcolm Reynolds, Lora Aroyo, Quan Wang, Lorenzo Blanco, Albin

10

https://arxiv.org/abs/2407.21783
https://fireworks.ai/blog/firefunction-v1-gpt-4-level-function-calling
https://fireworks.ai/blog/firefunction-v1-gpt-4-level-function-calling
https://fireworks.ai/blog/firefunction-v1-gpt-4-level-function-calling

386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404

406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437

439
440
441
442
443
444

Cassirer, Jordan Griffith, Dipanjan Das, Stephan Lee, Jakub Sygnowski, Zach Fisher, James Besley,
Richard Powell, Zafarali Ahmed, Dominik Paulus, David Reitter, Zalan Borsos, Rishabh Joshi,
Aedan Pope, Steven Hand, Vittorio Selo, Vihan Jain, Nikhil Sethi, Megha Goel, Takaki Makino,
Rhys May, Zhen Yang, Johan Schalkwyk, Christina Butterfield, Anja Hauth, Alex Goldin, Will
Hawkins, Evan Senter, Sergey Brin, Oliver Woodman, Marvin Ritter, Eric Noland, Minh Giang,
Vijay Bolina, Lisa Lee, Tim Blyth, Ilan Mackinnon, Machel Reid, Obaid Sarvana, David Silver,
Alexander Chen, Lily Wang, Loren Maggiore, Oscar Chang, Nithya Attaluri, Gregory Thornton,
Chung-Cheng Chiu, Oskar Bunyan, Nir Levine, Timothy Chung, Evgenii Eltyshev, Xiance Si,
Timothy Lillicrap, Demetra Brady, Vaibhav Aggarwal, Boxi Wu, Yuanzhong Xu, Ross Mcllroy,
Kartikeya Badola, Paramjit Sandhu, Erica Moreira, Wojciech Stokowiec, Ross Hemsley, Dong
Li, Alex Tudor, Pranav Shyam, Elahe Rahimtoroghi, Salem Haykal, Pablo Sprechmann, Xiang
Zhou, Diana Mincu, Yujia Li, Ravi Addanki, Kalpesh Krishna, Xiao Wu, Alexandre Frechette,
Matan Eyal, Allan Dafoe, Dave Lacey, Jay Whang, Thi Avrahami, Ye Zhang, Emanuel Taropa,
Hanzhao Lin, Daniel Toyama, Eliza Rutherford, Motoki Sano, HyunJeong Choe, Alex Tomala,
Chalence Safranek-Shrader, Nora Kassner, Mantas Pajarskas, Matt Harvey, Sean Sechrist, Meire
Fortunato, Christina Lyu, Gamaleldin Elsayed, Chenkai Kuang, James Lottes, Eric Chu, Chao Jia,
Chih-Wei Chen, Peter Humphreys, Kate Baumli, Connie Tao, Rajkumar Samuel, Cicero Nogueira
dos Santos, Anders Andreassen, Nemanja Rakiéevi¢, Dominik Grewe, Aviral Kumar, Stephanie
Winkler, Jonathan Caton, Andrew Brock, Sid Dalmia, Hannah Sheahan, lain Barr, Yingjie Miao,
Paul Natsev, Jacob Devlin, Feryal Behbahani, Flavien Prost, Yanhua Sun, Artiom Myaskovsky,
Thanumalayan Sankaranarayana Pillai, Dan Hurt, Angeliki Lazaridou, Xi Xiong, Ce Zheng, Fabio
Pardo, Xiaowei Li, Dan Horgan, Joe Stanton, Moran Ambar, Fei Xia, Alejandro Lince, Mingqiu
Wang, Basil Mustafa, Albert Webson, Hyo Lee, Rohan Anil, Martin Wicke, Timothy Dozat,
Abhishek Sinha, Enrique Piqueras, Elahe Dabir, Shyam Upadhyay, Anudhyan Boral, Lisa Anne
Hendricks, Corey Fry, Josip Djolonga, Yi Su, Jake Walker, Jane Labanowski, Ronny Huang, Vedant
Misra, Jeremy Chen, RJ Skerry-Ryan, Avi Singh, Shruti Rijhwani, Dian Yu, Alex Castro-Ros,
Beer Changpinyo, Romina Datta, Sumit Bagri, Arnar Mar Hrafnkelsson, Marcello Maggioni,
Daniel Zheng, Yury Sulsky, Shaobo Hou, Tom Le Paine, Antoine Yang, Jason Riesa, Dominika
Rogozinska, Dror Marcus, Dalia El Badawy, Qiao Zhang, Luyu Wang, Helen Miller, Jeremy
Greer, Lars Lowe Sjos, Azade Nova, Heiga Zen, Rahma Chaabouni, Mihaela Rosca, Jiepu Jiang,
Charlie Chen, Ruibo Liu, Tara Sainath, Maxim Krikun, Alex Polozov, Jean-Baptiste Lespiau,
Josh Newlan, Zeyncep Cankara, Soo Kwak, Yunhan Xu, Phil Chen, Andy Coenen, Clemens
Meyer, Katerina Tsihlas, Ada Ma, Juraj Gottweis, Jinwei Xing, Chenjie Gu, Jin Miao, Christian
Frank, Zeynep Cankara, Sanjay Ganapathy, Ishita Dasgupta, Steph Hughes-Fitt, Heng Chen,
David Reid, Keran Rong, Hongmin Fan, Joost van Amersfoort, Vincent Zhuang, Aaron Cohen,
Shixiang Shane Gu, Anhad Mohananey, Anastasija Ilic, Taylor Tobin, John Wieting, Anna Bortsova,
Phoebe Thacker, Emma Wang, Emily Caveness, Justin Chiu, Eren Sezener, Alex Kaskasoli,
Steven Baker, Katie Millican, Mohamed Elhawaty, Kostas Aisopos, Carl Lebsack, Nathan Byrd,
Hanjun Dai, Wenhao Jia, Matthew Wiethoff, Elnaz Davoodi, Albert Weston, Lakshman Yagati,
Arun Ahuja, Isabel Gao, Golan Pundak, Susan Zhang, Michael Azzam, Khe Chai Sim, Sergi
Caelles, James Keeling, Abhanshu Sharma, Andy Swing, YaGuang Li, Chenxi Liu, Carrie Grimes
Bostock, Yamini Bansal, Zachary Nado, Ankesh Anand, Josh Lipschultz, Abhijit Karmarkar,
Lev Proleev, Abe Ittycheriah, Soheil Hassas Yeganeh, George Polovets, Aleksandra Faust, Jiao
Sun, Alban Rrustemi, Pen Li, Rakesh Shivanna, Jeremiah Liu, Chris Welty, Federico Lebron,
Anirudh Baddepudi, Sebastian Krause, Emilio Parisotto, Radu Soricut, Zheng Xu, Dawn Bloxwich,
Melvin Johnson, Behnam Neyshabur, Justin Mao-Jones, Renshen Wang, Vinay Ramasesh, Zaheer
Abbas, Arthur Guez, Constant Segal, Duc Dung Nguyen, James Svensson, Le Hou, Sarah York,
Kieran Milan, Sophie Bridgers, Wiktor Gworek, Marco Tagliasacchi, James Lee-Thorp, Michael
Chang, Alexey Guseynov, Ale Jakse Hartman, Michael Kwong, Ruizhe Zhao, Sheleem Kashem,
Elizabeth Cole, Antoine Miech, Richard Tanburn, Mary Phuong, Filip Pavetic, Sebastien Cevey,
Ramona Comanescu, Richard Ives, Sherry Yang, Cosmo Du, Bo Li, Zizhao Zhang, Mariko linuma,
Clara Huiyi Hu, Aurko Roy, Shaan Bijwadia, Zhenkai Zhu, Danilo Martins, Rachel Saputro, Anita
Gergely, Steven Zheng, Dawei Jia, Ioannis Antonoglou, Adam Sadovsky, Shane Gu, Yingying
Bi, Alek Andreev, Sina Samangooei, Mina Khan, Tomas Kocisky, Angelos Filos, Chintu Kumar,
Colton Bishop, Adams Yu, Sarah Hodkinson, Sid Mittal, Premal Shah, Alexandre Moufarek, Yong
Cheng, Adam Bloniarz, Jachoon Lee, Pedram Pejman, Paul Michel, Stephen Spencer, Vladimir
Feinberg, Xuehan Xiong, Nikolay Savinov, Charlotte Smith, Siamak Shakeri, Dustin Tran, Mary
Chesus, Bernd Bohnet, George Tucker, Tamara von Glehn, Carrie Muir, Yiran Mao, Hideto Kazawa,
Ambrose Slone, Kedar Soparkar, Disha Shrivastava, James Cobon-Kerr, Michael Sharman, Jay

