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Abstract

Despite recent advances in Al the development of systems capable of executing
complex, multi-step reasoning tasks involving multiple tools remains a significant
challenge. Current benchmarks fall short in capturing the real-world complex-
ity of tool-use reasoning, where verifying the correctness of not only the final
answer but also the intermediate steps is important for evaluation, development,
and identifying failures during inference time. To bridge this gap, we introduce
ToolComp, a comprehensive benchmark designed to evaluate multi-step tool-use
reasoning. ToolComp is developed through a collaboration between models and
human annotators, featuring human-edited/verified prompts, final answers, and
process supervision labels, allowing for the evaluation of both final outcomes and
intermediate reasoning. Evaluation across six different model families and 20
total models demonstrates the challenging nature of our dataset, with an average
accuracy of 55% among the frontier models.

1 Introduction

Recent advancements in large language models (LLMs) have demonstrated remarkable progress in a
range of natural language processing tasks. These models have achieved state-of-the-art performance
across diverse benchmarks, including question answering, summarization, and reasoning tasks. In
order to further increase the usefulness of LLMs, a growing area of research is centered around the
development of agentic capabilities, particularly their ability to autonomously interact with external
tools to solve complex, multi-step tasks as well as to interact with human systems such as the web or
mobile devices.

However, evaluating the effectiveness of these tool-use capabilities remains a pressing challenge.
While there have been notable efforts in developing benchmarks for tool-use capability, these often
assess isolated instances of tool use, focusing on whether the model can invoke the correct tool
at the right time (Huang et al.| 2024; [Zhuang et al., 2023} [Peng et al., 2021). Additionally, while
benchmarks for multi-step tool usage exist, most focus only on scoring the correctness of the final
answer (Mialon et al.| |2023)), despite that the complex nature of multi-step reasoning often requires
the evaluation for partial correctness or step-wise correctness of the reasoning trajectories. This can
be valuable for both understanding model failure modes and developing systems that can improve
upon these intermediate reasoning flaws.

To address these shortcomings, we introduce ToolComp, a benchmark comprising 493 complex,
human-verified prompts that require language models to chain together multiple tool calls, accom-
panied by human-edited step-wise and final answers. By demanding intricate tool interactions and

'Code and data is publicly available. A few data examples are shown in the supplementary materials.

Submitted to Workshop on Bridging Language, Agent, and World Models for Reasoning and Planning @
NeurIPS 2025
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providing human verification, ToolComp offers a rigorous assessment of a model’s ability to perform
complex, multi-step reasoning and tool use. We evaluate the current landscape of state-of-the-art
models on their ability to chain together tool calls to reach the final answer, as well as their step-wise
reasoning ability.

1.1 Contributions and Key Takeaways
Our key contributions and takeaways are summarized as follows:

¢ Introduction of ToolComp We introduce ToolComp, a multi-tool reasoning and process
supervision benchmark with 493 human-edited/verified prompts and final answers, designed
to evaluate a model’s ability to perform multi-step tool-use tasks (Section [3).

* Step-by-Step Process Annotations ToolComp includes 1716 detailed per-step supervision
labels, enabling a comprehensive assessment of a model’s intermediate reasoning when
performing complex, multi-step tool-use tasks (Section [3).

» Assessment of State-of-the-Art Models We evaluate 20 models across 6 different model
families on their ability to perform complex multi-step tool-use tasks as well as their
intermediate reasoning ability. We find that GPT-5 has the best final answer performance,
achieving 79.81% against human-verified final answers, and Gemini 2.5 Pro has the best
performance against process supervision labels, achieving 83.42%. (Sectiondand Section

2 Related Works

Benchmarks for Complex Tool Use Planning With rising interest in tool-augmented LLMs
(Schick et al., 2023 [Patil et al., [2023}; Qin et al., [2023)), several benchmarks have been introduced
to assess their abilities. Earlier benchmarks were designed to assess a model’s ability to do proper
retrieval, execution, and extraction of one tool call for specific tasks such as general question
answering (Yang et al.,|2018; Joshi et al., 2017), fact verification (Thorne et al., 2018]), or answering
temporal queries (Chen et al., [2021}; [Kasai et al.| 2024} Zhang & Choi, 2021; |Dhingra et al.| [2022; Vu
et al.| 2023)). However, these benchmarks fail to assess a model’s ability to plan and chain together
multiple tool calls to answer more complex queries. More recent benchmarks aimed at evaluating
multiple tool calls are often placed within or dependent on state-full systems (such as a code-base
and/or a dynamic database) (Yan et al., [2024; Jimenez et al., 2024} [Liu et al., 2023). Although
these types of benchmarks assess a language model’s ability to chain together multiple tool calls,
the evaluation may penalize general-purpose language models that are not familiar with the given
environments. Other benchmarks primarily rely on state-based evaluations, where the final state
of the system is assessed against the desired state (Li et al., [2023} |Peng et al.| 2021)), or win-rates
against another reference state-of-the-art model (Qin et al.| 2023)), both of which lack the rigour of
human-verified ground truth final answers. Closest to our work, the GAIA benchmark is a collection
of complex tool-use queries that require multi-step tool-use reasoning and associated ground-truth
answers (Mialon et al.,[2023)). Crucially, it does not contain step-wise labels, which can be important
for identifying where an error occurred and providing precise feedback. Additionally, a significant
portion of GAIA requires specialized capabilities such as web browsing, multi-modality, and diverse
file-type reading. In our work, we focus on text-only tasks in order to disentangle specialized
capabilities and multi-step reasoning, allowing us to focus on the latter.

Process Reward Models Recent work has shown the power of utilizing process supervision
signals, which are granular signals on the step-wise correctness of a solution, as opposed to outcome
supervision signals, which are broad signals on the correctness of the entire solution. Utilizing
these signals, Lightman et al.|(2023)) and Wang et al.| (2024a) have shown dramatic improvements in
performance in ranking solutions to mathematical reasoning tasks and using these signals to further
improve performance in traditional RLHF algorithms such as Proximal Policy Optimization (PPO)
(Schulman et al., [2017).

In this work, through a hybrid human-AI annotation workflow, we generate per-step process su-
pervision labels, which uniquely enable us to rigorously evaluate a model’s intermediate reasoning
capability. Table[I] provides a comparative overview of popular tool-use benchmarks, including our
work, ToolComp.
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Table 1: The contributions and metadata of popular benchmarks in Tool Use. Our work, ToolComp,
is shown in the first column. From left to right, we include work from Mialon et al.|(2023)), Yan et al.
(2024), Qin et al.| (2023)), |Li et al.| (2023)),and | Xu et al.[(2023). * Although 2 of the 8 tools are not
evaluated by simply matching a verified final answer, the remaining 6 have verified final answers.

Resource ToolComp GAIA BFCL ToolBench API-Bank ToolBench
Real-World API Calls
Multi-Tools Scenario X X
Multi-Step Reasoning
Step-Wise Labels X X X X X
Verified Final Answer X X X *
Number of Tools 11 23 3 3451 53 8

3 ToolComp

3.1 Tools

For the creation of this benchmark and evaluation framework, we support 11 tools: Date, Current
Weather, Historical Weather (Zippenfenig| 2024), Calculator, Wiki Search (Majlis, |[2017), Google
Search (SerpApil 2024), Wolfram Alpha (Wolfram Research, [2024), Intra-day Stock Info, Daily
Stock Info, Stock Symbol Search (AlphaVantage)), and Python. There were several considerations
when choosing these set of tools, namely, we wanted to cover a broad range of use cases from fact
retrieval to financial assistant, have some overlap in use cases to encourage various valid trajectories,
ensure the tools are general enough to not require specialized knowledge for LLMs to use, and allow
for interesting interactions between tools. A detailed breakdown of each tool, including descriptions,
parameters, input examples, and output examples are available in Appendix [E]

Action Plan Step 1 Step N
Model Human Corrected \“ {'/ Model Human Corrected
Model ; | :
Thought + — : : Thought » — Thought |
Acton X — Action v | Action v —
Action Plan Human Corrected ; e e — !
X : Action Input ¢ . Action Input v/ | : Action Input v .
— Action Plan -1 1

Tool Observation Tool Observation | ‘ Final Answer Final Answer

Figure 1: An example annotation path for collecting data that provides tool-call trajectories with
human verified-final answers along with step-by-step process supervision labels. Each model gener-
ated step (Action Plan and ReAct steps) are first labelled as correct or incorrect. For the components
labelled incorrect, a rewrite is made to correct the corresponding component. The annotations and
rewrites are made by human annotators for the benchmark. A full annotated trajectory example is

available in Appendix

3.2 ReAct Format

We chose the ReAct format as it is frequently used for tool use and agentic workflows (Wang et al.,
2024bj |[Mekala et al.| 2024} |[Zhuang et al.,|2023). The ReAct format combines reasoning and tool
calls by prompting the model to first generate a thought, which contains the rationale behind the
following tool call action (Yao et al.l 2023)). The structured nature of the ReAct format into a thought,
action, action input, and observation allows us to collect granular signals at each sub-step, and the
relative simplicity of the ReAct format makes it easier to operationalize for annotations.

