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ABSTRACT

Dilated convolution kernels are constrained by their shared dilation, keeping them
from being aware of diverse spatial contents at different locations. We address
such limitations by formulating the dilation as trainable weights respect to individ-
ual positions. We introduce Pixel-wise Adaptive Dilation (PAD), a light-weighted
extension that allows convolution kernels to flexibly adjust receptive fields based
on different contents at pixel level. By inferring dilation via modeling inter-layer
patterns, PAD-Nets also provide a possible way to partially understand the hier-
archical representations of CNNs. Our evaluation results indicate PAD-Nets can
consistently outperform their conventional counterparts on various visual tasks.

1 INTRODUCTION

The power of prestigious Convolutional Neural Nets (CNN) (Simonyan & Zisserman, 2014; He
et al., 2016; Huang et al., 2017) relies on the ability of hierarchically representing spatial features
across input regions called Receptive Fields (RFs) (Luo et al., 2016). Common practices usually
prefer large RFs in order to achieve superior performances, making Dilated Convolution Kernels
(DCKs) (Yu & Koltun, 2015; Yu et al., 2017) a favorable choice due to the ability of exponentially
enlarging RFs while keeping kernels small. To further improve the dilated kernels, two obvious
problems, which universally reside in most of existing dilated CNN structures, need to be properly
tackled. First, all the weights share a single dilation value across all pixels. This could be very
counter-intuitive as resultant monosized RFs are less capable of encoding huge spatial variances
from inputs. Second, dilation selection is data-independent, requiring strong knowledge on input
contexts to pick the proper value, which may only be suitable to a certain set of experimental settings.

In this paper, we answer the above challenges by combining the dilation selection with conventional
CNN modules and incorporating them into a unified data-driven framework. We propose Pixel-
wise Adaptive Dilated Nets (PAD-Nets), a simple yet powerful extension for general DCKs, which
treats dilation values as learnable weights and can be jointly optimized with other CNN weights
in an end-to-end fashion. As shown in Figure 1, in the newly formulated PAD kernels, dilation is
learned to change at different input positions to reflect input spatial diversity, resulting in dynamic
RFs with irregular shapes in a single convolution layer. In practice, there are two major difficulties
to overcome.

How to decide the dilation value online? We handle this by regarding the dilation as a function
of input at individual pixels. More specifically, the function samples dilation values through certain
probability distributions that are conditioned by pixel-wise input features. To solve indifferentiable
nature of general sampling process, we approximate it by employing Gumbol-Softmax (Jang et al.,
2016) as a differentiable estimation in order to keep PAD end-to-end trainable.

What are proper dilation values for inputs? Since there is no clear explanation on how network
layers work, we believe that it still remains an open question and can only be answered with valid
hypotheses. For PAD kernels, we make the assumption that dilation values are related to inter-layer
patterns between convolution layers due to their hierarchical nature. In such cases, RF size at each
location is adjusted based on information flows between corresponding inter-layer pixels during
forward propagation.
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(a) No dilation (b) Regular dilation (c) Pixel-wise adaptive dilation

Figure 1: Comparison of regular and pixel-wise adaptive dilation. Colors stands for distinct dilation.

Following strategies described above, PAD-kernels evolve into light-weighted modules that can be
easily plugged into various CNN architectures. Moreover, learning dilation through inter-layer pat-
tern modeling also provides a chance to potentially unveil the mechanisms of CNNs in part. We
evaluate the proposed PAD-Nets via several fundamental tasks including semantic segmentation,
large-scale and fine-grained visual classification. Moreover, several ablation studies are performed
to examine various properties of PAD-Nets. Our experimental results indicate in most cases, PAD-
Nets are able to consistently yield better performances across various popular backbone architectures
with trivial cost.

The rest of this paper is organized as following. We review relevant literature in Section 2, then PAD-
Nets are elaborated in Section 3. Sections 4 and 5 demonstrate experimental results, and Section 6
concludes the paper.