11

445
446
447
448
449
450
451
452
453
454
455
456
457

459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489

491
492
493
494
495
496
497
498
499
500
501
502
503

Pavagadhi, Carlos Araya, Karolis Misiunas, Nimesh Ghelani, Michael Laskin, David Barker,
Qiuyjia Li, Anton Briukhov, Neil Houlsby, Mia Glaese, Balaji Lakshminarayanan, Nathan Schucher,
Yunhao Tang, Eli Collins, Hyeontaek Lim, Fangxiaoyu Feng, Adria Recasens, Guangda Lai,
Alberto Magni, Nicola De Cao, Aditya Siddhant, Zoe Ashwood, Jordi Orbay, Mostafa Dehghani,
Jenny Brennan, Yifan He, Kelvin Xu, Yang Gao, Carl Saroufim, James Molloy, Xinyi Wu, Seb
Arnold, Solomon Chang, Julian Schrittwieser, Elena Buchatskaya, Soroush Radpour, Martin
Polacek, Skye Giordano, Ankur Bapna, Simon Tokumine, Vincent Hellendoorn, Thibault Sottiaux,
Sarah Cogan, Aliaksei Severyn, Mohammad Saleh, Shantanu Thakoor, Laurent Shefey, Siyuan
Qiao, Meenu Gaba, Shuo yiin Chang, Craig Swanson, Biao Zhang, Benjamin Lee, Paul Kishan
Rubenstein, Gan Song, Tom Kwiatkowski, Anna Koop, Ajay Kannan, David Kao, Parker Schuh,
Axel Stjerngren, Golnaz Ghiasi, Gena Gibson, Luke Vilnis, Ye Yuan, Felipe Tiengo Ferreira,
Aishwarya Kamath, Ted Klimenko, Ken Franko, Kefan Xiao, Indro Bhattacharya, Miteyan Patel,
Rui Wang, Alex Morris, Robin Strudel, Vivek Sharma, Peter Choy, Sayed Hadi Hashemi, Jessica
Landon, Mara Finkelstein, Priya Jhakra, Justin Frye, Megan Barnes, Matthew Mauger, Dennis
Daun, Khuslen Baatarsukh, Matthew Tung, Wael Farhan, Henryk Michalewski, Fabio Viola, Felix
de Chaumont Quitry, Charline Le Lan, Tom Hudson, Qingze Wang, Felix Fischer, Ivy Zheng,
Elspeth White, Anca Dragan, Jean baptiste Alayrac, Eric Ni, Alexander Pritzel, Adam Iwanicki,
Michael Isard, Anna Bulanova, Lukas Zilka, Ethan Dyer, Devendra Sachan, Srivatsan Srinivasan,
Hannah Muckenhirn, Honglong Cai, Amol Mandhane, Mukarram Tariq, Jack W. Rae, Gary Wang,
Kareem Ayoub, Nicholas FitzGerald, Yao Zhao, Woohyun Han, Chris Alberti, Dan Garrette,
Kashyap Krishnakumar, Mai Gimenez, Anselm Levskaya, Daniel Sohn, Josip Matak, Inaki Iturrate,
Michael B. Chang, Jackie Xiang, Yuan Cao, Nishant Ranka, Geoff Brown, Adrian Hutter, Vahab
Mirrokni, Nanxin Chen, Kaisheng Yao, Zoltan Egyed, Francois Galilee, Tyler Liechty, Praveen
Kallakuri, Evan Palmer, Sanjay Ghemawat, Jasmine Liu, David Tao, Chloe Thornton, Tim Green,
Mimi Jasarevic, Sharon Lin, Victor Cotruta, Yi-Xuan Tan, Noah Fiedel, Hongkun Yu, Ed Chi,
Alexander Neitz, Jens Heitkaemper, Anu Sinha, Denny Zhou, Yi Sun, Charbel Kaed, Brice Hulse,
Swaroop Mishra, Maria Georgaki, Sneha Kudugunta, Clement Farabet, Izhak Shafran, Daniel
Vlasic, Anton Tsitsulin, Rajagopal Ananthanarayanan, Alen Carin, Guolong Su, Pei Sun, Shashank
V, Gabriel Carvajal, Josef Broder, Iulia Comsa, Alena Repina, William Wong, Warren Weilun Chen,
Peter Hawkins, Egor Filonov, Lucia Loher, Christoph Hirnschall, Weiyi Wang, Jingchen Ye, Andrea
Burns, Hardie Cate, Diana Gage Wright, Federico Piccinini, Lei Zhang, Chu-Cheng Lin, Ionel
Gog, Yana Kulizhskaya, Ashwin Sreevatsa, Shuang Song, Luis C. Cobo, Anand Iyer, Chetan Tekur,
Guillermo Garrido, Zhuyun Xiao, Rupert Kemp, Huaixiu Steven Zheng, Hui Li, Ananth Agarwal,
Christel Ngani, Kati Goshvadi, Rebeca Santamaria-Fernandez, Wojciech Fica, Xinyun Chen,
Chris Gorgolewski, Sean Sun, Roopal Garg, Xinyu Ye, S. M. Ali Eslami, Nan Hua, Jon Simon,
Pratik Joshi, Yelin Kim, Ian Tenney, Sahitya Potluri, Lam Nguyen Thiet, Quan Yuan, Florian
Luisier, Alexandra Chronopoulou, Salvatore Scellato, Praveen Srinivasan, Minmin Chen, Vinod
Koverkathu, Valentin Dalibard, Yaming Xu, Brennan Saeta, Keith Anderson, Thibault Sellam,
Nick Fernando, Fantine Huot, Junehyuk Jung, Mani Varadarajan, Michael Quinn, Amit Raul,
Maigo Le, Ruslan Habalov, Jon Clark, Komal Jalan, Kalesha Bullard, Achintya Singhal, Thang
Luong, Boyu Wang, Sujeevan Rajayogam, Julian Eisenschlos, Johnson Jia, Daniel Finchelstein,
Alex Yakubovich, Daniel Balle, Michael Fink, Sameer Agarwal, Jing Li, Dj Dvijotham, Shalini
Pal, Kai Kang, Jaclyn Konzelmann, Jennifer Beattie, Olivier Dousse, Diane Wu, Remi Crocker,
Chen Elkind, Siddhartha Reddy Jonnalagadda, Jong Lee, Dan Holtmann-Rice, Krystal Kallarackal,
Rosanne Liu, Denis Vnukov, Neera Vats, Luca Invernizzi, Mohsen Jafari, Huanjie Zhou, Lilly
Taylor, Jennifer Prendki, Marcus Wu, Tom Eccles, Tiangi Liu, Kavya Kopparapu, Francoise
Beaufays, Christof Angermueller, Andreea Marzoca, Shourya Sarcar, Hilal Dib, Jeff Stanway,
Frank Perbet, Nejc Trdin, Rachel Sterneck, Andrey Khorlin, Dinghua Li, Xihui Wu, Sonam
Goenka, David Madras, Sasha Goldshtein, Willi Gierke, Tong Zhou, Yaxin Liu, Yannie Liang,
Anais White, Yunjie Li, Shreya Singh, Sanaz Bahargam, Mark Epstein, Sujoy Basu, Li Lao,
Adnan Ozturel, Carl Crous, Alex Zhai, Han Lu, Zora Tung, Neeraj Gaur, Alanna Walton, Lucas
Dixon, Ming Zhang, Amir Globerson, Grant Uy, Andrew Bolt, Olivia Wiles, Milad Nasr, Ilia
Shumailov, Marco Selvi, Francesco Piccinno, Ricardo Aguilar, Sara McCarthy, Misha Khalman,
Mrinal Shukla, Vlado Galic, John Carpenter, Kevin Villela, Haibin Zhang, Harry Richardson,
James Martens, Matko Bosnjak, Shreyas Rammohan Belle, Jeff Seibert, Mahmoud Alnahlawi,
Brian McWilliams, Sankalp Singh, Annie Louis, Wen Ding, Dan Popovici, Lenin Simicich, Laura
Knight, Pulkit Mehta, Nishesh Gupta, Chongyang Shi, Saaber Fatehi, Jovana Mitrovic, Alex
Grills, Joseph Pagadora, Dessie Petrova, Danielle Eisenbud, Zhishuai Zhang, Damion Yates,
Bhavishya Mittal, Nilesh Tripuraneni, Yannis Assael, Thomas Brovelli, Prateek Jain, Mihajlo

12

504
505
506
507
508
509
510
511
512
513
514
515

517
518
519
520
521
522

524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545

546
547

549

550
551
552
553

554
555
556

558
559

Velimirovic, Canfer Akbulut, Jiaqgi Mu, Wolfgang Macherey, Ravin Kumar, Jun Xu, Haroon
Qureshi, Gheorghe Comanici, Jeremy Wiesner, Zhitao Gong, Anton Ruddock, Matthias Bauer,
Nick Felt, Anirudh GP, Anurag Arnab, Dustin Zelle, Jonas Rothfuss, Bill Rosgen, Ashish Shenoy,
Bryan Seybold, Xinjian Li, Jayaram Mudigonda, Goker Erdogan, Jiawei Xia, Jiri Simsa, Andrea
Michi, Yi Yao, Christopher Yew, Steven Kan, Isaac Caswell, Carey Radebaugh, Andre Elisseeff,
Pedro Valenzuela, Kay McKinney, Kim Paterson, Albert Cui, Eri Latorre-Chimoto, Solomon Kim,
William Zeng, Ken Durden, Priya Ponnapalli, Tiberiu Sosea, Christopher A. Choquette-Choo,
James Manyika, Brona Robenek, Harsha Vashisht, Sebastien Pereira, Hoi Lam, Marko Velic,
Denese Owusu-Afriyie, Katherine Lee, Tolga Bolukbasi, Alicia Parrish, Shawn Lu, Jane Park,
Balaji Venkatraman, Alice Talbert, Lambert Rosique, Yuchung Cheng, Andrei Sozanschi, Adam
Paszke, Praveen Kumar, Jessica Austin, Lu Li, Khalid Salama, Wooyeol Kim, Nandita Dukkipati,
Anthony Baryshnikov, Christos Kaplanis, XiangHai Sheng, Yuri Chervonyi, Caglar Unlu, Diego
de Las Casas, Harry Askham, Kathryn Tunyasuvunakool, Felix Gimeno, Siim Poder, Chester
Kwak, Matt Miecnikowski, Vahab Mirrokni, Alek Dimitriev, Aaron Parisi, Dangyi Liu, Tomy
Tsai, Toby Shevlane, Christina Kouridi, Drew Garmon, Adrian Goedeckemeyer, Adam R. Brown,
Anitha Vijayakumar, Ali Elqursh, Sadegh Jazayeri, Jin Huang, Sara Mc Carthy, Jay Hoover,
Lucy Kim, Sandeep Kumar, Wei Chen, Courtney Biles, Garrett Bingham, Evan Rosen, Lisa
Wang, Qijun Tan, David Engel, Francesco Pongetti, Dario de Cesare, Dongseong Hwang, Lily
Yu, Jennifer Pullman, Srini Narayanan, Kyle Levin, Siddharth Gopal, Megan Li, Asaf Aharoni,
Trieu Trinh, Jessica Lo, Norman Casagrande, Roopali Vij, Loic Matthey, Bramandia Ramadhana,
Austin Matthews, CJ Carey, Matthew Johnson, Kremena Goranova, Rohin Shah, Shereen Ashraf,
Kingshuk Dasgupta, Rasmus Larsen, Yicheng Wang, Manish Reddy Vuyyuru, Chong Jiang, Joana
Jjazi, Kazuki Osawa, Celine Smith, Ramya Sree Boppana, Taylan Bilal, Yuma Koizumi, Ying
Xu, Yasemin Altun, Nir Shabat, Ben Bariach, Alex Korchemniy, Kiam Choo, Olaf Ronneberger,
Chimezie Iwuanyanwu, Shubin Zhao, David Soergel, Cho-Jui Hsieh, Irene Cai, Shariq Igbal,
Martin Sundermeyer, Zhe Chen, Elie Bursztein, Chaitanya Malaviya, Fadi Biadsy, Prakash Shroff,
Inderjit Dhillon, Tejasi Latkar, Chris Dyer, Hannah Forbes, Massimo Nicosia, Vitaly Nikolaev,
Somer Greene, Marin Georgiev, Pidong Wang, Nina Martin, Hanie Sedghi, John Zhang, Praseem
Banzal, Doug Fritz, Vikram Rao, Xuezhi Wang, Jiageng Zhang, Viorica Patraucean, Dayou Du,
Igor Mordatch, Ivan Jurin, Lewis Liu, Ayush Dubey, Abhi Mohan, Janek Nowakowski, Vlad-Doru
Ton, Nan Wei, Reiko Tojo, Maria Abi Raad, Drew A. Hudson, Vaishakh Keshava, Shubham
Agrawal, Kevin Ramirez, Zhichun Wu, Hoang Nguyen, Ji Liu, Madhavi Sewak, Bryce Petrini,
DongHyun Choi, Ivan Philips, Ziyue Wang, Ioana Bica, Ankush Garg, Jarek Wilkiewicz, Priyanka
Agrawal, Xiaowei Li, Danhao Guo, Emily Xue, Naseer Shaik, Andrew Leach, Sadh MNM Khan,
Julia Wiesinger, Sammy Jerome, Abhishek Chakladar, Alek Wenjiao Wang, Tina Ornduff, Folake
Abu, Alireza Ghaffarkhah, Marcus Wainwright, Mario Cortes, Frederick Liu, Joshua Maynez,
Andreas Terzis, Pouya Samangouei, Riham Mansour, Tomasz Kepa, Francois-Xavier Aubet, Anton
Algymr, Dan Banica, Agoston Weisz, Andras Orban, Alexandre Senges, Ewa Andrejczuk, Mark
Geller, Niccolo Dal Santo, Valentin Anklin, Majd Al Merey, Martin Baeuml, Trevor Strohman,
Junwen Bai, Slav Petrov, Yonghui Wu, Demis Hassabis, Koray Kavukcuoglu, Jeffrey Dean, and
Oriol Vinyals. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of
context, 2024. URL https://arxiv.org/abs/2403.05530.