3.3 Prompt Creation

In developing the prompts for this dataset, there are two main criteria we desire each prompt to satisfy:
1) the solution to the prompt contains a chain of dependent tool calls to answer and 2) the final answer
to the prompt can be programmatically verified. To achieve this, we generate a set of candidate
prompts through few-shot prompting which are then refined and validated by human annotators.
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The overall process includes 1) manually developing in-context (IC) examples, 2) generating initial
prompts, 3) an iterative process of filtering prompts, adding filtered prompts as negative IC examples,
and regenerating more prompts, and 4) human refinement. These steps are described in more detail in

Appendix

3.4 Chat vs. Enterprise Use Cases

In creating the benchmark, we developed two subsets of prompts, coined ToolComp-Enterprise
and ToolComp-Chat. ToolComp-Enterprise allows the use of 11 tools and aims to emulate settings
in which LLM agents must compose a larger number of expressive APIs together correctly, such
as in enterprise settings. The second subset, ToolComp-Chat, is designed to test general purpose
chatbots with the minimally sufficient set of tools for information retrieval and processing tasks,
namely Google Search and Python. We chose only google search and python execution as these are
standard tools found in major chat-bot providers. We only allow the respective tools for each subset
during prompt generation, labeling, and evaluation. ToolComp-Enterprise contains 296 examples and
ToolComp-Chat contains 197 examples.

3.5 Label Creation

To create the process supervision labels as well as the final answer for each prompt, we utilize a
hybrid human-AlI approach, where the language model and human annotators use the same tools to
collaborate to get to the final answer. We start by prompting the Policy Model LLM to outline a plan,
called Action Plan, on which tools to call and in what order using the prompt in[C.1] We have human
annotators validate/modify the Action Plan, which is then appended to the sequence before using
the LLM to formulate tool calls. We then use the LLM to call tools in the ReAct format, where the
specific prompt can be found in[C.2]

We asked the annotators to rate if a step is Correct (i.e., the step is a reasonable action towards
achieving the final answer) or Incorrect (i.e., the step is nonsensical, incorrect, or is not a reasonable
action towards acheiving the final answer). All components of the ReAct Step (Thought, Action,
Action Input) must be marked as Correct or Incorrect by the annotator. If the annotator marks a
step as Correct, the model is allowed to proceed further and generate the next step. If the annotator
deems a step as Incorrect, they must modify the step to make it correct. Once corrected, the model is
then prompted to advance to the next step with the human-corrected step as part of its context. This
is repeated until the Finish Action is chosen by the LLM and marked as Correct by the annotator
or until the annotator corrects an Action step to ‘Finish’ because we have enough information to
answer the question. The overall flow is shown in Figure [l An example golden trajectory is
available in Appendix [D.T]and an example annotated trajectory is available in Appendix [D.2] We use
FireFunction-V1 as the Policy Model LLM (at the time, this was the best open-source tool-use LLM)
and humans as the annotators (Fireworks, 2024).

With this process, we retrieve, per task, a valid step-by-step chain of tool calls that successfully
gets to the final answer along with step-wise correct/incorrect labels and associated rewrites. The
correct/incorrect labels and the associated rewrites allow us to assess intermediate reasoning through
LLM-as-judge evaluations (described in Section [4.3).

3.6 Quality Control

To ensure the highest quality of ToolComp, we conduct a thorough manual inspection of all examples.
Any data samples with ambiguous prompts, erroneous process supervision labels, or incorrect final
answers are redone. After the initial creation of the benchmark, the authors collaborated with three
trusted annotators to perform a final re-review of all samples and make any necessary corrections.

As a final quality control step, we evaluate the entire benchmark using GPT-40 (May 2024), GPT-4
Turbo, Claude 3.5 Sonnet, and Llama 3.1 405b (OpenAl et al., 2024} |Dubey et al., 2024; |Anthropic).
We identify the set of data samples where all models’ answers differed from the ground truth final
answers. We then repeated the refinement process on these samples, as they represented the most
challenging and/or potentially mislabeled data points. This iterative approach yielded the final version
of ToolComp.
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4 ToolComp Evaluations

4.1 Evaluation Metric

We have two metrics to evaluate the quality or the correctness of a model’s final answers: LLM
Grading and Exact Match. For the final answer evaluations in this section (Table [2)), we use LLM
Grading since it rewards correct answers without penalizing minor formatting issues. Our Exact
Match evaluation methodology and the corresponding results are shown in Appendix[A.1]

LLM Grading By using LLM grading against ground truth answers we opt to be charitable to exact
formatting and focus on assessing the tool use capabilities of the model. We intentionally choose not
to focus on final answer formatting given that (1) there are existing benchmarks that assess formatting
ability (e.g. FOFO (Xia et al.,[2024)) and (2) our final answers are quite complex, containing multiple
elements, lists which may or may not be sorted, and dictionaries. This approach prompts an LLM
Judge to look at the prompt, the ground truth answer, and the model’s answer and asks the model to
classify it as Incorrect, Correct, or Correct with Bad Formatting. We use GPT-4 Turbo as the de-facto
judge for all of our models (OpenAlI et al.l 2024). The prompt used is shown in Appendix [C.5] We
consider both Correct and Correct with Bad Formatting as a win (accurate) and Incorrect as a loss
(inaccurate).

4.2 Final Answer Evaluations

Table 2: Accuracy and the 95% Cls of all selected models using the final answer and scored using
an LLM judge (Dubey et al., 2024} OpenAl et al., [2024; |Gemini et al., [2024; |Anthropic; |[Mistral;
Cohere). We combined the results of each subset to give an overall score for the entire benchmark.
Exact Match results are reported in Appendix [A.T]but the rankings do not significantly differ.

Model Family Model Name Total (%) Chat (%) Enterprise (%)

GPT-5 79.81 £5.00 76.92 +591 81.75 £4.40

03 7829 +£5.12 76.14 £5.95 79.72 + 4.57

OpenAl ol 66.25+5.92 60.41 £+ 6.82 70.14 £ 5.32

P GPT-40 (Aug 2024) 58.68 =4.39 56.85 + 6.92 59.93 £+ 5.67

GPT-4 45.89 +4.43 3788 £6.78 51.39 £ 5.77

GPT-40 Mini 44.03 +-4.41 32.83 +6.54 51.74 £ 5.77

Claude 4.1 Opus 75.85+530 76.14 595 75.67 - 4.88

Anthropic Claude 4 Sonnet 75.65 +4.39 74.61 £6.91 76.35 £+ 5.67

p! Claude 3.5 Sonnet 58.03 £4.39 56.06 + 691 59.38 + 5.67

Claude 3 Opus 51.03 =4.44 48.49 £+ 6.96 52.78 &£ 5.77

Claude 3 Sonnet 4856 +-4.44 404 4+ 6.84 54.17 +5.78

Gemini 2.5 Pro 77.07 £521 77.15+5.86 77.02 £ 4.79

Google Gemini 1.5 Pro (Aug 2024) 56.61 £4.41 51.27 +6.98 60.28 £ 5.66

Gemini 1.5 Pro (May 2024) 38.43 +4.34 3550 4+ 6.57 40.42 £+ 5.68

Mistral Mistral Large 2 46.30 £4.43 404+ 6.84 50.35 £5.78

Llama 4 Scout 17B Instruct 61.64 +4.44 61.42 +£6.79 61.82 +£5.53

Met Llama 3.1 405B Instruct 46.19 +=4.44 40.10 = 6.84 50.35 £ 5.78

e Llama 3.1 70B Instruct 3574 +£427 3350+£659  37.23 +5.60

Llama 3.1 8B Instruct 12.81 £2.98 6.090 & 3.34 17.42 +4.39

Cohere Command R+ 26.13 £3.91 20.20 £+ 5.59 30.21 £5.3
Average 55.46 51.10 56.94

The overall scores of the various state-of-the-art tool-use models are shown in Table 2l We combine
ToolComp-Chat and ToolComp Enterprise subsets to get an overall score and 95% confidence-
intervals (Cls) for the entire benchmark. We use native function calling for all the models and we
allow each model to retry up to 3 times if it fails to output a final answer. This is determined by
whether there is a parse-able JSON object in the final output with the key "final_answer". To ensure
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Table 3: Accuracy and the 95% CIs (third column) of all of our models on the process supervision
labels in ToolComp. We evaluate the model’s effectiveness as a pairwise judge in selecting the
human-corrected answer versus the model-generated incorrect answer. We show judge accuracy
using the ReAct steps (fourth column) and the Action Plan (fifth column).

