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ABSTRACT

Recently, the Gaussian Mixture Variational Autoencoder (GMVAE) has been in-
troduced to handle unsupervised clustering (Dilokthanakul et al., 2016). However,
the existing formulation requires the introduction of the free bits term into the ob-
jective function in order to overcome the effects of the uniform prior imposed on
the latent categorical variable. By considering our choice of generative and infer-
ence models, we propose a simple variation on the GMVAE that performs well
empirically without modifying the variational objective function.

1 INTRODUCTION

Motivated by the success of the variational autoencoder (VAE) in representation learning and semi-
supervised classification (Kingma & Welling, 2013; Chen et al., 2016; Kaae Sønderby et al., 2016;
Jimenez Rezende et al., 2014), recent attention has been given to the application of VAE to unsu-
pervised clustering. In this setting, observed data X is generated as a stochastic function of both
a latent class variable Y and a continuous latent random variable Z. To perform this task, Dilok-
thanakul et al. (2016) proposed using a Gaussian Mixture Variational Autoencoder (GMVAE). The
authors further highlighted the importance of incorporating a free bits term (Kingma et al., 2016) to
overcome over-regularization in some settings.

In this paper, we address the following questions. What is the behavior of models with discrete la-
tent variables when trained on unlabeled data using the standard variational objective function—the
evidence lower bound (ELBO)? Is it possible to achieve successful unsupervised clustering with the
standard ELBO objective function?

We perform our analysis on variants of the M2 model (Kingma et al., 2014) and a variant of the
GMVAE and show that (i) the discrete latent variable may not necessarily be used in the generative
model as desired and (ii) by introducing very simple modifications to the model, we can encourage
the meaningful incorporation of the discrete latent variables into the generative model.

2 A VARIANT OF THE GAUSSIAN MIXTURE VAE

In our experiments, we consider a variant of the GMVAE where we instead use the following se-
quential sampling scheme

y ∼ Cat(1/K) (1)

z ∼ N (µz|y(y), diag(σ2
z|y(y))). (2)

x|z ∼ Ber(µx|z(z)), (3)

Unlike the original GMVAE, whose marginal distribution in Z1 is a mixture of arbitrary distri-
butions, our formulation explicitly ensures that the marginal distribution of Z is a mixture of K
factorized Gaussians. We reason that having a marginal distribution as a mixture of Gaussians is
desirable due to the unimodality of each Gaussian component. This ensures that samples generated
from the same Y tend to be closer in the space of Z.

1



Workshop track - ICLR 2017

For inference, we factorize using top-down inference and as well as the precision-weighted merging
scheme proposed by Kaae Sønderby et al. (2016) to perform the inference of q(z|x, y),

q(z|x, y) ∝ p(z|y)q̂(z|x) (4)

p(z|y) = N (z|µz|y, diag(σ2
z|y)) (5)

q̂(z|x) = N (z|µ̂z|x, diag(σ̂2
z|x)) (6)

σ−2z|x,y = σ−2z|y + σ−2z|x (7)

µz|x,y =
µz|yσ

−2
z|y + µ̂z|xσ̂

−2
z|x

σ−2z|y + σ̂−2z|x
(8)

In comparison to directly parameterizing q(z|x, y) = N (z|µ(x, y), diag(σ2(x, y))), precision-
weighted merging simplifies the inference model by sharing p(z|y) across the inference and gen-
erative models. By virtue of the weighting scheme, this also has the added desirable property of
encouraging the sampled z ∼ q(z|x, y) to be near the cluster region defined by p(z|y).

3 A VARIANT OF THE M2 MODEL

Given the success of semi-supervised learning with VAEs, we re-visited the M2 model (Kingma
et al., 2014) and evaluated its performance in unsupervised clustering. Surprisingly, the M2 model
fails to perform as an unsupervised clustering algorithm despite its success in semi-supervised learn-
ing. The failure of the M2 model to perform unsupervised clustering is intriguing, especially since
the M2 model and the GMVAE are intimately related. In particular, we note that M2 can also
be interpreted as having a Gaussian mixture marginal distribution in the space of the first hidden
layer of the decoder µ(y, z). This is because the first hidden layer h of the decoder is computed as
h = Wyy + Wzz, where Wy and Wz are the weights of the first hidden layer. This implies that
the marginal distribution of H is potentially a mixture of K Gaussians. However, because Wz is
not a square matrix and is unconstrained during optimization, we cannot guarantee that the resulting
Gaussian mixture has non-degenerate, factorized Gaussian components. To test whether this has an
effect on the model, we modify the M2 model by constraining Wz to be an identity matrix during
training. We denote this as the M2-Modified model.