2 RELATED WORK

Content-adaptive networks This research direction is focused on building dynamic internal
structures via data-driven approaches to better leverage larger spatial variations from inputs. A set
of related techniques tend to develop differentiable approximations for traditional image-adaptive
filters and integrate them as end-to-end trainable layers for CNN models. For example, Jampani
et al. (2016) includes bilateral filters (Aurich & Weule, 1995; Tomasi & Manduchi, 1998) in CNN
models as a layer for character recognition; Wang et al. (2018) and Wu et al. (2018a) introduce their
trainable version of non-local means filters (Buades et al., 2005) and guided filters (He et al., 2012),
respectively. These approaches conduct content-adaptive enhancements in separate layers without
interacting with convolution kernels. Another set of techniques propose the idea of directly gener-
ating kernel weights based on layer inputs (Xue et al., 2016; Jia et al., 2016; Su et al., 2019), and
extend it with attention mechanism (Wu et al., 2018b) as well as other task-specific improvements.
However, most of them rely on additional modules with large kernel sizes, being incapable of scaling
up to more general network structures.

Dynamic receptive fields. Comparing to the above approaches to build content-adaptive nets,
there is much less work aiming at enabling the content-aware ability via adjusting receptive fields
(RFs). Majority of RF-related researches focus on how to effectively enlarge RFs in order to achieve
better performance. Among them, dilated convolution kernels (Yu & Koltun, 2015) become a popu-
lar choice as it can exponentially increase RF sizes while maintaining small kernel sizes. However,
this could also lead to negative impacts, such as sparsity and “gridding” effect (Yu et al., 2017).
Unlike static RFs produced by dilation, recent works such as Dai et al. (2017) and Zhu et al. (2019)
argue that RFs should be more diverse in order to capture rich spatial variations. They propose de-
formable CNNs that learn to adjust the positions for convolving, resulting in free-form RFs that are
totally data-dependent. Besides, Shelhamer et al. (2019) attempts to create diverse yet controllable
RFs by composing the structured Gaussian kernels and unstructured ordinary convolution kernels.

3 PIXEL-WISE ADAPTIVE DILATED CONVOLUTION

Now we elaborate the proposed approach for extending conventional dilated convolution kernels
into PAD kernels. Without loss of generality, we assume all the convolutions in the rest of this paper
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are 2D operations. Suppose KW,b;d is a dilated convolutional kernel with dilation value d, and
X ∈ Rw×h×c is input. The output of convolution between K and X is

Yi,j =

K∑
m=0

K∑
n=0

(Wm,nxi+dm,j+dn + bm,n) (1)

whereK is the kernel size and i, j are coordinates for dimensions w and h, respectively. Apparently,
d is a constant variable independent to i and j. Our goal is to convert d into a function Di,j such
that the output of Di,j could be aware of location-specific contents. More specifically, we treat Di,j

as an inference process that generates dilation values by sampling from position-dependent hidden
distributions. Figure 2 sketches the basic idea of a PAD kernel.

3.1 DILATION INFERENCE

Figure 2: Overview of a PAD kernel.

Sampling dilation values directly from categor-
ical distributions is straightforward. However,
gradients are unable to backpropagate through
sampled nodes in such cases, making the en-
tire training process intractable. Inspired by
van den Oord et al. (2017); Gal et al. (2017) and
Hu et al. (2019), we employ Gumbol-Softmax
(GS) (Jang et al., 2016; Maddison et al., 2016)
as Di,j to approximate the inference of discrete
dilation values. Suppose that there are D valid
options for dilation value, and di,j ∈ [0, 1]D

is the estimation of one-hot vector that corre-
sponds to the dilation value at position (i, j),
then sampling di,j ∼ GS(hi,j) can be achieved
by

di,j = Di,j(h) =
exp((hi,j + gi,j)/τ)∑

exp((hi,j + gi,j)/τ)
(2)

where
∑

means summation of all tensor elements here; h,hi,j are content-related hidden priors
and their subtensors at each positions, respectively; gi,j ∈ RD are i.i.d. samples drawn from the
Gumbel(0, 1) distribution and τ controls how much the GS is close to a true categorical distribution.