Model Family Model Name Total (%) ReAct (%) Action Plan (%)

GPT-5 78.64 +1.93 77.08 +2.25 82.96 + 3.53

03 75.58 2196 72.56 +2.32 83.95 + 3.49

OpenAl ol 7692 +1.89 78.15+2.22 73.51 4+ 3.55

P GPT-4o (Aug 2024) 72.61 =211 72.84 +2.46 71.98 +4.13

GPT-40 Mini 63.02 +2.28 64.27 +2.64 59.56 4+ 4.51

GPT4 60.02 £2.32 5587 +2.74 71.54 £ 4.15

Claude 4.1 Opus 82.31 £2.19 80.25 +2.53 88.02 + 4.36

Anthropic Claude 4 Sonnet 80.06 +=2.23 84.50 £+ 2.58 78.47 + 4.44

P Claude 3.5 Sonnet 66.46 +£2.23 67.74 +2.58 62.97 + 4.44

Claude 3 Opus 64.28 +2.27 64.55 +2.64 63.52 +4.42

Claude 3 Sonnet 61.10 231 6293 +2.67 56.04 + 4.56

Gemini 2.5 Pro 8342 +2.12 80.924+2.23 90.32 +4.31

Google Gemini 1.5 Pro (Aug 2024) 69.11 +£2.19 68.48 +2.56 70.88 +4.17

Gemini 1.5 Pro (May 2024) 67.89 £2.21 67.72 +2.58 68.35 +4.27

Mistral Mistral Large 2 72.67 £2.11 73.16 +£245 7132 £ 4.16

Llama 4 Scout 17B Instruct 75.45 £+£2.13 76.23 +£2.42 73.30 £+ 4.37

Met Llama 3.1 405B Instruct 71.62 +2.13 73.87 +£2.42 65.39 £+ 4.37

cta Llama 3.1 70B Instruct 70.75 £2.15 71.33 +£2.50 69.12 + 4.25

Llama 3.1 8B Instruct 57.63 =234 59.60 £+ 2.71 52.20 4 4.56

Cohere Command R+ 61.31 230 6491 +2.63 51.32 +4.59
Average 70.64 70.85 70.32

scores are not indicative of tool or endpoint failures due to rate limiting, we use verbose logging to
log all failures and retry any prompt where a tool or model outputs failed due to rate/load limits. In
addition, we run error analysis on the types of failures for each model. A description of the error
category taxonomy and the breakdown of failure modes for each model can be found in Appendix
A2

We also show exact match evaluation numbers in Table f] of Appendix [A.T]to ensure that our LLM
Judge (OpenATl’s ol) isn’t biased in favor of outputs from the same model family. Upon inspection of
the discrepancies (i.e., examples marked correct by the LLM judge but incorrect under exact match),
we find that they are all due to issues with the model’s formatting of the final answer despite getting
to the correct answer.

4.3 LLM-as-Judge Evaluations

We further evaluate these models using our process supervision labels, aiming to assess each model’s
effectiveness as a pairwise judge in selecting the human-corrected step over the step generated by the
original policy used during annotation. To mitigate position bias, we swap the order of the human-
corrected and model-generated steps and conduct two separate predictions for each arrangement.
Additionally, models are permitted to indicate a tie. If a model designates a tie at least once, or
consistently predicts the same position (before and after swapping) for a given data sample, we
classify the outcome as a tie. Mirroring the methodology used in RewardBench (Lambert et al.
(2024)), we score losses as 0, ties as 0.5, and wins as 1. We show the results below in TableE}

4.4 Intermediate Reasoning vs. Final Answer

Figure [2] shows the correlation between a model’s intermediate reasoning performance and final
answer accuracy based on the multi-step tool-use tasks in ToolComp. The standard Pearson correlation
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coefficient is 7 = 0.83 with a statistical p-value of 0.000005, which makes the correlation statistically
significant under a significance level of 0.05 (Freedman et al.,[2007)). Intuitively, this suggests that
with stronger step-wise performance as assessed by our LLM-as-judge evaluations, we can expect an
increased likelihood of reaching the correct final answer. However, the moderate magnitude of the
correlation value could be due to additional signals captured by the step-wise reasoning evaluations
that are not captured by evaluating final answers. Work done by Havrilla et al.|(2024) similarly
suggests that there is complementary and non-overlapping information in step-wise and final answer
refinement, further highlighting the importance of assessing intermediate reasoning.
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Figure 2: Comparison of step-wise reasoning accuracy (x-axis) and final answer accuracy (y-axis) on
ToolComp across 6 different model families.

5 Limitations and Biases

5.1 Methodological Limitations

Limited Tool Scope This work focuses on a restricted set of tools primarily designed for information
retrieval and data processing. In contrast, many state-of-the-art systems employ specialized models
for diverse tasks such as image generation, translation, and complex reasoning. This limitation raises
important questions about how process supervision could scale to more nuanced capabilities when
integrating with other specialized models and broader tool ecosystems.

5.2 Dataset Construction Biases

Human Preference Bias in Step Correction During the step correction process, human annotators
naturally gravitated toward tools that were more intuitive or convenient to use. This preference created
a systematic skew in the Step-Wise Reasoning data, with certain tools becoming overrepresented.
We deliberately preserved this bias as it reflects authentic human (and likely model) tool selection
patterns, prioritizing convenience and practical usability over uniform tool distribution.
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Programmatic Verification Constraints Each ToolComp prompt was engineered to have an
unambiguous, programmatically verifiable ground truth answer. This design requirement necessitated
somewhat artificial output formats that strictly conform to automated evaluation criteria. While this
constraint ensures reliable evaluation metrics, it may not capture the natural variability and ambiguity
present in real-world task specifications.

Compositional Focus Limitations Given ToolComp’s primary objective of evaluating tool compo-
sition abilities, the benchmark systematically excludes several categories of prompts: tasks requiring
no tool usage; tasks falling outside the scope of provided tools; and tasks requiring clarifying ques-
tions or iterative dialogue. These exclusions ensure focused evaluation of compositional reasoning but
limit the dataset’s coverage of broader real-world use cases where tool selection and usage patterns
may differ significantly.

Generator Model Bias The use of Firefunction-v1 as the base model for generating initial trajec-
tories introduces potential systematic biases into the dataset. This model’s inherent preferences for
certain tools, input formats, or reasoning patterns may propagate through the human annotation pro-
cess, potentially skewing the final dataset distribution in ways that reflect the base model’s limitations
rather than optimal tool usage patterns.

6 Ethics Statement

We ensure all prompts in this dataset do not contain any harmful or sensitive material by requiring
annotators to flag any such prompts. The authors of this paper have also manually inspected all the
prompts and tool calls for harmful content. In addition, we applied best practices for code execution,
ensuring that all the code execution is done in a sand-boxed environment for any past and/or future
benchmark evaluations. We also ensured that all tools used have a permissive license for research
purposes, and we plan to open-source both the code for running evaluations and the full benchmark
dataset.

7 Reproducibility

For the creation of the benchmark, we detail the exact process by which we create the dataset in
Section[3 We also detail the exact evaluation method used to evaluate each model in Sectiondl and
Appendix We have open sourced both the code for evaluation and the benchmark dataset for the
final answer evaluation as well as the intermediate reasoning evaluation.
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A ToolComp Extended Evaluations

This appendix presents comprehensive supplementary evaluations that provide deeper insights into
model performance and failure modes. We include exact match grading analysis (A.T) and detailed er-
ror categorization for each evaluated model (A.2]and[A.3). Note that the frontier model evaluations
presented here reflect the state-of-the-art as of August 2024, while the main text incorporates
more recent frontier models released through August 2025. These extended evaluation method-
ologies offer model developers actionable frameworks for conducting thorough assessments of their
systems’ tool composition capabilities and identifying specific areas for improvement.

A.1 Exact Match

This paradigm aims to assess both the tool use capabilities and the instruction/format following
capabilities of the model. Formatting is particularly important when we want to use the LLM to
automate a backend process. This paradigm programmatically evaluates unsorted lists (eg. prompt
asks for a list of all states in the US), sorted lists (eg. prompt asks for a list of all states in the US in
alphabetical order), numbers (eg. prompt asks for the areas of Texas in square miles) and strings (eg.
prompt asks for the name of the football team that won the Superbowl in 2016)

Unsorted lists are sorted and exact matched (set match gets rid of duplicates) Sorted lists are exact
matched Number are checked if they are within a tolerance param (the tolerance param is to account
for variance among different sources online) String are stripped, lower cased, and exact matched

Table 4: Model Family Performance Comparison: Accuracy and 95% Confidence Intervals
Model Family Model Name Total Accuracy (%)

GPT-40 (Aug 2024) 43.52 +4.43

GPT-40 (May 2024) 40.60 4= 4.38

OpenAl GPT-4 Turbo Preview 40.11 £4.39
p GPT-4 38.45 + 4.34
GPT-40 Mini 34.70 + 4.25

Claude 3.5 Sonnet 42,92 £4.42

Anthropic Claude 3 Opus 36.96 +4.43
Claude 3 Sonnet 33.58 +4.21

Goosle Gemini 1.5 Pro (August 27, 2024) 4322 +4.43
& Gemini 1.5 Pro (May 2024) 27.36 £ 3.98
Mistral Mistral Large 2 33.63 £ 4.21
Llama 3.1 405B Instruct* 33.10 = 4.20

Meta Llama 3.1 70B Instruct* 26.19 £3.93
Llama 3.1 8B Instruct* 11.75 £ 2.88

Cohere Command R+ 0.00 £ 0.00
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A.2 Final Answer Failure Analysis

In order to better understand the reasons behind each model’s failures, we come up with an Error
Taxonomy and use GPT-4 Turbo to categorize the reasoning behind each failure. We note that the
error categories are not mutually exclusive. We inspect the individual failure cases predicted by
GPT-4 Turbo and find that it is reasonably accurate. The different categories and their definitions are

shown in Table[5]and the error counts for each model is shown in Figure 3]

Table 5: Common Error Category Taxonomy.