Alexander Havrilla, Sharath Chandra Raparthy, Christoforos Nalmpantis, Jane Dwivedi-Yu, Maksym
Zhuravinskyi, Eric Hambro, and Roberta Raileanu. Glore: When, where, and how to improve 1lm
reasoning via global and local refinements. In Forty-first International Conference on Machine
Learning, 2024.

Yue Huang, Jiawen Shi, Yuan Li, Chenrui Fan, Siyuan Wu, Qihui Zhang, Yixin Liu, Pan Zhou, Yao
Wan, Neil Zhengiang Gong, and Lichao Sun. Metatool benchmark for large language models:
Deciding whether to use tools and which to use, 2024. URL https://arxiv.org/abs/2310,
03128.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues?, 2024. URL
https://arxiv.org/abs/2310.06770.

Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke Zettlemoyer. Triviaga: A large scale distantly

supervised challenge dataset for reading comprehension, 2017. URL https://arxiv.org/abs/
1705.03551.

13

https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2310.03128
https://arxiv.org/abs/2310.03128
https://arxiv.org/abs/2310.03128
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/1705.03551
https://arxiv.org/abs/1705.03551
https://arxiv.org/abs/1705.03551

560
561
562

563
564
565

566

568

569
570
571

572
573
574
575

576
577

578
579
580

581
582

583

584
585
586
587
588
589
590
591
592
593
594
595
596

598
599
600
601
602

604
605
606
607
608
609

611
612

Jungo Kasai, Keisuke Sakaguchi, Yoichi Takahashi, Ronan Le Bras, Akari Asai, Xinyan Yu, Dragomir
Radev, Noah A. Smith, Yejin Choi, and Kentaro Inui. Realtime qa: What’s the answer right now?,
2024. URL https://arxiv.org/abs/2207.13332,

Nathan Lambert, Valentina Pyatkin, Jacob Morrison, LJ Miranda, Bill Yuchen Lin, Khyathi Chandu,
Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi, et al. Rewardbench: Evaluating reward models
for language modeling. arXiv preprint arXiv:2403.13787, 2024.

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song, Hangyu Li, Haiyang Yu, Zhoujun Li, Fei Huang,
and Yongbin Li. Api-bank: A comprehensive benchmark for tool-augmented 1lms, 2023. URL
https://arxiv.org/abs/2304.08244.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step, 2023. URL
https://arxiv.org/abs/2305.20050.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan Zeng, Zhengxiao Du, Chenhui
Zhang, Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie Huang, Yuxiao Dong, and Jie Tang.
Agentbench: Evaluating lIms as agents, 2023. URL https://arxiv.org/abs/2308.03688.

Martin Majlis. Wikipedia-api, 2017. URL https://github.com/martin-majlis/
Wikipedia-API/tree/master,

Dheeraj Mekala, Jason Weston, Jack Lanchantin, Roberta Raileanu, Maria Lomeli, Jingbo Shang, and
Jane Dwivedi-Yu. Toolverifier: Generalization to new tools via self-verification. arXiv preprint
arXiv:2402.14158, 2024.

Grégoire Mialon, Clémentine Fourrier, Craig Swift, Thomas Wolf, Yann LeCun, and Thomas Scialom.
Gaia: a benchmark for general ai assistants, 2023. URL https://arxiv.org/abs/2311.12983.

Mistral. Mistral large 2 model. https://mistral.ail Accessed: 2024-10-01.

OpenAl, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor
Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mohammad Bavarian,
Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny
Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks,
Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea
Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully Chen,
Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey Chu, Hyung Won Chung,
Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah Deutsch,
Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning, Adrien Ecoffet, Atty
Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Simén Posada Fishman, Juston Forte,
Isabella Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel
Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua
Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike
Heaton, Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, Brandon
Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne
Jang, Angela Jiang, Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo
Jun, Tomer Kaftan, Lukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar,
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik Kim, Jan Hendrik
Kirchner, Jamie Kiros, Matt Knight, Daniel Kokotajlo, L.ukasz Kondraciuk, Andrew Kondrich,
Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy
Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie
Lin, Mateusz Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini,
Sam Manning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne,
Bob McGrew, Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake McNeil, David
Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie
Monaco, Evan Morikawa, Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély,
Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo
Noh, Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano,

14

https://arxiv.org/abs/2207.13332
https://arxiv.org/abs/2304.08244
https://arxiv.org/abs/2305.20050
https://arxiv.org/abs/2308.03688
https://github.com/martin-majlis/Wikipedia-API/tree/master
https://github.com/martin-majlis/Wikipedia-API/tree/master
https://github.com/martin-majlis/Wikipedia-API/tree/master
https://arxiv.org/abs/2311.12983
https://mistral.ai

613
614
615
616
617
618
619
620
621
622
623
624

626
627
628
629
630

631
632

633
634

635
636
637
638

639
640
641

642
643

644
645

646
647

648
649
650

651
652
653

654
655
656

657
658

659
660
661

Giambattista Parascandolo, Joel Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng,
Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto,
Michael, Pokorny, Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power,
Elizabeth Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis
Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted
Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel
Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon
Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie
Tang, Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng,
Preston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerén Uribe, Andrea Vallone, Arun
Vijayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang,
Jonathan Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian
Weng, Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren
Workman, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming
Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024. URL
https://arxiv.org/abs/2303.08774.

Shishir G. Patil, Tianjun Zhang, Xin Wang, and Joseph E. Gonzalez. Gorilla: Large language model
connected with massive apis, 2023. URL https://arxiv.org/abs/2305.15334.

Yun Peng, Shuqging Li, Wenwei Gu, Yichen Li, Wenxuan Wang, Cuiyun Gao, and Michael Lyu.
Revisiting, benchmarking and exploring api recommendation: How far are we?, 2021.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, Sihan Zhao, Runchu Tian, Ruobing Xie, Jie Zhou, Mark Gerstein, Dahai Li,
Zhiyuan Liu, and Maosong Sun. Toolllm: Facilitating large language models to master 16000+
real-world apis, 2023.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer,
Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves to
use tools, 2023. URL https://arxiv.org/abs/2302.04761.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347,

SerpApi. Serpapi - search engine results api. https://serpapi.com/, 2024. Accessed: February
2023—-September 2024.

James Thorne, Andreas Vlachos, Christos Christodoulopoulos, and Arpit Mittal. Fever: a large-scale
dataset for fact extraction and verification, 2018. URL https://arxiv.org/abs/1803.05355,

Tu Vu, Mohit Iyyer, Xuezhi Wang, Noah Constant, Jerry Wei, Jason Wei, Chris Tar, Yun-Hsuan Sung,
Denny Zhou, Quoc Le, and Thang Luong. Freshllms: Refreshing large language models with
search engine augmentation, 2023. URL https://arxiv.org/abs/2310.03214.

Peiyi Wang, Lei Li, Zhihong Shao, R. X. Xu, Damai Dai, Yifei Li, Deli Chen, Y. Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations, 2024a.
URL https://arxiv.org/abs/2312.08935,

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji.
Executable code actions elicit better 1lm agents, 2024b. URL https://arxiv.org/abs/2402,
01030.

Inc. Wolfram Research. Mathematica, Version 14.1, 2024. URL https://www.wolfram.com/
mathematica. Champaign, IL, 2024.

Congying Xia, Chen Xing, Jiangshu Du, Xinyi Yang, Yihao Feng, Ran Xu, Wenpeng Yin, and

Caiming Xiong. Fofo: A benchmark to evaluate llms’ format-following capability, 2024. URL
https://arxiv.org/abs/2402.18667.

15

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2305.15334
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/1707.06347
https://serpapi.com/
https://arxiv.org/abs/1803.05355
https://arxiv.org/abs/2310.03214
https://arxiv.org/abs/2312.08935
https://arxiv.org/abs/2402.01030
https://arxiv.org/abs/2402.01030
https://arxiv.org/abs/2402.01030
https://www.wolfram.com/mathematica
https://www.wolfram.com/mathematica
https://www.wolfram.com/mathematica
https://arxiv.org/abs/2402.18667

662
663

664
665
666

667
668
669

670
671
672

673
674

675
676
677

679

Qiantong Xu, Fenglu Hong, Bo Li, Changran Hu, Zhengyu Chen, and Jian Zhang. On the tool
manipulation capability of open-source large language models, 2023.

Fanjia Yan, Huanzhi Mao, Charlie Cheng-Jie Ji, Tianjun Zhang, Shishir G. Patil, Ion Stoica, and
Joseph E. Gonzalez. Berkeley function calling leaderboard. https://gorilla.cs.berkeley!
edu/blogs/8_berkeley_function_calling_leaderboard.html, 2024.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhutdinov,
and Christopher D. Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering, 2018. URL https://arxiv.org/abs/1809.09600.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models, 2023. URL https://arxiv.org/
abs/2210.03629.

Michael J. Q. Zhang and Eunsol Choi. Situatedqa: Incorporating extra-linguistic contexts into qa,
2021. URL https://arxiv.org/abs/2109.06157.

Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun, and Chao Zhang. Toolqa: A dataset for llm
question answering with external tools. Advances in Neural Information Processing Systems, 36:
50117-50143, 2023.

Patrick Zippenfenig. Open-Meteo.com Weather API, 2024. URL https://github.com/
open-meteo/open-meteo.