3.2 HIDDEN PRIOR GENERATION

As mentioned in Section 1, we believe dilation adaptation should be governed by feature hierarchy
and build up our dilation inference mechanism upon inter-layer pattern modeling to capture depen-
dencies between abstraction levels. Inspired by Lin et al. (2017); He et al. (2017) and Kirillov et al.
(2019), we consider aggregation as a feasible way and will generate hidden priors h through sequen-
tially aggregating multiple Y from hierarchical layers. Suppose l is the newly added layer index,
then there are several aggregation options for inter-layer patterns modeling.

Recurrent Aggregation. A straightforward way for sequential aggregation can be written as

hl
i,j = f(Wl

hh
l−1
i,j + Ul

hY
l−1
i,j ) (3)

where Wl
h and Ul

h are 1×1 kernels weights with output channel ofD; f(·) is a non-linear activation
function. In this case, hl

i,j continuously accumulates information from each layers as l goes deeper,
implying layers are highly dependent with each other to mutually decide proper RF sizes.

Gated Aggregation. To model inter-layer pattern smarter, we introduce a gate variable alh to mod-
ulate information from each layer in a data-driven manner. We use a similar way to Hochreiter &
Schmidhuber (1997) and Chung et al. (2014) for computing alh, with which the entire aggregation
can be formulated as following

hl
i,j = f(alh ◦ (Wl

hh
l−1
i,j ) + (1− alh) ◦ (Ul

hY
l−1
i,j )) (4)

3



Under review as a conference paper at ICLR 2020

Table 1: mIoU for feature level study. σ2(di,j) is vari-
ance of pixel dilation sampling.

CONV3 CONV4 CONV5 σ2(di,j) MIOU
X 1.96 × 10−4 63.9

X 1.84 × 10−4 64.7
X 4.01 × 10−6 66.5

X X 2.45 × 10−4 65.4
X X 1.24 × 10−4 66.1

X X X 1.93 × 10−4 65.9

Table 2: mIoU for pattern aggregation
study. VGG-16 backbone is combined
with FCN-8s and ResNet-101 is with
Deeplab v3+.

AGGREGATION VGG-16 RESNET-101
MARKOV 66.5 77.2
GATED 65.5 76.7

RECURRENT 65.3 75.6
BACKBONE 64.7 75.1

alh = σ(Wl
ah

l−1
i,j + Ul

aY
l−1
i,j ) (5)

where σ(·) is the sigmoid activation and ◦ means element-wise multiplication. In this way, layers
are not strictly dependent following their hierarchical order and will impact dilation sampling in a
more complicated way.

Markov Aggregation. An important extreme case of Recurrent Aggregation, Markov Aggrega-
tion sets the kernel weights Wl

h from equation (3) to 0. Similar to the Markov model (Gagniuc,
2017), this means RF sizes are dominated by the last layer. No other inter-layer patterns need to be
aggregated for multiple hierarchical layers.

3.3 DISCUSSION

Basically, PAD is a light-weighted extension for general CNN structures, which means it introduces
little extra weights for dilation inference and is independent to feature channel size. More specif-
ically, all the weights brought with PAD have an output channel of D, while other RF adaptation
works such as Dai et al. (2017) often rely on additional modules that need to match the same output
channel size of features. Since D is usually much smaller than feature channel size, PAD kernels
are easier to be deployed at higher level convolution layers.

Moreover, the proposed dilation inference grants a manageable way to partially understand the fea-
ture hierarchy. Through learning RF adaptations based on inter-layer pattern aggregations, we can
better explore the principles behind inter-layer interactions via analyzing dilation changes. It is also
expected that inferring proper dilation values according to inter-layer patterns may help comprehend
the differences between low and high level convolution layers. Such information could be invalu-
able knowledge for designing interpretable architectures. Furthermore, the flexibility of inter-layer
pattern modeling allow PAD-Nets to be attuned to various tasks and applications.