Category

Description

Final Answer Missing Information

The model’s trajectory got to the final answer however
the final answer fails to answer all parts of the prompt.

Called Incorrect Tool

The model called irrelevant tools that lead it down the
wrong direction.

Incorrect Tool Call Formatting

The model tried to call the relevant tool but consistently
used the wrong formatting for the input arguments (e.g.,
wrong input format, didn’t include a required argument).
You can tell this is occurring if the tool call’s result is
an error message.

Terminated Early Unexpectedly

The model stopped short of reaching the final answer
even though it should have kept proceeding. It is unclear
why the model stopped early.

Hallucinated Information

The model either didn’t call the relevant tool and just
made up information or it called the relevant tool but
didn’t use its outputs in the next tool call or final answer
properly (made up information afterwards).

Misunderstood Tool Info

The model called the relevant tool but misunderstood
the information it gave back.

Repeatedly Calling Same Tool

The model called the same tool with the same arguments
multiple times (even though it didn’t have any errors)
and didn’t use the returned info to proceed to the next
step or the final answer.

Action Plan Flawed

The Action Plan provided to the model in the user query
was fundamentally flawed.

Miscellaneous

The reason for the error doesn’t fit into any of the above
categories.
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A.3 Intermediate Reasoning Failure Analysis

In this appendix section, we conduct a thorough failure analysis for the intermediate reasoning
evaluations shown in Table 3]

A.3.1 ReAct-Step-Error-Based Failure Trends in Models

Figures [] and [5] shows the count for type of mistake between the human corrected substep and the
original incorrect substep whenever the model fails to pick the more appropriate trajectory (see Figure
[[]for an overview on the annotation process). We define the failure cases in terms of which subset of
the ReAct step needed correction. We end up with 5 different cases:

* Case 1: Thought Correct, Action Correct, Action Input Incorrect

* Case 2: Thought Incorrect, Action Incorrect, Action Input Incorrect

* Case 3: Thought Incorrect, Action Correct, Action Input Correct

* Case 4: Thought Incorrect, Action Correct, Action Input Incorrect

* Case 5: Thought Correct, Action Incorrect, Action Input Incorrect
Together, these figures highlight what types of errors are most common during a lapse in reasoning
when picking the best next course of action or invoking a tool correctly. In particular, we notice that

models often fail in reasoning about the better course of action when the deciding factor is in picking
the better Action Input with all else equal.
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Figure 4: Histogram showing the LLM as judge evaluation failure counts for each model, which is
further categorized by subset of the ReAct step that needed correction. Full Benchmark denotes the
counts for the entire ToolComp benchmark. Recall from[d.3] we have 3 outcomes for LLM judge
evaluation: win, tie, or loss. Here we count a failure as either a tie or a loss outcome.
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Figure 5: Density of the error-type between correct and incorrect step for the LLM as judge evaluation
failures for each model. Full Benchmark denotes the distribution for the entire ToolComp benchmark.
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A.3.2 Position-Based Error Trends in Models

Figures [6] and[7] shows the count and percentage of the relative positions where each respective model
failed to chose the better step when serving as an LLM judge choosing between two steps. In order to
calculate the position, we divide the step number at which the decision is taking place by the total
number of steps in the trajectory and multiply by 100. Hence, the position of a step will be a number
between 0 and 100. We bin these position values by increments of 20. Overall, these figures illustrate
that most, if not, all of the models struggle when judging steps towards the middle-end (position
values between 60 and 80) of the trajectory. Intuitively this makes sense because this is likely where
models have to compose the observations of previous tools into the input for the next tool call, which
requires more nuanced and sophisticated reasoning.
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Figure 6: Histogram showing the LLM as judge evaluation failure counts for each model, which is
further categorized by the position of the decision step. Full Benchmark denotes the counts for the
entire ToolComp benchmark.

Categories
0 < Position < 20
20 < Position < 40
40 < Position < 60
60 < Position < 80
80 < Position < 100

0.8 4

Percentage
o
&

o
IS

0.21

0.0-

GPT-4
GPT-4 Turbo

GPT-40 (Aug 2024)
GPT-40 Mini

w
=1
=%
o
m
[}
o
=4
©
O

Claude 3 Sonnet
Claude 3.5 Sonnet
Command-R +
GPT-40 (May 2024)
Gemini 1.5 Pro
Gemini 1.5 Pro Exp
Llama 3.1 405B IT
Llama 3.1 70B IT
Llama 3.1 8B IT
Mistral Large 2
OpenAl ol Preview
Full Benchmark

Figure 7: Density of the position of the LLM as judge evaluation failures for each model. Full
Benchmark denotes the distribution for the entire ToolComp benchmark.

21



731

732
733
734

735

736
737
738

740
741
742
743

744
745
746
747
748
749

751
752
753
754

755

756

757

758

759

B ToolComp Details

In this appendix section, we provide further details regarding benchmark creation steps such as
prompt creation [B.3). We also provide additional benchmark metadata revolving different
characteristics and statistics about the benchmark (B.4).

B.1 Prompt Creation Details

Step 1: Develop In-Context Examples We crafted high-quality in-context (IC) examples with
supporting reasoning, which we call ‘processes’, to guide the prompt generation. These processes are
Chain of Thought reasonings that describe the process by which we came up with the prompt. One of
the IC Prompts and a corresponding CoT is shown in Appendix [B.7]

Step 2: Generate Initial Prompts Using the IC examples, we generated synthetic prompts,
ensuring diversity by selecting random subsets of IC examples. Each subset used distinct in-context
prompts and randomly sampled tools from its set of available tools. The seed prompt used in this step

in Appendix

Step 3: Filtering We manually inspected each prompt to ensure they were reasonable, interesting,
and challenging, labeling them as Good, Too Simple, or Nonsensical with justifications for each
classification. These labeled examples served as IC inputs for GPT-4 Turbo (OpenAl et al., [2024) to
classify additional prompts. We iteratively review the outputs, make necessary edits, and add more IC
examples. Through three iterations, the filtered prompts were of high quality, exhibiting only minor
mistakes.

Step 4: Human Refinement After filtering, annotators reviewed the finals prompts to resolve any
issues related to complexity, clarity and ambiguity. We gave clear instructions on ambiguity (only
one possible correct answer) and complexity (requires two or more tool calls to answer), instructing
our annotators to ensure the prompt has only one correct answer that is complex, challenging and
requires the use of tools.

B.2 In Context Example

Prompt

I wanna know if eating meat is correlated with heart issues, find the annual per capita
consumption of meat in (kg/person) and also the per capita heart attack rates (in heart
attacks/person) for every country. Then run a linear regression with y as heart attack rates and
X as meat consumption, return the Pearson’s correlation as well as the slope of the fit line.

Process

I will first start by creating a prompt that requires the use of google search. I want to make
this prompt about investigating whether the amount of meat you consume is correlated to
heart disease. In order to make sure there is only one possible answer, I will ask to find the per
capita consumption of meat (in kg/person) and heart attacks rates (heart attacks per person)
in all countries. This standardizes the actual data that needs to be pulled and specifies the
units to ensure there is only one possible answer. I will then ask for a linear regression using
that data since it requires a python interpreter. Since linear regression is deterministic when
the data is fixed and the data required to fit the linear regression is well defined, I can ask to
output it§ parameters and ensure there is only one possible answer that can be returned. This
ensures that the good prompt is clear, unambiguous and has an answer that is easy to verify
through an exact string match while also requiring a chain of dependent tool calls (google
search call, then python interpreter call) to solve.
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B.3 Seed Prompt

761

I want you to act as a Prompt Writer.

Please adhere to the following instructions:

Write a prompt that requires the use of all of the tools.

The prompt should require a chain of dependent tools calls who’s outputs influence
the inputs of the next tool invocation.

The prompt should be appropriate for someone in {grade}.

Please do not specify the tools to be used in the prompt. We want the assistant to
figure out on it’s own what tools to call so it should not be specified in the prompt
itself. No phrases like “Use the ... tool" should be in the written prompt.

The prompt should be a couple sentences.

Make sure the prompt has only one possible answer that is concrete and easily
verifiable. We want to be able to check the final answer using exact match.