16

https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://arxiv.org/abs/1809.09600
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2109.06157
https://github.com/open-meteo/open-meteo
https://github.com/open-meteo/open-meteo
https://github.com/open-meteo/open-meteo

680

681
682
683
684
685
686
687

688

689
690
691
692
693
694

695
696
697

A ToolComp Extended Evaluations

This appendix presents comprehensive supplementary evaluations that provide deeper insights into
model performance and failure modes. We include exact match grading analysis (A.T) and detailed er-
ror categorization for each evaluated model (A.2]and[A.3). Note that the frontier model evaluations
presented here reflect the state-of-the-art as of August 2024, while the main text incorporates
more recent frontier models released through August 2025. These extended evaluation method-
ologies offer model developers actionable frameworks for conducting thorough assessments of their
systems’ tool composition capabilities and identifying specific areas for improvement.

A.1 Exact Match

This paradigm aims to assess both the tool use capabilities and the instruction/format following
capabilities of the model. Formatting is particularly important when we want to use the LLM to
automate a backend process. This paradigm programmatically evaluates unsorted lists (eg. prompt
asks for a list of all states in the US), sorted lists (eg. prompt asks for a list of all states in the US in
alphabetical order), numbers (eg. prompt asks for the areas of Texas in square miles) and strings (eg.
prompt asks for the name of the football team that won the Superbowl in 2016)

Unsorted lists are sorted and exact matched (set match gets rid of duplicates) Sorted lists are exact
matched Number are checked if they are within a tolerance param (the tolerance param is to account
for variance among different sources online) String are stripped, lower cased, and exact matched

Table 4: Model Family Performance Comparison: Accuracy and 95% Confidence Intervals
Model Family Model Name Total Accuracy (%)

GPT-40 (Aug 2024) 43.52 +4.43

GPT-40 (May 2024) 40.60 4= 4.38

OpenAl GPT-4 Turbo Preview 40.11 £4.39
p GPT-4 38.45 + 4.34
GPT-40 Mini 34.70 + 4.25

Claude 3.5 Sonnet 42,92 £4.42

Anthropic Claude 3 Opus 36.96 +4.43
Claude 3 Sonnet 33.58 +4.21

Goosle Gemini 1.5 Pro (August 27, 2024) 4322 +4.43
& Gemini 1.5 Pro (May 2024) 27.36 £ 3.98
Mistral Mistral Large 2 33.63 £ 4.21
Llama 3.1 405B Instruct* 33.10 = 4.20

Meta Llama 3.1 70B Instruct* 26.19 £3.93
Llama 3.1 8B Instruct* 11.75 £ 2.88

Cohere Command R+ 0.00 £ 0.00

17

698

699

701
702
703

A.2 Final Answer Failure Analysis

In order to better understand the reasons behind each model’s failures, we come up with an Error
Taxonomy and use GPT-4 Turbo to categorize the reasoning behind each failure. We note that the
error categories are not mutually exclusive. We inspect the individual failure cases predicted by
GPT-4 Turbo and find that it is reasonably accurate. The different categories and their definitions are

shown in Table[5]and the error counts for each model is shown in Figure 3]

Table 5: Common Error Category Taxonomy.

Category

Description

Final Answer Missing Information

The model’s trajectory got to the final answer however
the final answer fails to answer all parts of the prompt.

Called Incorrect Tool

The model called irrelevant tools that lead it down the
wrong direction.

Incorrect Tool Call Formatting

The model tried to call the relevant tool but consistently
used the wrong formatting for the input arguments (e.g.,
wrong input format, didn’t include a required argument).
You can tell this is occurring if the tool call’s result is
an error message.

Terminated Early Unexpectedly

The model stopped short of reaching the final answer
even though it should have kept proceeding. It is unclear
why the model stopped early.

Hallucinated Information

The model either didn’t call the relevant tool and just
made up information or it called the relevant tool but
didn’t use its outputs in the next tool call or final answer
properly (made up information afterwards).

Misunderstood Tool Info

The model called the relevant tool but misunderstood
the information it gave back.

Repeatedly Calling Same Tool

The model called the same tool with the same arguments
multiple times (even though it didn’t have any errors)
and didn’t use the returned info to proceed to the next
step or the final answer.

Action Plan Flawed

The Action Plan provided to the model in the user query
was fundamentally flawed.

Miscellaneous

The reason for the error doesn’t fit into any of the above
categories.

18

704

705
706

707

708
709
710
71

712

713

714

715

716

77

718

719
720

Model Performance Comparison Across Error Types

71

Gemini 1.5 Pro (Aug 2024)

Llama 3.1 8B Instruct
Gemini 1.5 Pro (May 2024)

Claude 3 Opus

87

69
-120
100

Claude 3 Sonnet 90

- 100

GPT-40 Mini 85

52 -80

Model
Q
el
-
>
o
>
[

Q

N

o

N

=
Error Count

77

Claude 3.5 Sonnet 70

ol-preview

- 60

Llama 3.1 405B Instruct
Mistral Large 2

GPT-40 (May 2024)

Error Type

Figure 3: Breakdown of the various error categories in our taxonomy for each model (on the
ToolComp-Enterprise).

A.3 Intermediate Reasoning Failure Analysis

In this appendix section, we conduct a thorough failure analysis for the intermediate reasoning
evaluations shown in Table 3]

A.3.1 ReAct-Step-Error-Based Failure Trends in Models

Figures [] and [5] shows the count for type of mistake between the human corrected substep and the
original incorrect substep whenever the model fails to pick the more appropriate trajectory (see Figure
[[]for an overview on the annotation process). We define the failure cases in terms of which subset of
the ReAct step needed correction. We end up with 5 different cases:

* Case 1: Thought Correct, Action Correct, Action Input Incorrect

* Case 2: Thought Incorrect, Action Incorrect, Action Input Incorrect

* Case 3: Thought Incorrect, Action Correct, Action Input Correct

* Case 4: Thought Incorrect, Action Correct, Action Input Incorrect

* Case 5: Thought Correct, Action Incorrect, Action Input Incorrect
Together, these figures highlight what types of errors are most common during a lapse in reasoning
when picking the best next course of action or invoking a tool correctly. In particular, we notice that

models often fail in reasoning about the better course of action when the deciding factor is in picking
the better Action Input with all else equal.

19

Categories

12001 =3 Casel
[Case2
B Case3
I Cased
Il Case5

1000 1

800 -

600

Count

400

200 A

Llama 3.1 70B IT
Claude 3.5 Sonnet
GPT-4

Claude 3 Sonnet
Claude 3 Opus
Gemini 1.5 Pro
Llama 3.1 405B IT
Llama 3.1 8B IT
GPT-40 Mini

GPT-4 Turbo
GPT-40 (Aug 2024)
Mistral Large 2
GPT-40 (May 2024)
Command-R +

Full Benchmark

Gemini 1.5 Pro Exp
OpenAl ol Preview

Figure 4: Histogram showing the LLM as judge evaluation failure counts for each model, which is
further categorized by subset of the ReAct step that needed correction. Full Benchmark denotes the
counts for the entire ToolComp benchmark. Recall from[d.3] we have 3 outcomes for LLM judge
evaluation: win, tie, or loss. Here we count a failure as either a tie or a loss outcome.

Categories
[Casel
EE Case2
I Case3
I Case4
I Case5

1.0

0.8

Percentage
=}
o

o
'S
L

0.2 4

0.0~

GPT-4

Claude 3 Sonnet
GPT-4 Turbo

Llama 3.1 70B IT
Claude 3.5 Sonnet
Claude 3 Opus
Gemini 1.5 Pro
Llama 3.1 405B IT
Llama 3.1 8B IT
GPT-40 Mini
GPT-40 (Aug 2024)
Mistral Large 2
GPT-40 (May 2024)
OpenAl ol Preview
Command-R +

Full Benchmark

o
x
w
(@]
[
o
\n
—
=
€
(]
(U]

Figure 5: Density of the error-type between correct and incorrect step for the LLM as judge evaluation
failures for each model. Full Benchmark denotes the distribution for the entire ToolComp benchmark.

20

721

722
723
724
725
726
727
728
729
730

A.3.2 Position-Based Error Trends in Models

Figures [6] and[7] shows the count and percentage of the relative positions where each respective model
failed to chose the better step when serving as an LLM judge choosing between two steps. In order to
calculate the position, we divide the step number at which the decision is taking place by the total
number of steps in the trajectory and multiply by 100. Hence, the position of a step will be a number
between 0 and 100. We bin these position values by increments of 20. Overall, these figures illustrate
that most, if not, all of the models struggle when judging steps towards the middle-end (position
values between 60 and 80) of the trajectory. Intuitively this makes sense because this is likely where
models have to compose the observations of previous tools into the input for the next tool call, which
requires more nuanced and sophisticated reasoning.

Categories
0 < Position < 20
20 < Position < 40
40 < Position < 60
60 < Position < 80
80 < Position < 100

1200

1000

400

200

Claude 3 Opus
Claude 3 Sonnet
Claude 3.5 Sonnet
Command-R +
GPT-4

GPT-4 Turbo
GPT-40 (Aug 2024)
GPT-40 (May 2024)
GPT-40 Mini
Gemini 1.5 Pro
Gemini 1.5 Pro Exp
Llama 3.1 405B IT
Llama 3.1 70B IT
Llama 3.1 8B IT
Mistral Large 2
OpenAl ol Preview
Full Benchmark

Figure 6: Histogram showing the LLM as judge evaluation failure counts for each model, which is
further categorized by the position of the decision step. Full Benchmark denotes the counts for the
entire ToolComp benchmark.

Categories
0 < Position < 20
20 < Position < 40
40 < Position < 60
60 < Position < 80
80 < Position < 100

0.8 4

Percentage
o
&

o
IS

0.21

0.0-

GPT-4
GPT-4 Turbo

GPT-40 (Aug 2024)
GPT-40 Mini

w
=1
=%
o
m
[}
o
=4
©
O

Claude 3 Sonnet
Claude 3.5 Sonnet
Command-R +
GPT-40 (May 2024)
Gemini 1.5 Pro
Gemini 1.5 Pro Exp
Llama 3.1 405B IT
Llama 3.1 70B IT
Llama 3.1 8B IT
Mistral Large 2
OpenAl ol Preview
Full Benchmark

Figure 7: Density of the position of the LLM as judge evaluation failures for each model. Full
Benchmark denotes the distribution for the entire ToolComp benchmark.

21

731

732
733
734

735

736
737
738

740
741
742
743

744
745
746
747
748
749

751
752
753
754

755

756

757

758

759

B ToolComp Details

In this appendix section, we provide further details regarding benchmark creation steps such as
prompt creation [B.3). We also provide additional benchmark metadata revolving different
characteristics and statistics about the benchmark (B.4).