4 PAD-NETS FOR SEMANTIC SEGMENTATION

Since the proposed PAD module is highly related to RF adaptation, dense prediction tasks could be
ideal to test its effectiveness. Thus, we first evaluate PAD-Nets through semantic segmentation to
explore their properties from various aspects. We will show that PAD-Nets is designed for general
purpose and can be applied to solve more problems in later sections.

4.1 GENERAL EXPERIMENTAL CONFIGURATIONS

We implement PAD-Nets with various backbone architectures via PyTorch library (Paszke et al.,
2017). Unless otherwise specified, we will employ VGG-16 (Simonyan & Zisserman, 2014) as
backbone net and follow the same training protocol as FCN-8s (Long et al., 2015) for evaluation.
The default dataset is Pascal VOC 2012 (Everingham et al., 2010) and we report mean Intersection
over Union (mIoU) on its validation set as evaluation results. All the models will be optimized via
Adam optimizer (Kingma & Ba, 2014). All architectural descriptions can be found in Appendix A.
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4.2 FEATURE LEVEL STUDY

In this section, we conduct several experiments to answer the question: which convolution level is
suitable for PAD kernels? Although in static cases RF size for a single layer should keep the same
regardless of lower level dilation, this might not be hold for PAD kernels since dilation values are
subject to various level of sensitivities due to hierarchical feature representations. To confirm this,
we individually extend each convolution block of a vanilla VGG-16 backbone net with PAD kernels
and Markov Aggregation, and run experiments following default settings described in Section 4.1.

(a) Image & GT (b) conv3 only (c) conv4 only (d) conv5 only

Figure 3: The top row indicates the input image and its visualized RFs and ERFs for PAD-VGG16
with different conv blocks. Patches means RFs and red dots inside are ERFs. The bottom row shows
the ground truth and corresponding segemtation results. GT stands for groundtruth.

Table 1 summarizes the mIoU for different cases. When only one block is modified, mIoU increases
when the feature level for PAD changes from low to high. This matches our expectation that PAD
kernels for higher level features perform better than PAD kernels in lower level, as low-level PAD
kernels are more sensitive to local variances and tend to focus on capturing information in a smaller
region; while high-level kernels are usually related to complicated and abstract concepts, leading
them to be more responsive for larger input regions. To further support such a claim, we visualize
both RFs and Effective RFs (ERFs) (Luo et al., 2016) for a randomly picked image and put them
along with their segmentation results in Figure 3. As we can see, both RFs and ERFs continuously
expand their sizes as feature level for PAD goes higher; meanwhile, visually better segmentation
results can be achieved with larger RFs and ERFs. This provides us a supportive example that
encourages PAD extension for higher feature level in practice.

Besides, we also test several cases of combining multiple extended blocks into more complicated
PAD-Net architectures (the last three lines of Table 1). To our surprise, stacking additional PAD-
blocks to single PAD-block may result in inferior performances. We further investigate possible
explanations by calculating the variances of dilation sampling for each cases. We find performances
always decrease when conv5 is combined with more PAD-blocks, along with notable variance in-
crements. Such increments brought by additional sampling might be the reason for performance
downgrading as they make the entire structure more unstable.

4.3 PATTERN AGGREGATION STUDY

Now we focus on studying the impacts brought by each pattern aggregation strategies described in
Section 3.2. As suggested from Section 4.2, we only extend conv5 block of a VGG-16 backbone
into PAD kernels to avoid too much dilation sampling. All three (conv5-1, conv5-2 and conv5-
3) sub-layers are upgraded with PAD kernels and connected as each aggregation asks. We also
include ResNet-101 (He et al., 2016) combined with DeeplabV3+ (Chen et al., 2018) as an additional
backbone to see if skip connections may result in different impacts.