Make sure the answer is not in the prompt.
Place [STOP] at the end of the prompt.

Examples:

{examples}

[BEGIN ALLOWED TOOLS]
{tools}

[END ALLOWED TOOLS]
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B.4 Benchmark Metadata
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Figure 8: About 85% of prompts in ToolComp require at least 3 tool calls to solve, indicating that
they have a decent amount of complexity and difficulty. Furthermore, 20% of prompts still require 7
or more tool calls to solve. This indicates that an agent being evaluated on this benchmark requires
high context length, sophisticated reasoning over long context, and advanced tool calling capabilities
in order to process long tool chains, formulate a high level plan, and understand the outputs of each
tool call to proceed to the next step and subsequently achieve a high score.
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Figure 9: Due to the nature of ToolComp needing to have answers that are easily verifiable, we
choose to create prompts that have numbers and short strings to match. However, there are still some
examples of prompts that require long structured outputs such as dictionaries,tuples and lists. These
test the agent’s ability to follow complex queries that involve returning long outputs such as lists or
dictionaries of city names, temperatures, altitudes, etc.
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Figure 10: We show the distribution of the following primitive data types: number, string and
date. We care most about evaluation of compositional tool use and reasoning rather than aesthetic
output structuring and formatting. This is why the benchmark’s labels are predominantly numeric
while containing a significant fraction of string outputs. In many cases, strings and names are
intermediary outputs, but we most often ask for numerical final answers to make the answer easier to
unambiguously verify.
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Figure 11: The distribution of tools called in our human supervised tool call chains. The heavy bias
towards Google and Python are due to ToolComp Chat only allowing these tools as well them being
generally applicable for a wide range of tasks (web retrieval and information processing).

current_weather

date
time_series_intraday
wiki_search
time_series_daily

H ticker_search
python_interpreter
historical_weather
google_search
calculator

wolfram_alpha

0 50 100 150 200 250 300 350
frequency

Figure 12: The distribution of tools called in our human supervised tool call chains for just the
ToolComp Enterprise subset.
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Figure 13: The distribution of tools called in our human supervised tool call chains for just the
ToolComp Chat subset.
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Figure 14: Here, we show the various topics our prompts address. Many prompts require arithmetic
operations and mathematical reasoning along with a somewhat uniform distribution of multiple
disciplines ranging from Geography, Finance, History, Physics, Chemistry, Astronomy, Architecture
etc. The topics are not mutually exclusive since many of these prompts span multiple domains and
require multiple tools, multiple sources of knowledge and diverse forms of reasoning.

C Tool-Use Prompts

In this section, we summarize all of the prompts that were used during the creation of the benchmark,
evaluation of the benchmark, and creation of the synthetic training data. For the creation of the
benchmark, we state the “Action Plan Prompt" for the Policy Model in Section [C.T]and the “Tool
Call Prompt" for the Policy Model in Section[C.2} For the evaluation of the benchmark, we state the
LLM grading prompt and the in-context examples used to aid grading in Section|C.5] Lastly, for the
creation of the synthetic training data, we use the same policy model prompts for the action plan and
tool call, and we additionally include the “Action Plan Prompt" for the Critic Model in Section@]
and the “Tool Call Prompt" for the Critic Model in Section [C.4]

C.1 Action Plan Prompt (Policy Model)

You are a helpful action planner with access to functions. Please use the tools to provide
information accurate up to current date: {current_date}

FUNCTIONS: {func_spec}
Question: {question}

Given the tools available to you above, please formulate an action plan to answer the question
in a bulleted list for each step. Refrain from using any specific tool calls in your action plan,
instead focus on the high-level steps you would take to answer the question and the name of
the tool you would use and how you would use it. Refrain from trying to answer the question
directly in the action plan.

\ J
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C.2 ReAct Tool Call Prompt (Policy Model)

(

SYSTEM:

You are a helpful assistant with access to functions, each function will be regarded as an
action. Your job is to take relevant and necessary actions to get to the final answer to a user
question. Please use the actions to provide information accurate up to current date and time:
{current_date}. The user will provide you a question and a high level action plan. Your job is
to execute on the action plan to answer the question. It’s okay to slightly deviate from the
action plan if you think it’s necessary.

FUNCTIONS: {func_spec}
Please stick to the following format:

Thought: ( your reasoning/thought on why/how to use an action)

Action: (the action to take, should be one of {func_list})

Action Input: (the input to the action (should be in JSON format with the required fields))
End Action

If you believe that you have obtained enough information (which can be judged from the
history observations) to answer the question, please call:

Thought: I have enough information to answer the question
Action: finish

Action Input: {“answer": [your answer string]}}

End Action

For your final answer (the finish action input), make sure you answer the full question.
Additionally, we want to make sure the final answers/outputs in the finish action input are
returned in the order that they are given in a list format so we can verify them with an exact
string match. For eg. if the prompt asks for a city name, its temperature and a list of names of
all the NBA teams whose home stadium is within a 400 mile radius, you would output [’San
Francisco’, 78, ['Los Angeles Lakers’, ’Golden State Warriors’]].

If the prompt asks for a special sorting of the list, make sure to output wrap the list in {{}}
and if doesn’t require any special sorting wrap it in [] like you normally would. So if the
prompt instead asked to list the names of all the NBA teams whose home stadium is within a
400 mile radius in alphabetical order, you would output [San Francisco, 78, {{Golden State
Warriors, Los Angeles Lakers} }].

Only output the final answer with no additional text or natural language. Give dates in
YYYY-MM-DD format, temperatures in celcius, prices in dollars, lengths in meters, area in
meters?, volume in m? and angles in degrees if the prompt doesn’t specify what format/units
to output the answer in.

Given a user provided question and action plan, as well as your previous actions and
observations, take your next action.

USER:

Question: {question}

Action Plan: {action_plan}

ASSISTANT:

{history_of_react_steps}
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C.3 Action Plan Prompt (Critic Model)

You are an expert planner of tool calls. Your job is to critique the action plan of an assistant.
The following information is shown to the assistant in order to devise an action plan:
[Start of the message]

You are a helpful assistant with access to functions. Please use the tools to provide
information accurate up to current date and time: {current_date}.

FUNCTIONS: {func_spec}
Question: {question}

Given the question and the tools available to you above, please formulate an action plan to
answer the question in a bulleted list for each step.

Refrain from using any specific tool calls in your action plan, instead focus on the high-level
steps you would take to answer the question and the name of the tool you would use and how
you would use it. Refrain from trying to answer the question directly in the action plan.

[End of the message]

Given the set of functions and the question, please critique the action plan provided by the
assistant.

First, determine if the action plan is correct or incorrect. To do so, provide a reasoning and

then label the action plan as correct or incorrect. In order to determine if the action plan
needs revision, consider the following:

* Is the action plan reasonable given the set of functions available?
¢ Is the action plan clear and concise?
* Is the action plan missing any steps?
Please err on the side of giving the assistant the benefit of the doubt, and only critique the

action plan if it is clearly incorrect.

If the action plan is incorrect, provide a revised action plan that you believe would be correct.
Furthermore, your output should follow the format:

Reasoning: ( your reasoning for the correctness or incorrectness of the action plan )

Label: ( correct/incorrect )

Revised Action Plan: ( your revised action plan or empty if no revision needed )

Here is the action plan provided by the assistant:

{action_plan}

Please provide your critique of the action plan.

.
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C.4 ReAct Tool Call Prompt (Critic Model)

You are an expert judge of tool calls. Your job is to critique each of the ReAct steps of an
assistant.

The following information is shown to the assistant in order to devise a ReAct step.
[Start of the message]

You are a helpful assistant with access to functions. Use them if required. Please use the
tools to provide information accurate up to current date and time: {current_date}.

FUNCTIONS: {func_spec}
Please stick to the following format:

Thought: you should always think about what to do
Action: the action to take, should be one of {func_list}
Action Input: the input to the action

End Action

If you believe that you have obtained enough information (which can be judged from the
history observations) to answer the question, please call:

Thought: I have enough information to answer the question
Action: finish

Action Input: "answer": [your answer string]

End Action

Question: {question}
[End of the message]

Given the set of functions, question, action plan and history of past actions, critique the
Thought, Action, and Action Input step. Assume the action plan and history of past actions
are optimal. To assess the thought step, if the step is roughly reasonable and the action and
action input step are correlated with the thought step, then the thought step is correct. Please
give the assistant the benefit of the doubt and be lenient in your assessment.

To assess the action step, let’s assume that the Assistant cannot complete simple functionali-
ties such as simple arithmetic, converting units, or utilizing simple facts without the use of
tools. If the action specifies a reasonable function to use, then the action step is correct.

To assess the action input step, if the input is reasonable and the action is correct, then the
action input step is correct.

If any of the steps are incorrect, label them as incorrect in the Labels section.