B.1 Prompt Creation Details

Step 1: Develop In-Context Examples We crafted high-quality in-context (IC) examples with
supporting reasoning, which we call ‘processes’, to guide the prompt generation. These processes are
Chain of Thought reasonings that describe the process by which we came up with the prompt. One of
the IC Prompts and a corresponding CoT is shown in Appendix [B.7]

Step 2: Generate Initial Prompts Using the IC examples, we generated synthetic prompts,
ensuring diversity by selecting random subsets of IC examples. Each subset used distinct in-context
prompts and randomly sampled tools from its set of available tools. The seed prompt used in this step

in Appendix

Step 3: Filtering We manually inspected each prompt to ensure they were reasonable, interesting,
and challenging, labeling them as Good, Too Simple, or Nonsensical with justifications for each
classification. These labeled examples served as IC inputs for GPT-4 Turbo (OpenAl et al., [2024) to
classify additional prompts. We iteratively review the outputs, make necessary edits, and add more IC
examples. Through three iterations, the filtered prompts were of high quality, exhibiting only minor
mistakes.

Step 4: Human Refinement After filtering, annotators reviewed the finals prompts to resolve any
issues related to complexity, clarity and ambiguity. We gave clear instructions on ambiguity (only
one possible correct answer) and complexity (requires two or more tool calls to answer), instructing
our annotators to ensure the prompt has only one correct answer that is complex, challenging and
requires the use of tools.

B.2 In Context Example

Prompt

I wanna know if eating meat is correlated with heart issues, find the annual per capita
consumption of meat in (kg/person) and also the per capita heart attack rates (in heart
attacks/person) for every country. Then run a linear regression with y as heart attack rates and
X as meat consumption, return the Pearson’s correlation as well as the slope of the fit line.

Process

I will first start by creating a prompt that requires the use of google search. I want to make
this prompt about investigating whether the amount of meat you consume is correlated to
heart disease. In order to make sure there is only one possible answer, I will ask to find the per
capita consumption of meat (in kg/person) and heart attacks rates (heart attacks per person)
in all countries. This standardizes the actual data that needs to be pulled and specifies the
units to ensure there is only one possible answer. I will then ask for a linear regression using
that data since it requires a python interpreter. Since linear regression is deterministic when
the data is fixed and the data required to fit the linear regression is well defined, I can ask to
output it§ parameters and ensure there is only one possible answer that can be returned. This
ensures that the good prompt is clear, unambiguous and has an answer that is easy to verify
through an exact string match while also requiring a chain of dependent tool calls (google
search call, then python interpreter call) to solve.

22

760

B.3 Seed Prompt

761

I want you to act as a Prompt Writer.

Please adhere to the following instructions:

Write a prompt that requires the use of all of the tools.

The prompt should require a chain of dependent tools calls who’s outputs influence
the inputs of the next tool invocation.

The prompt should be appropriate for someone in {grade}.

Please do not specify the tools to be used in the prompt. We want the assistant to
figure out on it’s own what tools to call so it should not be specified in the prompt
itself. No phrases like “Use the ... tool" should be in the written prompt.

The prompt should be a couple sentences.

Make sure the prompt has only one possible answer that is concrete and easily
verifiable. We want to be able to check the final answer using exact match.

Make sure the answer is not in the prompt.
Place [STOP] at the end of the prompt.

Examples:

{examples}

[BEGIN ALLOWED TOOLS]
{tools}

[END ALLOWED TOOLS]

762

763

B.4 Benchmark Metadata

160 o

Frequency
- = =
Iy © o N} N
3 3 3 S 8

IS
S

N
S5

[l

0 2 a 6 8 10 12 14
of Tools

16 18 20

Figure 8: About 85% of prompts in ToolComp require at least 3 tool calls to solve, indicating that
they have a decent amount of complexity and difficulty. Furthermore, 20% of prompts still require 7
or more tool calls to solve. This indicates that an agent being evaluated on this benchmark requires
high context length, sophisticated reasoning over long context, and advanced tool calling capabilities
in order to process long tool chains, formulate a high level plan, and understand the outputs of each
tool call to proceed to the next step and subsequently achieve a high score.

23

N w w
a S I
=)) o

Frequency
~
S
8

150 4
100 4

N h
0 | —

0 100 200 300 400 500
of Characters

Figure 9: Due to the nature of ToolComp needing to have answers that are easily verifiable, we
choose to create prompts that have numbers and short strings to match. However, there are still some
examples of prompts that require long structured outputs such as dictionaries,tuples and lists. These
test the agent’s ability to follow complex queries that involve returning long outputs such as lists or
dictionaries of city names, temperatures, altitudes, etc.

Date

Number -

0 200 400 600 800 1000 1200
Frequency

Figure 10: We show the distribution of the following primitive data types: number, string and
date. We care most about evaluation of compositional tool use and reasoning rather than aesthetic
output structuring and formatting. This is why the benchmark’s labels are predominantly numeric
while containing a significant fraction of string outputs. In many cases, strings and names are
intermediary outputs, but we most often ask for numerical final answers to make the answer easier to
unambiguously verify.

24

current_weather 4
time_series_intraday 1
wiki_search 4

date
time_series_daily

ticker_search

Tool

python_interpreter -

historical_weather

google_search 1

calculator q

wolfram_alpha

[200 400 600 800 1000
Frequency

Figure 11: The distribution of tools called in our human supervised tool call chains. The heavy bias
towards Google and Python are due to ToolComp Chat only allowing these tools as well them being
generally applicable for a wide range of tasks (web retrieval and information processing).

current_weather

date
time_series_intraday
wiki_search
time_series_daily

H ticker_search
python_interpreter
historical_weather
google_search
calculator

wolfram_alpha

0 50 100 150 200 250 300 350
frequency

Figure 12: The distribution of tools called in our human supervised tool call chains for just the
ToolComp Enterprise subset.

current_weather
date
time_series_intraday
wiki_search
time_series_daily

ticker_search

Tool

python_interpreter
historical_weather
google_search
calculator

wolfram_alpha

0 100 200 300 400 500 600
Frequency

Figure 13: The distribution of tools called in our human supervised tool call chains for just the
ToolComp Chat subset.

25

764

773

774

Frequency of Categories Across Prompts

Other +

Computational Mathematics
Biology

Engineering

Geology -

Architecture

Astronomy

Chemistry

Physics

Categories

Environmental Science -
History

Computer Science
Finance/Investment Analysis 4
Meteorology

Geography -

Arithmetic

Abstract Mathematics -

0 5‘0 160 150 260 25‘0 360 35‘0 460
Frequency
Figure 14: Here, we show the various topics our prompts address. Many prompts require arithmetic
operations and mathematical reasoning along with a somewhat uniform distribution of multiple
disciplines ranging from Geography, Finance, History, Physics, Chemistry, Astronomy, Architecture
etc. The topics are not mutually exclusive since many of these prompts span multiple domains and
require multiple tools, multiple sources of knowledge and diverse forms of reasoning.

C Tool-Use Prompts

In this section, we summarize all of the prompts that were used during the creation of the benchmark,
evaluation of the benchmark, and creation of the synthetic training data. For the creation of the
benchmark, we state the “Action Plan Prompt" for the Policy Model in Section [C.T]and the “Tool
Call Prompt" for the Policy Model in Section[C.2} For the evaluation of the benchmark, we state the
LLM grading prompt and the in-context examples used to aid grading in Section|C.5] Lastly, for the
creation of the synthetic training data, we use the same policy model prompts for the action plan and
tool call, and we additionally include the “Action Plan Prompt" for the Critic Model in Section@]
and the “Tool Call Prompt" for the Critic Model in Section [C.4]

C.1 Action Plan Prompt (Policy Model)

You are a helpful action planner with access to functions. Please use the tools to provide
information accurate up to current date: {current_date}

FUNCTIONS: {func_spec}
Question: {question}

Given the tools available to you above, please formulate an action plan to answer the question
in a bulleted list for each step. Refrain from using any specific tool calls in your action plan,
instead focus on the high-level steps you would take to answer the question and the name of
the tool you would use and how you would use it. Refrain from trying to answer the question
directly in the action plan.

\ J

26

775

776

77

C.2 ReAct Tool Call Prompt (Policy Model)

(

SYSTEM:

You are a helpful assistant with access to functions, each function will be regarded as an
action. Your job is to take relevant and necessary actions to get to the final answer to a user
question. Please use the actions to provide information accurate up to current date and time:
{current_date}. The user will provide you a question and a high level action plan. Your job is
to execute on the action plan to answer the question. It’s okay to slightly deviate from the
action plan if you think it’s necessary.

FUNCTIONS: {func_spec}
Please stick to the following format:

Thought: (your reasoning/thought on why/how to use an action)

Action: (the action to take, should be one of {func_list})

Action Input: (the input to the action (should be in JSON format with the required fields))
End Action

If you believe that you have obtained enough information (which can be judged from the
history observations) to answer the question, please call:

Thought: I have enough information to answer the question
Action: finish

Action Input: {“answer": [your answer string]}}

End Action

For your final answer (the finish action input), make sure you answer the full question.
Additionally, we want to make sure the final answers/outputs in the finish action input are
returned in the order that they are given in a list format so we can verify them with an exact
string match. For eg. if the prompt asks for a city name, its temperature and a list of names of
all the NBA teams whose home stadium is within a 400 mile radius, you would output [’San
Francisco’, 78, ['Los Angeles Lakers’, ’Golden State Warriors’]].

If the prompt asks for a special sorting of the list, make sure to output wrap the list in {{}}
and if doesn’t require any special sorting wrap it in [] like you normally would. So if the
prompt instead asked to list the names of all the NBA teams whose home stadium is within a
400 mile radius in alphabetical order, you would output [San Francisco, 78, {{Golden State
Warriors, Los Angeles Lakers} }].

Only output the final answer with no additional text or natural language. Give dates in
YYYY-MM-DD format, temperatures in celcius, prices in dollars, lengths in meters, area in
meters?, volume in m? and angles in degrees if the prompt doesn’t specify what format/units
to output the answer in.

Given a user provided question and action plan, as well as your previous actions and
observations, take your next action.

USER:

Question: {question}

Action Plan: {action_plan}

ASSISTANT:

{history_of_react_steps}

27

778

779

C.3 Action Plan Prompt (Critic Model)

You are an expert planner of tool calls. Your job is to critique the action plan of an assistant.
The following information is shown to the assistant in order to devise an action plan:
[Start of the message]

You are a helpful assistant with access to functions. Please use the tools to provide
information accurate up to current date and time: {current_date}.

FUNCTIONS: {func_spec}
Question: {question}

Given the question and the tools available to you above, please formulate an action plan to
answer the question in a bulleted list for each step.

Refrain from using any specific tool calls in your action plan, instead focus on the high-level
steps you would take to answer the question and the name of the tool you would use and how
you would use it. Refrain from trying to answer the question directly in the action plan.

[End of the message]

Given the set of functions and the question, please critique the action plan provided by the
assistant.