The results are concluded in Table 2. Basically, all three strategies have better results than backbone.
However, for both cases Markov Aggregation always yields a better result than other two options,
implying too much redundant inter-layer patterns might be accumulated. To further explore the root
behind such phenomenon, in Figure 4, we calculate and visualize the mathematical expectations at
each pixel for all three sub-convolution layers. We can see that during the streaming from conv5-1
to conv5-3, PAD-Net with Markov Aggregation is more likely to choose larger dilation everywhere
without carrying spatial patterns of input; while both Gated and Recurrent Aggregation are more
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(a) Markov Pattern (b) Gated Pattern (c) Recurrent Pattern

Figure 4: Mathematical expectation of dilation sampling at each pixel for individual sub-layers
(from left to right: conv5-1 to conv5-3). Brighter color means higher dilation and vise versa. The
input is the same as the one in Figure 1.

Table 3: mIoU of cases with available
dilation options change.

di,j=1 di,j=2 di,j=4 MIOU
X 64.7
X X 66.2
X X X 66.5

(a) Input image (b) w/ 1 dila-
tion option

(c) w/ 2 dila-
tion options

(d) w/ 3 dila-
tion options

Figure 5: Activation maps for PAD-Nets with different
number of dilation options.

willing to adjust RF sizes according to spatial structures from input and reserve some spatial clues
for dilation sampling. In such cases, information aggregated by lower level features could be too
local-sensitive, forcing next layer to put its RF in a smaller region in order to capture such local
variations. Thus, Our results for semantic segmentation indicate Markov Aggregation is the best
option among the three without overly aggregating inter-layer patterns.

4.4 DILATION BOUNDARY DETERMINATION

In this section, we aim to figure out whether more dilation options for a PAD kernel can always lead
to better performance or not. We setup experiments for comparing mIoUs of a VGG-16 backbone
with one, two and three available dilation options for their conv5 blocks, respectively. Based on the
discussion in Section 4.3, we only consider the cases with Markov Aggregation to get rid of impacts
from multiple inter-layer patterns. Other settings remain default.

Our results are shown in Table 3, where we gradually increase the available dilation options based
on their values from top to bottom and compare the changes of mIoU. Note that the case with
the single dilation value 1 is identical to a vanilla backbone net. Apparently, there is a significant
performance boost as the number of dilation options is increased from one to two. However, the
third dilation option only brings a minor improvement. This suggests that major performance gain
is brought by the second one with value 2. We also visualize the output of PAD blocks with a
randomly picked input for each case in Figure 5. When options increased to two and three, There
are more neurons being activated than single dilation with similar spatial distributions. This means
more dilation options may not further improve the performance, as PAD-Net can intelligently decide
the best boundary for dilation values without worrying about overlarge candidates.

4.5 PERFORMANCE BOOSTING FOR BACKBONE ARCHITECTURES

Finally, we verify PAD-Nets can be easily combined various popular base architectures to further
improve their performance. In addition to VGG-16, we also employ another four popular architec-
tures, ResNet-101 (He et al., 2016), Dilated Reside Nets (DRN) (Yu et al., 2017), Xception (Chollet,
2017) and MobileNet-v2 (Sandler et al., 2018), as additional backbone nets. We combined these
base structures with FCN (Long et al., 2015) and Deeplabv3+ (Chen et al., 2018) framework and
evaluate them on Cityscapes (Cordts et al., 2016), a more challenging dataset. Detailed architectures
and configurations be found in Appendix A (Table 8).

We report mIoUs for each backbone net and corresponding PAD-Net in Tables 4 and 5, respectively,
along with other state-of-the-art results for comparison. From these two tables we can see PAD-
Nets could always yield better results for every backbone structure on both datasets, exhibiting
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Table 4: mIoU for VOC 2012 validation set.

METHOD
MIOU

REGULAR PAD
DPN (LIU ET AL., 2015) 67.8 -

CRF+RNN
(ZHENG ET AL., 2015) 69.6 -

DCNN (DAI ET AL., 2017) 75.1 -
VGG-16+FCN-32S 62.8 65.1
VGG-16+FCN-8S 64.7 66.5

RESNET-101+DEEPLABV3+ 75.1 77.2
XCEPTION+DEEPLABV3+ 73.5 74.4
DRN-D-54+DEEPLABV3+ 75.4 77.2

Table 5: mIoU for CityScape validation set.