For the Revised ReAct Step section, provide the correct step that the assistant should have
taken. If the assistant’s step is correct, provide the assistant’s step as the revised step. If the
assistant’s step is incorrect, provide the correct step that the assistant should have taken. As
a general rule of thumb, if your revised step is different from the assistant’s step, then the
assistant’s step is incorrect, and if your revised step is the same as the assistant’s step, then
the assistant’s step is correct.

As an important reminder, for your final answer (the finish action input), we want to make
sure the final answers/outputs in the finish action input are returned in the order that they
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are given in a list format so we can verify them with an exact string match. For eg. if the
prompt asks for a city name, its temperature and a list of names of all the NBA teams whose
home stadium is within a 400 mile radius, you would output [’San Francisco’, 78, ['Los
Angeles Lakers’, ’Golden State Warriors’]]. If the prompt asks for a special sorting of the
list, make sure to output wrap the list in {{}} and if doesn’t require any special sorting
wrap it in [] like you normally would. So if the prompt instead asked to list the names
of all the NBA teams whose home stadium is within a 400 mile radius in alphabetical
order, you would output [San Francisco, 78, { { Golden State Warriors, Los Angeles Lakers} }].

Only output the final answer with no additional text or natural language or units. Give dates
in YYYY-MM-DD format, temperatures in Celcius, prices in dollars, lengths in meters,
area in meters?, volume in m3 and angles in degrees if the prompt doesn’t specify what
format/units to output the answer in.

As a reminder, you should not use an external information that is not provided in the prompt
or by a tool call. As a simple example, you may know a ticker symbol already for a company,
but you should not use it unless you have called the ticker_search or a similar function (e.g.
google_search, wiki_search, etc.) to retrieve that information.

Your output should follow the format:

[Start of format]

Reasoning: ( your reasoning for the correctness or incorrectness of each step )

Labels: [(correct/incorrect), (correct/incorrect), (correct/incorrect)] (in the order of Thought,
Action, Action Input)

Revised ReAct Step:

Thought: ( your revised thought or assistant’s thought if correct )

Action: ( your revised action or assistant’s action if correct )

Action Input: ( your revised action input or assistant’s action input if correct )
End Action

[End of format]

Here is the action plan:

{action_plan}

Here is the history of past actions. If there are no past actions yet, this will be empty:
{history }

Here is the latest ReAct step provided by the assistant:

Thought: {thought}

Action: {action}

Action Input: {action_input}

End Action

Observation: {observation }

Please provide your critique of the latest ReAct step provided by the assistant.
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784  C.5 LLM Grading Prompt

7e5  C.5.1 Main Prompt
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You are an expert test grader. You have been given a student answer (‘Student Answer:’) to
grade. You have also been the correct answer (‘Correct Answer:”) and the original question
(‘Question:’). Each correct answer is a list of strings.

{In-Context Examples}
The possible grades are

INCORRECT: ‘Student Answer:’ is different from ‘Correct Answer:’
* numbers are completely different
* lists are completely different

* ‘Question:’ asks for special sorting of a list but the list in ‘Student Answer:’ is sorted
differently than ‘Correct Answer:’

* strings are completely different or information present in the string is completely
different

CORRECT BUT BAD FORMATTING: ‘Student Answer:’ has the same info as ‘Correct
Answer:” but is formatted differently.

* ‘Student Answer:’ includes natural language or additional text

* numbers are formatted differently but they are close to one another (‘Student An-
swer:’ is within

lists are wrapped differently than the correct answer but contains the same informa-
tion and sorted the same way as ‘Correct Answer:’ if asked ‘Question:” asks for a
special sorting

Strings are the same but may be formatted differently

CORRECT: The student answer has the same info as ‘Correct Answer:’ and is also formatted
the same as ‘Correct Answer:’

e numbers are close to one another (‘Student Answer:’ is within 10% of the correct
answer)

* if ‘Question:’ asks for a special sorting of the list the *Student Answer:’ list is sort
the same as ‘Correct Answer:’

* lists are wrapped the same
* Strings are identical

Remember you are assuming the correct answer provided is correct, your job is is only to
compare the correct answer to the student answer and grade it based on the above criteria. Do
not try to determine the correct answer yourself. Make sure to include a reasoning and final
grade in the format:

Reasoning: ( reasoning ) Final Grade: { INCORRECT / CORRECT BUT BAD FORMAT-
TING / CORRECT ) [ENDOFGRADE]

Now do this for the following user provided question, student answer and correct answer.
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C.5.2 In-Context Examples (Ordering)

\

We want to make sure the values in the student answer are returned in the order that they are
asked in ‘Question:’.

For example, if ‘Question:” asks for a city name, its temperature and a list of names of all the
NBA teams whose home stadium is within a 400 mile radius, and ‘Correct Answer:’ is ['San
Francisco’, 78, [’Golden State Warriors’, *Los Angeles Lakers’]] we would want ‘Student
Answer:’ can be [’San Francisco’, 78, ['Los Angeles Lakers’, ’Golden State Warriors’]].

Examples:

Question: Find the name of the city known for its famous tourist attraction Alcatraz, also
give it’s current temperature and a list of names of all the NBA teams whose home stadium is
within a 400 mile radius

Correct Answer: [’San Francisco’, 78, [’Golden State Warriors’, ’Los Angeles Lakers’]
Student Answer: [’San Francisco’, 74, ['Los Angeles Lakers’, ’Golden State Warriors’]]
Reasoning: The Student Answer is correct because it identifies the same city , the
temperature is within 10% of the Correct Answer and the same team names are present in the
list.

Final Grade: CORRECT

Question: Find the name of the city known for its famous tourist attraction Alcatraz, also
give it’s current temperature and a list of names of all the NBA teams whose home stadium is
within a 400 mile radius

Correct Answer: [’San Francisco’, 78, [’Golden State Warriors’, ’Los Angeles Lakers’]
Student Answer: The city name is San Francisco, its temperature is 80 degrees and the Los
Angeles Lakers and the Golden State Warriors are two NBA teams whose home stadium is
within a 400 mile radius

Reasoning: Although the Student Answer is correct (identifies the same city , the temperature
is within 10% of the Correct Answer and the same team names are present), it’s not formatted
the same and contains extra text and natural language.

Final Grade: CORRECT BUT BAD FORMATTING

Question: Find the name of the city known for its famous tourist attraction Alcatraz, also
give it’s current temperature and a list of names of all the NBA teams whose home stadium is
within a 400 mile radius

Correct Answer: [’San Francisco’, 78, [’Golden State Warriors’, ’Los Angeles Lakers’]
Student Answer: [’San Francisco’, -15, ['Los Angeles Lakers’, ’Golden State Warriors’]]
Reasoning: The Student Answer is incorrect because although identifies the same city and
the same team names are present in the list, the temperature is well outside of 10% of the
Correct Answer.

Final Grade: INCORRECT

C.5.3 In-Context Examples (Sorting)

\_

If ‘Question:’ asks for a special sorting of the list, make sure ‘Student Answer:’ is sorted the
same as ‘Correct Answer:’. So if ‘Question:’ instead asked to list the names of all the NBA
teams whose home stadium is within a 400 mile radius in alphabetical order, we would want
‘Student Answer:’ to contain [’San Francisco’, 78, [’Golden State Warriors’, ’Los Angeles
Lakers’]].

Examples:
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Question: Find the name of the city known for its famous tourist attraction Alcatraz, also
give it’s current temperature and a list of names of all the NBA teams whose home stadium is
within a 400 mile radius in alphabetical order

Correct Answer: [’San Francisco’, 78, [’Golden State Warriors’, ’Los Angeles Lakers’]
Student Answer: ['SF’, 75, [’Golden State Warriors’, ‘Los Angeles Lakers’]]

Reasoning: The Student Answer is correct because it identifies the same city (SF is a
commonly known short form for San Francisco), the temperature is within 10% of the
Correct Answer and the same team names are present in the list and sorted the same given
the Question asks for a special sorting (alphabetical order).

Final Grade: CORRECT

Question: Find the name of the city known for its famous tourist attraction Alcatraz, also
give it’s current temperature and a list of names of all the NBA teams whose home stadium is
within a 400 mile radius in alphabetical order

Correct Answer: [’San Francisco’, 78, [’Golden State Warriors’, ’Los Angeles Lakers’]
Student Answer: The city name is San Francisco, its temperature is 80 degrees and the
Golden State Warriors and the Los Angeles Lakers are two NBA teams whose home stadium
is within a 400 mile radius (in alphabetical order)

Reasoning: Although the Student Answer is correct (identifies the same city , the temperature
is within 10% of the Correct Answer and the same team names are present in the same order),
it’s not formatted the same and contains extra text and natural language.

Final Grade: CORRECT BUT BAD FORMATTING

Question: Find the name of the city known for its famous tourist attraction Alcatraz, also
give it’s current temperature and a list of names of all the NBA teams whose home stadium is
within a 400 mile radius in alphabetical order

Correct Answer: [’San Francisco’, 78, [’Golden State Warriors’, ’Los Angeles Lakers’]
Student Answer: [’San Francisco’, 79, ['Los Angeles Lakers’, ’Golden State Warriors’]]
Reasoning: The Student Answer is incorrect because although it identifies the same city
and the temperature is within of 10% of the Correct Answer, the list of teams name is in a
differently ordered even though ‘Question:’ explicitly asks for a special sorting.