First, determine if the action plan is correct or incorrect. To do so, provide a reasoning and

then label the action plan as correct or incorrect. In order to determine if the action plan
needs revision, consider the following:

* Is the action plan reasonable given the set of functions available?
¢ Is the action plan clear and concise?
* Is the action plan missing any steps?
Please err on the side of giving the assistant the benefit of the doubt, and only critique the

action plan if it is clearly incorrect.

If the action plan is incorrect, provide a revised action plan that you believe would be correct.
Furthermore, your output should follow the format:

Reasoning: (your reasoning for the correctness or incorrectness of the action plan)

Label: (correct/incorrect)

Revised Action Plan: (your revised action plan or empty if no revision needed)

Here is the action plan provided by the assistant:

{action_plan}

Please provide your critique of the action plan.

.

28

780

781

782

C.4 ReAct Tool Call Prompt (Critic Model)

You are an expert judge of tool calls. Your job is to critique each of the ReAct steps of an
assistant.

The following information is shown to the assistant in order to devise a ReAct step.
[Start of the message]

You are a helpful assistant with access to functions. Use them if required. Please use the
tools to provide information accurate up to current date and time: {current_date}.

FUNCTIONS: {func_spec}
Please stick to the following format:

Thought: you should always think about what to do
Action: the action to take, should be one of {func_list}
Action Input: the input to the action

End Action

If you believe that you have obtained enough information (which can be judged from the
history observations) to answer the question, please call:

Thought: I have enough information to answer the question
Action: finish

Action Input: "answer": [your answer string]

End Action

Question: {question}
[End of the message]

Given the set of functions, question, action plan and history of past actions, critique the
Thought, Action, and Action Input step. Assume the action plan and history of past actions
are optimal. To assess the thought step, if the step is roughly reasonable and the action and
action input step are correlated with the thought step, then the thought step is correct. Please
give the assistant the benefit of the doubt and be lenient in your assessment.

To assess the action step, let’s assume that the Assistant cannot complete simple functionali-
ties such as simple arithmetic, converting units, or utilizing simple facts without the use of
tools. If the action specifies a reasonable function to use, then the action step is correct.

To assess the action input step, if the input is reasonable and the action is correct, then the
action input step is correct.

If any of the steps are incorrect, label them as incorrect in the Labels section.

For the Revised ReAct Step section, provide the correct step that the assistant should have
taken. If the assistant’s step is correct, provide the assistant’s step as the revised step. If the
assistant’s step is incorrect, provide the correct step that the assistant should have taken. As
a general rule of thumb, if your revised step is different from the assistant’s step, then the
assistant’s step is incorrect, and if your revised step is the same as the assistant’s step, then
the assistant’s step is correct.

As an important reminder, for your final answer (the finish action input), we want to make
sure the final answers/outputs in the finish action input are returned in the order that they

29

783

are given in a list format so we can verify them with an exact string match. For eg. if the
prompt asks for a city name, its temperature and a list of names of all the NBA teams whose
home stadium is within a 400 mile radius, you would output [’San Francisco’, 78, ['Los
Angeles Lakers’, ’Golden State Warriors’]]. If the prompt asks for a special sorting of the
list, make sure to output wrap the list in {{}} and if doesn’t require any special sorting
wrap it in [] like you normally would. So if the prompt instead asked to list the names
of all the NBA teams whose home stadium is within a 400 mile radius in alphabetical
order, you would output [San Francisco, 78, { { Golden State Warriors, Los Angeles Lakers} }].

Only output the final answer with no additional text or natural language or units. Give dates
in YYYY-MM-DD format, temperatures in Celcius, prices in dollars, lengths in meters,
area in meters?, volume in m3 and angles in degrees if the prompt doesn’t specify what
format/units to output the answer in.

As a reminder, you should not use an external information that is not provided in the prompt
or by a tool call. As a simple example, you may know a ticker symbol already for a company,
but you should not use it unless you have called the ticker_search or a similar function (e.g.
google_search, wiki_search, etc.) to retrieve that information.

Your output should follow the format:

[Start of format]

Reasoning: (your reasoning for the correctness or incorrectness of each step)

Labels: [(correct/incorrect), (correct/incorrect), (correct/incorrect)] (in the order of Thought,
Action, Action Input)

Revised ReAct Step:

Thought: (your revised thought or assistant’s thought if correct)

Action: (your revised action or assistant’s action if correct)

Action Input: (your revised action input or assistant’s action input if correct)
End Action

[End of format]

Here is the action plan:

{action_plan}

Here is the history of past actions. If there are no past actions yet, this will be empty:
{history }

Here is the latest ReAct step provided by the assistant:

Thought: {thought}

Action: {action}

Action Input: {action_input}

End Action

Observation: {observation }

Please provide your critique of the latest ReAct step provided by the assistant.

30

784 C.5 LLM Grading Prompt

7e5 C.5.1 Main Prompt

786

787 k

You are an expert test grader. You have been given a student answer (‘Student Answer:’) to
grade. You have also been the correct answer (‘Correct Answer:”) and the original question
(‘Question:’). Each correct answer is a list of strings.

{In-Context Examples}
The possible grades are

INCORRECT: ‘Student Answer:’ is different from ‘Correct Answer:’
* numbers are completely different
* lists are completely different

* ‘Question:’ asks for special sorting of a list but the list in ‘Student Answer:’ is sorted
differently than ‘Correct Answer:’

* strings are completely different or information present in the string is completely
different

CORRECT BUT BAD FORMATTING: ‘Student Answer:’ has the same info as ‘Correct
Answer:” but is formatted differently.

* ‘Student Answer:’ includes natural language or additional text

* numbers are formatted differently but they are close to one another (‘Student An-
swer:’ is within

lists are wrapped differently than the correct answer but contains the same informa-
tion and sorted the same way as ‘Correct Answer:’ if asked ‘Question:” asks for a
special sorting

Strings are the same but may be formatted differently

CORRECT: The student answer has the same info as ‘Correct Answer:’ and is also formatted
the same as ‘Correct Answer:’

e numbers are close to one another (‘Student Answer:’ is within 10% of the correct
answer)

* if ‘Question:’ asks for a special sorting of the list the *Student Answer:’ list is sort
the same as ‘Correct Answer:’

* lists are wrapped the same
* Strings are identical

Remember you are assuming the correct answer provided is correct, your job is is only to
compare the correct answer to the student answer and grade it based on the above criteria. Do
not try to determine the correct answer yourself. Make sure to include a reasoning and final
grade in the format:

Reasoning: (reasoning) Final Grade: { INCORRECT / CORRECT BUT BAD FORMAT-
TING / CORRECT) [ENDOFGRADE]

Now do this for the following user provided question, student answer and correct answer.

31

788

789

791

792

C.5.2 In-Context Examples (Ordering)

\

We want to make sure the values in the student answer are returned in the order that they are
asked in ‘Question:’.

For example, if ‘Question:” asks for a city name, its temperature and a list of names of all the
NBA teams whose home stadium is within a 400 mile radius, and ‘Correct Answer:’ is ['San
Francisco’, 78, [’Golden State Warriors’, *Los Angeles Lakers’]] we would want ‘Student
Answer:’ can be [’San Francisco’, 78, ['Los Angeles Lakers’, ’Golden State Warriors’]].

Examples:

Question: Find the name of the city known for its famous tourist attraction Alcatraz, also
give it’s current temperature and a list of names of all the NBA teams whose home stadium is
within a 400 mile radius

Correct Answer: [’San Francisco’, 78, [’Golden State Warriors’, ’Los Angeles Lakers’]
Student Answer: [’San Francisco’, 74, ['Los Angeles Lakers’, ’Golden State Warriors’]]
Reasoning: The Student Answer is correct because it identifies the same city , the
temperature is within 10% of the Correct Answer and the same team names are present in the
list.

Final Grade: CORRECT

Question: Find the name of the city known for its famous tourist attraction Alcatraz, also
give it’s current temperature and a list of names of all the NBA teams whose home stadium is
within a 400 mile radius

Correct Answer: [’San Francisco’, 78, [’Golden State Warriors’, ’Los Angeles Lakers’]
Student Answer: The city name is San Francisco, its temperature is 80 degrees and the Los
Angeles Lakers and the Golden State Warriors are two NBA teams whose home stadium is
within a 400 mile radius

Reasoning: Although the Student Answer is correct (identifies the same city , the temperature
is within 10% of the Correct Answer and the same team names are present), it’s not formatted
the same and contains extra text and natural language.

Final Grade: CORRECT BUT BAD FORMATTING

Question: Find the name of the city known for its famous tourist attraction Alcatraz, also
give it’s current temperature and a list of names of all the NBA teams whose home stadium is
within a 400 mile radius

Correct Answer: [’San Francisco’, 78, [’Golden State Warriors’, ’Los Angeles Lakers’]
Student Answer: [’San Francisco’, -15, ['Los Angeles Lakers’, ’Golden State Warriors’]]
Reasoning: The Student Answer is incorrect because although identifies the same city and
the same team names are present in the list, the temperature is well outside of 10% of the
Correct Answer.

Final Grade: INCORRECT

C.5.3 In-Context Examples (Sorting)

_

If ‘Question:’ asks for a special sorting of the list, make sure ‘Student Answer:’ is sorted the
same as ‘Correct Answer:’. So if ‘Question:’ instead asked to list the names of all the NBA
teams whose home stadium is within a 400 mile radius in alphabetical order, we would want
‘Student Answer:’ to contain [’San Francisco’, 78, [’Golden State Warriors’, ’Los Angeles
Lakers’]].

Examples:

32

793

Question: Find the name of the city known for its famous tourist attraction Alcatraz, also
give it’s current temperature and a list of names of all the NBA teams whose home stadium is
within a 400 mile radius in alphabetical order

Correct Answer: [’San Francisco’, 78, [’Golden State Warriors’, ’Los Angeles Lakers’]
Student Answer: ['SF’, 75, [’Golden State Warriors’, ‘Los Angeles Lakers’]]

Reasoning: The Student Answer is correct because it identifies the same city (SF is a
commonly known short form for San Francisco), the temperature is within 10% of the
Correct Answer and the same team names are present in the list and sorted the same given
the Question asks for a special sorting (alphabetical order).

Final Grade: CORRECT

Question: Find the name of the city known for its famous tourist attraction Alcatraz, also
give it’s current temperature and a list of names of all the NBA teams whose home stadium is
within a 400 mile radius in alphabetical order

Correct Answer: [’San Francisco’, 78, [’Golden State Warriors’, ’Los Angeles Lakers’]
Student Answer: The city name is San Francisco, its temperature is 80 degrees and the
Golden State Warriors and the Los Angeles Lakers are two NBA teams whose home stadium
is within a 400 mile radius (in alphabetical order)

Reasoning: Although the Student Answer is correct (identifies the same city , the temperature
is within 10% of the Correct Answer and the same team names are present in the same order),
it’s not formatted the same and contains extra text and natural language.