METHOD
MIOU

REGULAR PAD
DANET-101 (FU ET AL., 2019) 77.6 -
PSP-NET (ZHAO ET AL., 2017) 78.8 -

IN-ABN (ROTA BULÒ ET AL., 2018)
+RESNEXT-101 (XIE ET AL., 2017) 79.2 -

PSP-NET + GFF (LI ET AL., 2019) 80.4 -
GSCNN (TAKIKAWA ET AL., 2019) 80.8 -

MOBILENETV2+DEEPLABV3+ 70.3 71.5
XCEPTION+DEEPLABV3+ 77.5 79.0

RESNET-101+DEEPLABV3+ 80.1 80.7

(a) Image (b) Groundtruth (c) ResNet-101 (d) PAD-ResNet-101

Figure 6: Semantic segmentation results on Cityscapes dataset.

strong robustness and versatility. We also visualize part of segmentation results in Figure 6, which
coincides with mIoU that PAD-Nets have more correctly labeled pixels and more details preserved.
More results on class IoU and segmentation can be found in Appendix B.

5 PAD-NETS FOR IMAGE CLASSIFICATION

In this section, we demonstrate that the proposed PAD-Nets are not only suitable for dense predic-
tion tasks such as semantic segmentation, but also available for more general applications. More
specifically, two fundamental tasks, large-scale and fine-grained image classification will be per-
formed to evaluate the performance of PAD-Nets with several backbone architectures. We show that
PAD-Nets can constantly yield better results than their regular counterparts with little extra costs.

5.1 LARGE-SCALE IMAGE CLASSIFICATION

As an important yet challenging work, large-scale image classification usually requires a CNN
model with more layers in order to achieve better performances. Unfortunately, it also makes the
model significantly increase its model size. We believe PAD-Nets could properly address such
limitations as light-weighted extensions for their base nets, with better performance and similar
training efficiency. To prove this, we select four popular CNN architectures, VGG-16, ResNet-
50, DRN-C-26 and MobileNet-v2, as backbone nets and run experiments on ILSVRC-2012 dataset
(Russakovsky et al., 2015). Similar to segmentation experiments, we only consider Markov Aggre-
gation in following experiments since our pilot studies indicate it always yields better results. Other
configuration details can be found in Appendix A (Table 9).

We report both top-1 and top-5 classification accuracies for every pair of vanilla and PAD-Net in
Table 6, along with the comparison of their model complexity changes. Considering millions of
parameters that backbone models contain, several thousand extra weights introduced by PAD kernels
are trivial burdens regarding to total model complexity. Meanwhile, we can observe around 1%
improvement of top-1 accuracies for each PAD-Net and slight top-5 accuracy improvements for most
cases, suggesting new modules with less than 0.1% size overhead bring 10 times of performance
boosting. This provides us a strong evidence to demonstrate the efficiency of PAD-Nets for large-
scale classification problem. In addition, training curve comparison can be found in Appendix C.
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Table 6: Accuracies for lage-scale image classification on ILSVRC 2012 and corresponding model
complexities. p# means model size and ∆p# is the number of weights introduced by PAD-Nets;
(∆p#)/(p#) is the percentage of model size that PAD-Nets have increased.

METRIC ACCURACY (%) MODEL COMPLEXITY

BACKBONE
TOP@1 TOP@5

P# ∆P# (∆P#)/(P#) (%)REGULAR PAD REGULAR PAD
VGG-16 73.0 74.5 91.2 92.0 138M 21K 0.016
RESNET-50 76.0 76.9 93.0 93.4 25.5M 1K 0.004
DRN-C-26 75.1 75.9 92.4 92.6 21.1M 4K 0.019
MOBILENETV2 71.8 72.6 91.0 90.8 3.5M 2.7K 0.078

Table 7: Top-1 Accuracy for Fine-Grained Visual Classification on different databases.