Final Grade: INCORRECT
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D ToolComp Examples

D.1 Example Corrected Trajectory

Question: Suppose you have a 2inch x 2inch x 2inch box. How many of these boxes can
you fit into the biggest U-Haul truck (biggest truck as of 2024)?

Action Plan

1. Use the google_search tool to find the name of the biggest U-Haul truck and find its
dimensions.

2. Use python_interpreter to calculate the total number of boxes that would fit given the
dimensions.

3. Return the answer.

ReAct Step 1

Thought: I need to find the dimensions of the biggest U-Haul truck.
* Action: google_search
* Action Input: {"query": "biggest U-Haul truck 2024"}

* Observation: {(search results omitted for brevity)}

ReAct Step 2

* Thought: I now have the dimensions of the biggest U-Haul truck, so I can use Python to
calculate how many boxes can fit inside.

* Action: python_interpreter
* Action Input:

import math

box_length = 2
3 | box_width = 2
4 | box_height = 2

6 | truck_length = (26 * 12) + 5

7 | truck_width = (7 * 12) + 8

8 | truck_height = (8 * 12) + 3

9 |num_boxes = math.floor(truck_length // box_length) * \
10 math.floor (truck_width // box_width) =* \

T math.floor (truck_height // box_height)

2 |print (£ ’Total number of boxes: {num_boxes}’)

¢ Observation: {"result": "Total number of boxes: 356132", "error":
null}

g _/
ReAct Step 3

* Thought: I have the total number of boxes that can fit inside the truck, so I should return
that as the answer.

e Action: finish

e Action Input: {"answer": "|356132|"}

¢ Observation: 356132
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D.2 Example Annotated Trajectory

Question: Using the 2023 birth-rate, death-rate, and population of Japan, assuming no one
leaves or enters, what will be the projected population in 10 years?

Action Plan

1. Use the python_interpreter tool to
calculate the population growth rate using
the birth-rate, death-rate, and population
of Japan.

2. Use the python_interpreter tool to
calculate the population in 10 years using
the population growth rate and the current
population of Japan.

3. Use the google_search tool to search
for the current birth-rate, death-rate, and
population of Japan.

4. ... (truncated since the model goes in cir-
cles)

(Label: X)

Human

1. Use the google_search tool to calculate
the population growth rate using the birth-
rate, death-rate, and population of Japan
in 2023.

2. Use the python_interpreter tool to
calculate the population in 10 years using
the population growth rate and the popula-
tion of Japan in 2023.

3. Use the finish action to return the final
answer.

ReAct Step 1

* Thought: I need to use the
google_search tool to calculate the pop-
ulation growth rate using the birth-rate,
death-rate, and population of Japan in 2023.
(Label: v)

* Action: google_search (Label: /)

* Action Input: { "query": "Japan
2023 population growth rate
using birth-rate, death-rate,
and population" } (Label: X)

* Observation:
[ {"source": "nippon.com",
"date": "Mar 13, 2024",
"title": "Number of Births
in Japan Reaches New Low in
2023", "snippet": "In 2023,
Japan had more than twice as
many deaths as births, leading
to a natural population decline
(excluding migration) of over
800000.", "highlight": "had
more than twice as many deaths
as births"}, truncated]

Human

* Thought: N/A
¢ Action: N/A

e Action Input: { "query’: "Japan
2023 birth-rate per 1000’}

* Observation:
[ {"source":
"en.wikipedia.org","date":
null,"title": "Demographics
of Japan",'"snippet": "6.6
births/1,000 population
(2023 est.) Death rate,
11.7 deaths/1,000 population
(2023 est.) Life expectancy,
84.83 years. 2022 male, 81
years.","highlight": "6.6
births/1,000 population"},
truncated]
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811 ReAct Step 2

Cvo N

Model
* Thought: According to wikipedia the 2023

* Thought: I need to wuse the estimates for the birthrate 6.6 births/1000
google_search tool to calculate the population and 11.7 deaths/1000 popula-
population growth rate using the birth-rate, tion. I need to find the 2023 population for
death-rate, and population of Japan in 2023. Japan.

(Label: X) * Action: N/A
* Action: google_search (Label: /) « Action Input: { "query’: "Japan
e Action Input: { "query": "Japan 2023 population’’ }
2023 death-rate per 1000" } (Label: « Observation:
812 X) [{ "source": "statista.com",

* Observation: "date": "Jul 04, 2024",

[ {"source": "title": "Japan: total

"data.worldbank.org", "date": population 2019-2029",

null, "title": '"Death rate, "snippet": "In 2023, the total

crude (per 1000 people) - population of Japan amounted

Japan", "snippet": '"Death rate, to around 124.62 million

crude (per 1000 people) - Japan inhabitants. See the figures

from The World Bank: Data.", for the population of South

"highlight": "Death rate | per Korea for ...", "highlight":

1000 | Japan" }, ... truncated] "124 .62 million inhabitants" },
truncated]

813 ReAct Step 3

¢ Action: N/A

* Thought: I need to use the python inter- .
¢ Action Input:

preter tool to calculate the population in 10
years using the population growth rate and _

the population of Japan in 2023. population = 124620000
(Label: /) birth_rate_per_thousand = 6.6

death_rate_per_thousand = 11.7

* Action: python_interpreter total_births_extrapolated

(Label: /) = birth_rate_per_thousand *
* Action Input: (population / 1000)

814 total_deaths_extrapolated
import numpy as np = death_rate_per_thousand *
population = 124352000 (population / 1000)
population_growth_rate = 0.0012 population_growth_rate =
population_in_10_years (total_births_extrapolated
= population * (1 + - total_deaths_extrapolated)
population_growth_rate)**10 / population
print (population_in_10_years) population_in_10_years
(Label: X) = population * (1 +

population_growth_rate)**10
print(population_in_10_years)

+ Observation: | 118408275.35965854 |

» Observation: | 125852307.84945872 |
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816

ReAct Step 4

e Thought: I have enough information to
answer the question (Label: /)

e Action: finish (Label: /)

¢ Action Input:
"answer":

(Label: X)
+ Observation: | [“118, 408, 275 |

["118,408,275"]}

37

Human

* Thought: N/A
¢ Action: N/A

¢ Action Input:

"answer": ["118408275"]}

* Observation: | [“118408275"]
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E Tools

In this appendix section, we provide a detail breakdown of each of the 11 tools, providing a description,
the parameters, an input example and a corresponding output example.

E.1 Date

Description: Returns the current date (e.g., January 1, 2024).

Input Example:

{3

Output Example:

{
"result": "Today is Friday, February s ",
||errorll: nn

Parameters:

(1

E.2 Calculator

Description: Calculates expressions including basic arithmetic and brackets.

Input Example:

{
"operation": "2%32-4+ +(1+2)+3+(1/2%3+3+(1+2))"

}

QOutput Example:

{
"errorn:lﬂu
"result": " .B"

Parameters:

C
{
"Input Name": "operation",
“Type": "Stringﬂ,
"Description": "Computes numerical expressions involving float
numbers and operators like +, -, *, /, ~.\""
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g3 E.3 Current Weather

se4 Description: Retrieves current daily averages for temperature, rainfall, and hours of precipitation for
ges  a specified city and country. Does not return historical data.

ges Input Example:

867
868 | {

869 "city_name": "London",
870 "country_code": "GB"
g7 |}

g73  Output Example:

874

875 | {

876 "error": "",

877 "result": [

878 {

879 "date": " -03- :00:00",

880 "temperature (F)": "47. ",

881 "total rain (mm)": "1. "

882 "total snowfall (mm)": "O.O0",

883 "precipitation hours (hours)": "4.0"
884 },

885 {

886 "date": " - - : : "

887 "temperature (F)": "48. ",

888 "total rain (mm)": "8.2",

889 "total snowfall (mm)": "O.O0",

890 "precipitation hours (hours)": "11.0"
891 },

892 {

893 "date": " -03- :00:00",

894 "temperature (F)": "47. ",

895 "total rain (mm)": "2. ",

896 "total smnowfall (mm)": "O0.0",

897 "precipitation hours (hours)": "4.0"
898 }

899 ]

80 |}

902 Parameters:

903

904 | [

905 {

906 "Input Name": "city_name",

907 "Type": "String",

908 "Description": "The name of the city."
909 },

910 {

91 "Input Name": "country_code",

912 "Type": "Two Alphabet -Number",

918 "Description": "The country code (ISO -2). The list can be
914 found here: https://en.wikipedia.org/wiki/ISO_ -on
915 }

85 |!
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918 E.4 Historical Weather

919 Description: Retrieves daily averages for temperature and precipitation starting from the 1940s for a
920 given city. Note: 5-day data delay, meaning you cannot get current weather data for the last 5 days.