Final Grade: CORRECT BUT BAD FORMATTING

Question: Find the name of the city known for its famous tourist attraction Alcatraz, also
give it’s current temperature and a list of names of all the NBA teams whose home stadium is
within a 400 mile radius in alphabetical order

Correct Answer: [’San Francisco’, 78, [’Golden State Warriors’, ’Los Angeles Lakers’]
Student Answer: [’San Francisco’, 79, ['Los Angeles Lakers’, ’Golden State Warriors’]]
Reasoning: The Student Answer is incorrect because although it identifies the same city
and the temperature is within of 10% of the Correct Answer, the list of teams name is in a
differently ordered even though ‘Question:’ explicitly asks for a special sorting.

Final Grade: INCORRECT

33

794

795

796

797

798

800

801

802

803

804

D ToolComp Examples

D.1 Example Corrected Trajectory

Question: Suppose you have a 2inch x 2inch x 2inch box. How many of these boxes can
you fit into the biggest U-Haul truck (biggest truck as of 2024)?

Action Plan

1. Use the google_search tool to find the name of the biggest U-Haul truck and find its
dimensions.

2. Use python_interpreter to calculate the total number of boxes that would fit given the
dimensions.

3. Return the answer.

ReAct Step 1

Thought: I need to find the dimensions of the biggest U-Haul truck.
* Action: google_search
* Action Input: {"query": "biggest U-Haul truck 2024"}

* Observation: {(search results omitted for brevity)}

ReAct Step 2

* Thought: I now have the dimensions of the biggest U-Haul truck, so I can use Python to
calculate how many boxes can fit inside.

* Action: python_interpreter
* Action Input:

import math

box_length = 2
3 | box_width = 2
4 | box_height = 2

6 | truck_length = (26 * 12) + 5

7 | truck_width = (7 * 12) + 8

8 | truck_height = (8 * 12) + 3

9 |num_boxes = math.floor(truck_length // box_length) * \
10 math.floor (truck_width // box_width) =* \

T math.floor (truck_height // box_height)

2 |print (£ ’Total number of boxes: {num_boxes}’)

¢ Observation: {"result": "Total number of boxes: 356132", "error":
null}

g _/
ReAct Step 3

* Thought: I have the total number of boxes that can fit inside the truck, so I should return
that as the answer.

e Action: finish

e Action Input: {"answer": "|356132|"}

¢ Observation: 356132

34

805

806

807

808

809

810

D.2 Example Annotated Trajectory

Question: Using the 2023 birth-rate, death-rate, and population of Japan, assuming no one
leaves or enters, what will be the projected population in 10 years?

Action Plan

1. Use the python_interpreter tool to
calculate the population growth rate using
the birth-rate, death-rate, and population
of Japan.

2. Use the python_interpreter tool to
calculate the population in 10 years using
the population growth rate and the current
population of Japan.

3. Use the google_search tool to search
for the current birth-rate, death-rate, and
population of Japan.

4. ... (truncated since the model goes in cir-
cles)

(Label: X)

Human

1. Use the google_search tool to calculate
the population growth rate using the birth-
rate, death-rate, and population of Japan
in 2023.

2. Use the python_interpreter tool to
calculate the population in 10 years using
the population growth rate and the popula-
tion of Japan in 2023.

3. Use the finish action to return the final
answer.

ReAct Step 1

* Thought: I need to use the
google_search tool to calculate the pop-
ulation growth rate using the birth-rate,
death-rate, and population of Japan in 2023.
(Label: v)

* Action: google_search (Label: /)

* Action Input: { "query": "Japan
2023 population growth rate
using birth-rate, death-rate,
and population" } (Label: X)

* Observation:
[{"source": "nippon.com",
"date": "Mar 13, 2024",
"title": "Number of Births
in Japan Reaches New Low in
2023", "snippet": "In 2023,
Japan had more than twice as
many deaths as births, leading
to a natural population decline
(excluding migration) of over
800000.", "highlight": "had
more than twice as many deaths
as births"}, truncated]

Human

* Thought: N/A
¢ Action: N/A

e Action Input: { "query’: "Japan
2023 birth-rate per 1000’}

* Observation:
[{"source":
"en.wikipedia.org","date":
null,"title": "Demographics
of Japan",'"snippet": "6.6
births/1,000 population
(2023 est.) Death rate,
11.7 deaths/1,000 population
(2023 est.) Life expectancy,
84.83 years. 2022 male, 81
years.","highlight": "6.6
births/1,000 population"},
truncated]

35

811 ReAct Step 2

Cvo N

Model
* Thought: According to wikipedia the 2023

* Thought: I need to wuse the estimates for the birthrate 6.6 births/1000
google_search tool to calculate the population and 11.7 deaths/1000 popula-
population growth rate using the birth-rate, tion. I need to find the 2023 population for
death-rate, and population of Japan in 2023. Japan.

(Label: X) * Action: N/A
* Action: google_search (Label: /) « Action Input: { "query’: "Japan
e Action Input: { "query": "Japan 2023 population’’ }
2023 death-rate per 1000" } (Label: « Observation:
812 X) [{ "source": "statista.com",

* Observation: "date": "Jul 04, 2024",

[{"source": "title": "Japan: total

"data.worldbank.org", "date": population 2019-2029",

null, "title": '"Death rate, "snippet": "In 2023, the total

crude (per 1000 people) - population of Japan amounted

Japan", "snippet": '"Death rate, to around 124.62 million

crude (per 1000 people) - Japan inhabitants. See the figures

from The World Bank: Data.", for the population of South

"highlight": "Death rate | per Korea for ...", "highlight":

1000 | Japan" }, ... truncated] "124 .62 million inhabitants" },
truncated]

813 ReAct Step 3

¢ Action: N/A

* Thought: I need to use the python inter- .
¢ Action Input:

preter tool to calculate the population in 10
years using the population growth rate and _

the population of Japan in 2023. population = 124620000
(Label: /) birth_rate_per_thousand = 6.6

death_rate_per_thousand = 11.7

* Action: python_interpreter total_births_extrapolated

(Label: /) = birth_rate_per_thousand *
* Action Input: (population / 1000)

814 total_deaths_extrapolated
import numpy as np = death_rate_per_thousand *
population = 124352000 (population / 1000)
population_growth_rate = 0.0012 population_growth_rate =
population_in_10_years (total_births_extrapolated
= population * (1 + - total_deaths_extrapolated)
population_growth_rate)**10 / population
print (population_in_10_years) population_in_10_years
(Label: X) = population * (1 +

population_growth_rate)**10
print(population_in_10_years)

+ Observation: | 118408275.35965854 |

» Observation: | 125852307.84945872 |

36

815

816

ReAct Step 4

e Thought: I have enough information to
answer the question (Label: /)

e Action: finish (Label: /)

¢ Action Input:
"answer":

(Label: X)
+ Observation: | [“118, 408, 275 |

["118,408,275"]}

37

Human

* Thought: N/A
¢ Action: N/A

¢ Action Input:

"answer": ["118408275"]}

* Observation: | [“118408275"]

817

818
819

820

821

822
823

828

826

827
828

829
830

83

833
834

838

837

852

853
854

E Tools

In this appendix section, we provide a detail breakdown of each of the 11 tools, providing a description,
the parameters, an input example and a corresponding output example.

E.1 Date

Description: Returns the current date (e.g., January 1, 2024).

Input Example:

{3

Output Example:

{
"result": "Today is Friday, February s ",
||errorll: nn

Parameters:

(1

E.2 Calculator

Description: Calculates expressions including basic arithmetic and brackets.

Input Example:

{
"operation": "2%32-4+ +(1+2)+3+(1/2%3+3+(1+2))"

}

QOutput Example:

{
"errorn:lﬂu
"result": " .B"

Parameters:

C
{
"Input Name": "operation",
“Type": "Stringﬂ,
"Description": "Computes numerical expressions involving float
numbers and operators like +, -, *, /, ~.\""

38

g3 E.3 Current Weather

se4 Description: Retrieves current daily averages for temperature, rainfall, and hours of precipitation for
ges a specified city and country. Does not return historical data.

ges Input Example:

867
868 | {

869 "city_name": "London",
870 "country_code": "GB"
g7 |}

g73 Output Example:

874

875 | {

876 "error": "",

877 "result": [

878 {

879 "date": " -03- :00:00",

880 "temperature (F)": "47. ",

881 "total rain (mm)": "1. "

882 "total snowfall (mm)": "O.O0",

883 "precipitation hours (hours)": "4.0"
884 },

885 {

886 "date": " - - : : "

887 "temperature (F)": "48. ",

888 "total rain (mm)": "8.2",

889 "total snowfall (mm)": "O.O0",

890 "precipitation hours (hours)": "11.0"
891 },

892 {

893 "date": " -03- :00:00",

894 "temperature (F)": "47. ",

895 "total rain (mm)": "2. ",

896 "total smnowfall (mm)": "O0.0",

897 "precipitation hours (hours)": "4.0"
898 }

899]

80 |}

902 Parameters:

903

904 | [

905 {

906 "Input Name": "city_name",

907 "Type": "String",

908 "Description": "The name of the city."
909 },

910 {

91 "Input Name": "country_code",

912 "Type": "Two Alphabet -Number",

918 "Description": "The country code (ISO -2). The list can be
914 found here: https://en.wikipedia.org/wiki/ISO_ -on
915 }

85 |!

39

918 E.4 Historical Weather

919 Description: Retrieves daily averages for temperature and precipitation starting from the 1940s for a
920 given city. Note: 5-day data delay, meaning you cannot get current weather data for the last 5 days.

921 Input Example:

923 | {

924 "city_name": "London",

925 "country_code": "GB",

926 "start_date": " -03-09",
927 "end_date": " - - "

g8 |

930 Output Example:

932 | {

933 "error": "",

934 "result": [

935 {

936 "date": " - - : : ",

937 "temperature (F)": "48. ",

938 "total rain (mm)": "O0.4",

939 "total snowfall (mm)": "O.O0",

940 "precipitation hours C(hours)": "2.0"
941 },

942

943 {

944 "date": " - - : : ",

945 "temperature (F)": "43. ",

946 "total rain (mm)": "1. ",

947 "total snowfall (mm)": "O. ",
948 "precipitation hours (hours)": "3.0"
949 }

950 1

g |

953 Parameters:

954

955 | [

956 {

957 "Input Name": "city_name",

958 "Type": "String",

959 "Description": "The name of the city."