TASK FINE-GRAINED CLASSIFICATION
DATASET STANFORD CARS FGVC-AIRCRAFTS

CROP SIZE
224 448 224 448

REGULAR PAD REGULAR PAD REGULAR PAD REGULAR PAD
RESNET-50 91.2 91.6 92.3 93.5 86.1 86.6 87.9 90.1
DRN-C-26 91.0 91.4 90.3 92.4 86.3 86.5 86.8 89.6
MOBILENETV2 88.7 88.8 80.6 82.7 83.2 84.1 80.5 87.6

5.2 FINE-GRAINED IMAGE CLASSIFICATION

Unlike general classification problem, fine-grained task puts a special emphasis on mining subtle
discriminative information in order to recognize objects from different sub-categories. In this sec-
tion we empirically demonstrate the proposed PAD-Nets could properly handle such challenges via
their dynamically dilated kernels. We use all backbones from Section 5.1 except for VGG-16 due to
its extremely huge size and initialize corresponding PAD-Nets with their pretrained weights. Exper-
iments are conducted on Stanford Cars (Krause et al., 2013) and FGVC-Aircraft (Maji et al., 2013)
datasets following their default protocol with two input sizes, 224 and 448. Similarly, we put other
configuration details in Appendix A (Table 10).

All of our experimental results are summarized in Table 7, where we compare the top-1 accuracy
for each pair of PAD-Net and its vanilla equivalent. We can only observe trivial improvements with
input size 224 for both datasets. However, performance gain increases to over 2% for nearly every
type of PAD-Net, indicating PAD-Nets could be a much better option for high-resolution images
to get higher performance without more significant resource burdens. Moreover, by comparing the
activation maps of DRN and PAD-DRN, we further discover that PAD-Nets can better capture parts
information and preserve more details than baselines with fixed, predefined dilation values. We
provide such evidence with more visualized activation maps for DRN-C-26 and its PAD-extension
in Appendix B.

6 CONCLUSION

In this paper we formulate the dilation as a learnable weight for convolution kernels such that its
value can be dynamically decided during the running time. This leads to PAD-Nets, a light-weighted,
end-to-end trainable framework that allows their kernels to adjust pixel-wise RFs in a data-driven
manner. To infer proper dilation values based on feature hierarchy, we model inter-layer patterns
via several sequential aggregation strategies. Our studies on semantic segmentation explore various
properties of PAD-Nets and indicate better performance can be achieved when PAD kernels are with
higher feature levels and Markov Aggregation. We also demonstrate PAD-Nets can consistently
boost performances over several popular backbone architectures, and be a valuable option for more
general visual tasks such as large-scale and fine-grained image classifications.
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A ARCHITECTURE AND CONFIGURATIONS

With respect to segmentation tasks, five deep neural networks, as backbones, are modified by in-
corporating PAD layers. Specific architecture and configuration information is listed in Table 8.
For classification tasks, four deep models, VGG-16, ResNet-50, DRN-C-26, and MobileNet-v2, are
modified to PAD-Nets and their architectures and configurations on corresponding PAD-Nets are
listed by Table 9. Concerning fine-grained tasks, three deep models, including ResNet-50, DRN-
C-26, and MobileNet-V2, are modified to PAD-Nets, and specific architecture and configuration
information is listed in Table 10. All PAD-Nets are trained by following Markov Aggregation.

Table 8: PAD-Nets on semantic segmentation tasks. (Section 4.5)

PAD-Nets Architectures Description Configurations
FCN8s/FCN32s + VGG-16 Conv-5 is modified to PAD

layers. Dilation variables are
learnt with 1, 2, and 4.

Follow FCN8s/FCN32s
training scheme with no
augmentation or image
pre-processing or
post-processing. FCN8s is
trained in at once mode.

ResNet-101 + DeeplabV3+ The 3x3 convolution layers in
Layer-4 block are modified to
PAD layers. Dilation
variables are learnt with 1, 2,
and 4.