4 EXPERIMENTS

We evaluate the performances of the M2, M2-Modified and GMVAE models on permutation-
invariant MNIST, training using the standard variational objective function and with K = 10.

4.1 “UNSUPERVISED” CLASSIFICATION

To determine if the clusters are formed according to class labels, we rely on the the prediction
protocol in Dilokthanakul et al. (2016). In addition to measuring the classification accuracy, we also
look at the empirical conditional entropy value H(Y |X) = 1

N

∑
iH(q(y|x(i))) and the ELBO.

Figure 1 shows that the M2 model exhibits starkly different behavior than M2-Modified and GM-
VAE. The M2 model assigns near-equal probability mass to allK clusters when conditioned on some
sample x, resulting in a classification score close to 10%. However, simply by constraining the M2
model, the M2-Modified model achieves significantly better clustering performance. The GMVAE,
which explicitly introduces Z as being a mixture of Gaussians, achieves the best clustering behavior.

4.2 ADMISSIBILITY OF NEAR-OPTIMAL CLASSIFIERS

It is not immediately clear why the M2 model learns an uninformative classifier. We consider two
possibilities: either the M2 model gets stuck at a local optimum, or learning a proper classifier is not
beneficial to improving M2’s ELBO. To determine the cause, we remove the classifier q(y|x) from
all models and provide the label information Y during training.

Providing the label information is equivalent to achieving an optimal classifier when training the
models in an unsupervised fashion. In Table 1, we show that providing the label information does
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Figure 1: Comparison of the test set ELBO, conditional entropy, and accuracy achieved by the M2,
M2-Modified, and GMVAE models.

Model Accuracy ELBO ELBO-Y ∆ ELBO

M2 0.114± 0.000 −90.79± 0.02 −90.75± 0.02 0.04
M2-Modified 0.655± 0.008 −94.40± 0.03 −94.11± 0.03 0.29

GMVAE 0.800± 0.015 −93.61± 0.11 −90.96± 0.04 2.64

Table 1: Comparison of the test set ELBO achieved by the models when trained in an unsupervised
manner versus the ELBO (denoted as ELBO-Y) achieved by the models when the label information
Y is provided. For convenience ∆ = ELBO-Y − ELBO is provided, as is the average accuracy
achieved by the models from unsupervised training along with the standard errors.

not improve the ELBO for the M2 model. On the other hand, GMVAE benefits significantly when
the label information is provided. The improved ELBO resulting from the incorporation of label
information demonstrates that the variational objective function encourages the GMVAE to learn
a good classifier. In contrast, M2’s ability to achieve the best ELBO despite not learning a good
classifier suggests that it is exploiting the discrete latent variable Y in an alternative fashion. It
remains an open question how exactly M2 is using its discrete latent variable.

Given M2’s poor performance as an unsupervised clustering algorithm, it is worth considering how
M2 has been successfully applied to semi-supervised classification of MNIST digits (Kingma et al.,
2014). In semi-supervised learning, the M2 objective function contains both a term for labeled data
and one for unlabeled data. In theory, the weighting of the terms should be proportional to the
size of the labeled and unlabeled data sets. In practice, however, implementations of M2 for semi-
supervised classification require significant up-scaling of the labeled term (Kingma et al., 2014;
Maaløe et al., 2016). We believe that the necessity of up-scaling the labeled term is in part at-
tributable to M2’s poor performance as a stand-alone unsupervised clustering algorithm. Given its
superior unsupervised clustering performance, the GMVAE may potentially serve as a more attrac-
tive alternative for semi-supervised classification.

Ultimately, the fact that such simple changes to the generative and inference models can significantly
alter the model behavior signifies the complex interplay with the choice of generative model and
variational family. Future lines of work that better explore this dynamic may lead to better insights
and improve our ability to learn meaningful representations using deep variational models.
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