960 },

961 {

962 "Input Name": "country_code",

963 "Type": "Two Alphabet -Number",

964 "Description": "The country code (ISO -2). The list can be
965 found here https://en.wikipedia.org/wiki/ISO_ -2"
966 },

967 {

968 "Input Name": "start_date",

969 "Type": "Date Format",

970 "Description": "The start date in YYYY-MM-DD format"
978 },

972 {

973 "Input Name": "end_date",

974 "Type": "Date Format",

975 "Description": "The start date in YYYY-MM-DD format"'
976 }

g |

40

988

989
990

991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015

1819

1018

1019
1020

1021
1022
1023
1024
1026
1026
1027
1028
1029
1030

1632

E.5 Wiki Search

Description: Searches Wikipedia and returns a summary of the top pages matching the query.

Input Example:

{
"query": "covid-19",
"num_results": "1"

}

Output Example:

{ IlerrorII: IIII’
"result": [

{

"title": "COVID-19",

"summary": "Coronavirus disease (COVID-19) is a contagious
disease caused by the coronavirus SARS-CoV-2. The first
known case was identified in Wuhan, China, in December

Most scientists believe the SARS-CoV-2 virus entered into
human populations through natural zoonosis, similar to the
SARS-CoV-1 and MERS-CoV outbreaks, and consistent with other

pandemics in human history. Social and environmental
factors including climate change, natural ecosystem
destruction and wildlife trade increased the likelihood of
such zoonotic spillover. The disease quickly spread
worldwide, resulting in the COVID- pandemic. The symptoms
of COVID- are variable but often include fever, fatigue,
cough, breathing difficulties, loss of smell, and loss of
taste. Symptoms may begin one to fourteen days after
exposure to the virus. At least a third of people who are
infected do not develop noticeable symptoms. O0f those who
develop symptoms noticeable enough to be classified as
patients, most (81%) develop mild to moderate symptoms (up
to mild pneumonia), ... truncated"
}
]
}
Parameters:
[
{
"Input Name": "query",
IlTyPe ll: "String",
"Description": "The search query."
} b
{
"Input Name": "num_results (Optional)",
"Type": "Integer",
"Description": "Number of search results to return."
}
]

41

1033

1034

1035

1036
1037

1038
1039

1649

1042

1043
1044

1045
1046
1047
1048
1048
1050
105%
1052
1058
1054
1055
1056
1057
1058
1058
1060
106%
1062
1068
1064
1065
1066
1067
1068
1068
1070
107%
1072

1672

1075

1076
1077

1078
1079
1080
108%
1082
1083
1084
1085
1086
1087
1088
1089
1090
109%
1092
1098

1638

E.6 Intraday Stock Info

Description: Provides intraday time series data for specified equities.

Input Example:
{
"symbol": "AAPL",
"interval": "60min"
}
Output Example:
{
IlerroI.Il: IIII’
"result": [
{

"timestamp": " -07-
"open_market_value": "
"high_market_value": "
"low_market_value": "
"close_market_value":
Ilvolume n . n n

"timestamp": " -07-
"open_market_value": "
"high_market_value": "
"low_market_value": "
"close_market_value": "
Ilvolume n . n n

"timestamp": " -07-
"open_market_value": "
"high_market_value": "
"low_market_value": "
"close_market_value": "

"volume": " "
}
]
}
Parameters:
[
{
"Input Name": "symbol",
"Type": "String",
"Description": "The ticker symbol of the equity."
} 2
{
"Input Name": "interval",
"Type": "String",
"Description": "Data point interval (Imin, 5min, etc.)."
} E
{
"Input Name": "month (optiomnal)",
"Type": "String",
"Description": "You can use the month parameter (in YYYY-MM format
) to query a specific month in history."
}
]

42

1096

1097

1098

1099
1100

1101
1102

1162

1105

1106
1107

1108
1109
1110
1114
1112
1113
1114
1118
1116
1117
1118
1119
1120
112%
1122
1123
1124
1125
1126
1127
1128
1129
1130
113%
1132
1133
1134
1135

1139

1138

1139
1140

1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151

1183

E.7 Daily Stock Info

Description: Returns daily time series data for specified equities.

Input Example:
{
"symbol": "AAPL",
"number_of_days":
}
Output Example:
{
IlerrorII: IIII’
"result": [
{
"timestamp": " -07-16",
"open_market_value": " ",
"high_market_value": " ",
"low_market_value": " ",
"close_market_value": " ",
“VOlume n R n n
} b
{
"timestamp": " - - ",
"open_market_value": " ",
"high_market_value": " ",
"low_market_value": " ",
"close_market_value": " ",
n Volume n R n n
} k]
{
"timestamp": " -07-10",
"open_market_value": " ",
"high_market_value": " ",
"low_market_value": " ",
"close_market_value": " ",
n Volume n . n n
}
1
}
Parameters:
[
{
"Input Name": "symbol",
"Type": "String",
"Description": "The ticker symbol of the equity."
} k]
{
"Input Name": "number_of_days",
"Type": "Integer",
"Description": "The number of days before today to return data for
n
¥
]

43

1154

1155

1156
1157
1158
1159

1189

1162
1163
1164
1165
1166
1167
1168
1168
1170
117%
1172
1178
1174
1175
1176
177
1178
1178
1180
118%
1182
1188
1184
1185
1186
1187
1188
1188
1190
119%
1192
1198
1194
1195
1196
1197
1198
1198
1200
120%

1263

1204
1205
1206
1207
1208
1209
1210
1211
1212

1312

E.8 Stock Symbol Search

Description: Searches for stock tickers based on provided keywords.

Input Example:

{
"keywords": "tesla"

}

Output Example:

{
"errorn:lﬂu
"result": [
{

"symbol": "TSLA",
"name": "Tesla Inc",
thpeﬂ: "Equityﬂ,
"region": "United States",
"market_open": " : ",
"market_close": " : ",
"timezone": "UTC- ",
"currency": "USD",
"match_score": "O. "

"symbol": "TLO.DEX",
"name": "Tesla Inc",
"type": "Equity",
"region": "XETRA",
"market_open": " : ",
"market_close": " : "
"timezone": "UTC+02",
"currency": "EUR",
"match_score": "O. "

"symbol": "TLOI1.FRK",

"name": "TESLA INC. CDR DL- ",
thpeﬂ: HEquity",

"region": "Frankfurt",
"market_open": " : ",
"market_close": " : ",
"timezone": "UTC+ ",
"currency": "EUR",
"match_score": "O. "

Parameters:

{
"Input Name": "keywords",
"Type": "String",
"Description": "Keywords to search,
retrieve the ticker symbol for"

>

e.g.,

company name,

to

44

1215 E.9 Python

1216 Description: Runs a python interpreter on a code snippet.

1217 Input Example:

1218

1219 | {
1220 "code": "print(4 + 5)"
133 |}

1223 QOutput Example:

1224

1225 | {

1226 "result": "9",
1227 "error": ""
1338 |}

1230 Parameters:

1231

1232 | [

1233 {

1234 "Input Name": "code",

1235 "Type": "String",

1236 "Description": "The code snippet that we want to run on a python
1237 interpreter."

1238 }

13 |

1241 E.10 Wolfram Alpha

1242 Description: Accesses Wolfram Alpha to generate outputs from the Knowledgebase for computations
1243 and data queries. Wolfram Alpha excels at complex number-crunching, computation and calculations.

1244 Input Example:

1245

1246 | {

1247 "query": "what is Ronaldo’s age?"

1248 |

1250 Output Example:

1251

1252 | {

1253 "error": "",

1254 "result": " years months days"
1258 |t

1257 Parameters:

1258

1259 | [

1260 {

1261 "Input Name": "query",

1262 "Type": "String",

1263 "Description": "The query to perform computations/searches omn.
1264 When unsure of your query search, try searching yourself on
1265 the website!"

1266 }

1363 |]

45

1269

1270
1271

1272

1273
1274

1275
1276

1378

1279

1280
1281

1282
1283
1284
1285
1286
1287
1288
1289
1290
1299
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1308
1304
1305
1306
1307
1308
1309
1310
1314
1312
1318

1314

1316

1317
1318

1319
1320
13214
1322
1328
1324
1325
1326
1320
1328
1329

133

E.11 Google Search

Description: Performs a Google search and returns snippet results, without linked page details
Google is often used for popular culture, location-awareness and crowdsourcing.

Input Example:
{
"query": "What is the capital of France?",
"location": "Paris"
}
Output Example:
{
Ilerrorll: IIII,
"result": [
{
"source": "en.wikipedia.org",
"date": "None",
"title": "Paris",
"snippet": "Paris is the capital and largest city of France.
With an official estimated population of 2, s residents
as of January in an area of more than ...",
"highlight": "Paris"
} b
{
"source": "home.adelphi.edu",
"date": "None",
"title": "Paris facts: the capital of France in history",
"snippet": "Paris facts: Paris, the capital of France. Paris is
the capital of France, the largest country of Europe with
km2 (millions inhabitants).",
"highlight": "Paris"
1,
{
"source": "britannica.com",
"date": "None",
"title": "France | History, Maps, Flag, Population, Cities,
Capital, & ...",
"snippet": "Get a special academic rate on Britannica Premium.

The capital and by far the most important city of France is
Paris, one of the world’s preeminent cultural ...",

"highlight": "Paris"
} E
]
}
Parameters:
[
{
"Input Name": "query",
"Type": "String",
"Description": "The search query."
} 2
{
"Input Name": "location (Optional)",
"Type": "String",
"Description": "The geographical location for the search (optional
) "
}
]

46

	Introduction
	Contributions and Key Takeaways

	Related Works
	ToolComp
	Tools
	ReAct Format
	Prompt Creation
	Chat vs. Enterprise Use Cases
	Label Creation
	Quality Control

	ToolComp Evaluations
	Evaluation Metric
	Final Answer Evaluations
	LLM-as-Judge Evaluations
	Intermediate Reasoning vs. Final Answer

	Limitations and Biases
	Methodological Limitations
	Dataset Construction Biases

	Ethics Statement
	Reproducibility
	ToolComp Extended Evaluations
	Exact Match
	Final Answer Failure Analysis
	Intermediate Reasoning Failure Analysis
	ReAct-Step-Error-Based Failure Trends in Models
	Position-Based Error Trends in Models

	ToolComp Details
	Prompt Creation Details
	In Context Example
	Seed Prompt
	Benchmark Metadata

	Tool-Use Prompts
	Action Plan Prompt (Policy Model)
	ReAct Tool Call Prompt (Policy Model)
	Action Plan Prompt (Critic Model)
	ReAct Tool Call Prompt (Critic Model)
	LLM Grading Prompt
	Main Prompt
	In-Context Examples (Ordering)
	In-Context Examples (Sorting)

	ToolComp Examples
	Example Corrected Trajectory
	Example Annotated Trajectory

	Tools
	Date
	Calculator
	Current Weather
	Historical Weather
	Wiki Search
	Intraday Stock Info
	Daily Stock Info
	Stock Symbol Search
	Python
	Wolfram Alpha
	Google Search