921 Input Example:

923 | {

924 "city_name": "London",

925 "country_code": "GB",

926 "start_date": " -03-09",
927 "end_date": " - - "

g8 |

930 Output Example:

932 | {

933 "error": "",

934 "result": [

935 {

936 "date": " - - : : ",

937 "temperature (F)": "48. ",

938 "total rain (mm)": "O0.4",

939 "total snowfall (mm)": "O.O0",

940 "precipitation hours C(hours)": "2.0"
941 },

942

943 {

944 "date": " - - : : ",

945 "temperature (F)": "43. ",

946 "total rain (mm)": "1. ",

947 "total snowfall (mm)": "O. ",
948 "precipitation hours (hours)": "3.0"
949 }

950 1

g |

953 Parameters:

954

955 | [

956 {

957 "Input Name": "city_name",

958 "Type": "String",

959 "Description": "The name of the city."

960 },

961 {

962 "Input Name": "country_code",

963 "Type": "Two Alphabet -Number",

964 "Description": "The country code (ISO -2). The list can be
965 found here https://en.wikipedia.org/wiki/ISO_ -2"
966 },

967 {

968 "Input Name": "start_date",

969 "Type": "Date Format",

970 "Description": "The start date in YYYY-MM-DD format"
978 },

972 {

973 "Input Name": "end_date",

974 "Type": "Date Format",

975 "Description": "The start date in YYYY-MM-DD format"'
976 }

g |
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1632

E.5 Wiki Search

Description: Searches Wikipedia and returns a summary of the top pages matching the query.

Input Example:

{
"query": "covid-19",
"num_results": "1"

}

Output Example:

{ IlerrorII: IIII’
"result": [

{

"title": "COVID-19",

"summary": "Coronavirus disease (COVID-19) is a contagious
disease caused by the coronavirus SARS-CoV-2. The first
known case was identified in Wuhan, China, in December

Most scientists believe the SARS-CoV-2 virus entered into
human populations through natural zoonosis, similar to the
SARS-CoV-1 and MERS-CoV outbreaks, and consistent with other

pandemics in human history. Social and environmental
factors including climate change, natural ecosystem
destruction and wildlife trade increased the likelihood of
such zoonotic spillover. The disease quickly spread
worldwide, resulting in the COVID- pandemic. The symptoms
of COVID- are variable but often include fever, fatigue,
cough, breathing difficulties, loss of smell, and loss of
taste. Symptoms may begin one to fourteen days after
exposure to the virus. At least a third of people who are
infected do not develop noticeable symptoms. O0f those who
develop symptoms noticeable enough to be classified as
patients, most (81%) develop mild to moderate symptoms (up
to mild pneumonia), ... truncated"
}
]
}
Parameters:
[
{
"Input Name": "query",
IlTyPe ll: "String",
"Description": "The search query."
} b
{
"Input Name": "num_results (Optional)",
"Type": "Integer",
"Description": "Number of search results to return."
}
]
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1042
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1067
1068
1068
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1672

1075

1076
1077

1078
1079
1080
108%
1082
1083
1084
1085
1086
1087
1088
1089
1090
109%
1092
1098

1638

E.6 Intraday Stock Info

Description: Provides intraday time series data for specified equities.

Input Example:
{
"symbol": "AAPL",
"interval": "60min"
}
Output Example:
{
IlerroI.Il: IIII’
"result": [
{

"timestamp": " -07-
"open_market_value": "
"high_market_value": "
"low_market_value": "
"close_market_value":
Ilvolume n . n n

"timestamp": " -07-
"open_market_value": "
"high_market_value": "
"low_market_value": "
"close_market_value": "
Ilvolume n . n n

"timestamp": " -07-
"open_market_value": "
"high_market_value": "
"low_market_value": "
"close_market_value": "

"volume": " "
}
]
}
Parameters:
[
{
"Input Name": "symbol",
"Type": "String",
"Description": "The ticker symbol of the equity."
} 2
{
"Input Name": "interval",
"Type": "String",
"Description": "Data point interval (Imin, 5min, etc.)."
} E
{
"Input Name": "month (optiomnal)",
"Type": "String",
"Description": "You can use the month parameter (in YYYY-MM format
) to query a specific month in history."
}
]
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E.7 Daily Stock Info

Description: Returns daily time series data for specified equities.

Input Example:
{
"symbol": "AAPL",
"number_of_days":
}
Output Example:
{
IlerrorII: IIII’
"result": [
{
"timestamp": " -07-16",
"open_market_value": " ",
"high_market_value": " ",
"low_market_value": " ",
"close_market_value": " ",
“VOlume n R n n
} b
{
"timestamp": " - - ",
"open_market_value": " ",
"high_market_value": " ",
"low_market_value": " ",
"close_market_value": " ",
n Volume n R n n
} k]
{
"timestamp": " -07-10",
"open_market_value": " ",
"high_market_value": " ",
"low_market_value": " ",
"close_market_value": " ",
n Volume n . n n
}
1
}
Parameters:
[
{
"Input Name": "symbol",
"Type": "String",
"Description": "The ticker symbol of the equity."
} k]
{
"Input Name": "number_of_days",
"Type": "Integer",
"Description": "The number of days before today to return data for
n
¥
]
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E.8 Stock Symbol Search

Description: Searches for stock tickers based on provided keywords.

Input Example:

{
"keywords": "tesla"

}

Output Example:

{
"errorn:lﬂu
"result": [
{

"symbol": "TSLA",
"name": "Tesla Inc",
thpeﬂ: "Equityﬂ,
"region": "United States",
"market_open": " : ",
"market_close": " : ",
"timezone": "UTC- ",
"currency": "USD",
"match_score": "O. "

"symbol": "TLO.DEX",
"name": "Tesla Inc",
"type": "Equity",
"region": "XETRA",
"market_open": " : ",
"market_close": " : "
"timezone": "UTC+02",
"currency": "EUR",
"match_score": "O. "

"symbol": "TLOI1.FRK",

"name": "TESLA INC. CDR DL- ",
thpeﬂ: HEquity",

"region": "Frankfurt",
"market_open": " : ",
"market_close": " : ",
"timezone": "UTC+ ",
"currency": "EUR",
"match_score": "O. "

Parameters:

{
"Input Name": "keywords",
"Type": "String",
"Description": "Keywords to search,
retrieve the ticker symbol for"

>

e.g.,

company name,

to
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1215 E.9 Python

1216 Description: Runs a python interpreter on a code snippet.

1217 Input Example:

1218

1219 | {
1220 "code": "print(4 + 5)"
133 |}

1223 QOutput Example:

1224

1225 | {

1226 "result": "9",
1227 "error": ""
1338 |}

1230 Parameters:

1231

1232 | [

1233 {

1234 "Input Name": "code",

1235 "Type": "String",

1236 "Description": "The code snippet that we want to run on a python
1237 interpreter."

1238 }

13 |

1241 E.10 Wolfram Alpha

1242 Description: Accesses Wolfram Alpha to generate outputs from the Knowledgebase for computations
1243 and data queries. Wolfram Alpha excels at complex number-crunching, computation and calculations.

1244  Input Example:

1245

1246 | {

1247 "query": "what is Ronaldo’s age?"

1248 |

1250  Output Example:

1251

1252 | {

1253 "error": "",

1254 "result": " years months days"
1258 |t

1257 Parameters:

1258

1259 | [

1260 {

1261 "Input Name": "query",

1262 "Type": "String",

1263 "Description": "The query to perform computations/searches omn.
1264 When unsure of your query search, try searching yourself on
1265 the website!"

1266 }

1363 | ]
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E.11 Google Search

Description: Performs a Google search and returns snippet results, without linked page details
Google is often used for popular culture, location-awareness and crowdsourcing.

Input Example:
{
"query": "What is the capital of France?",
"location": "Paris"
}
Output Example:
{
Ilerrorll: IIII,
"result": [
{
"source": "en.wikipedia.org",
"date": "None",
"title": "Paris",
"snippet": "Paris is the capital and largest city of France.
With an official estimated population of 2, s residents
as of January in an area of more than ...",
"highlight": "Paris"
} b
{
"source": "home.adelphi.edu",
"date": "None",
"title": "Paris facts: the capital of France in history",
"snippet": "Paris facts: Paris, the capital of France. Paris is
the capital of France, the largest country of Europe with
km2 ( millions inhabitants).",
"highlight": "Paris"
1,
{
"source": "britannica.com",
"date": "None",
"title": "France | History, Maps, Flag, Population, Cities,
Capital, & ...",
"snippet": "Get a special academic rate on Britannica Premium.

The capital and by far the most important city of France is
Paris, one of the world’s preeminent cultural ...",

"highlight": "Paris"
} E
]
}
Parameters:
[
{
"Input Name": "query",
"Type": "String",
"Description": "The search query."
} 2
{
"Input Name": "location (Optional)",
"Type": "String",
"Description": "The geographical location for the search (optional
) "
}
]
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