Follow deeplab VOC-2012
training scheme with batch
size of 8 and outstride of 16.

DRN-D-54 + DeeplabV3+ Layer-7 and Layer-8 are
modified to PAD layers.
Dilation variables are learnt
with 1, 2, and 4.

Follow deeplab VOC-2012
training scheme with batch
size of 8 and outstride of 16.

Xception + DeeplabV3+ The 3x3 convolution layers
are modified in Middle-flow
and Exit-flow where strides
are 1.

Follow deeplab VOC-2012
training scheme with batch
size of 8, outstride of 16, no
BN fine-tuning, and
multi-scale testing.

MobileNetV2 + DeeplabV3+ The 3x3 convolution layers
with stride 1 in depth-wise
modules with output channels
of 160 and 320 are modified
to PAD layers.

Follow deeplab VOC-2012
training scheme with batch
size of 8, outstride of 16, no
BN fine-tuning, and
multi-scale testing.

Table 9: PAD-Nets on large-scale image classification tasks. (Section 5.1)

PAD-Nets Architectures Description Configurations
VGG-16 Only Conv-5 is incorporated with

PAD units. The dilation variables are
learnt based on 1, 2, and 4.

Follow Pytorch ImageNet training
default settings with 128 batch size
and 120 epochs.

ResNet-50 The last three convolution layers in
Layer-2 block are modified with PAD
units. The dilation variable are learnt
based on 1, 2, and 4.

Follow DRN ImageNet training
scheme with 192 batch size and 120
epochs.

DRN-C-26 Layer-8 is modified with PAD units.
The dilation variables are learnt based
on 1, 2, and 4.

Follow original DRN reported
training scheme with 192 batch size
and 120 epochs.

MobileNetV2 The Layer-2 with t=6, c=32, n=3, and
s=2 is modified with PAD units. The
dilation variables are learnt based on
1, 2, and 4.

Follow the setting of 1.0-224 reported
in Sandler et al. (2018) with 256
batch size and 300 epochs.
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Table 10: PAD-Nets on fine-grained image classification tasks. (Section 5.2)

PAD-Nets Architectures Description Configurations
ResNet-50 The last three convolution layers in

Layer-2 block are modified with PAD
units. The dilation variable are learnt
based on 1, 2, and 3.

The setting follows that of DLA
reported in Yu et al. (2018) with two
crop sizes, i.e., 224 and 448.

DRN-C-26 Layer-7 and Layer-8 are modified
with PAD units. The dilation
variables are learnt based on 1, 2, and
3.

The same as the above.

MobileNetV2 The Layer-2 with t=6, c=32, n=3, and
s=2 is modified with PAD units.The
dilation variables are learnt based on
1, 2, and 3.

The same as the above.

Table 11: PAD-FCN8s IoUs on VOC-2012 across all classes

background aeroplane bicycle bird boat bottle bus car cat chair cow
PAD-FCN8s 0.914 0.833 0.388 0.751 0.627 0.740 0.802 0.744 0.805 0.252 0.805

FCN8s 0.908 0.798 0.363 0.776 0.581 0.742 0.775 0.749 0.799 0.292 0.712
dining table dog horse motorbike person potted plant sheep sofa train tv/monitor mIoU

PAD-FCN8s 0.474 0.724 0.729 0.783 0.791 0.510 0.729 0.370 0.773 0.600 0.665
FCN8s 0.375 0.684 0.673 0.765 0.780 0.490 0.760 0.344 0.789 0.572 0.647

B MORE RESULTS ON SEMANTIC SEGMENTATION AND FINE-GRAINED
IMAGE CLASSIFICATION

More quality results on semantic segmentation tasks are shown in Figure 7, Figure 8, and Figure
9. More class IoUs are included in Table 11, Table 12, Table 13, and Table 14. For fine-grained
classification tasks, detailed feature maps for fine-grained image classification are shown in Figure
11.

C TRAINING CURVE FOR LARGE-SCALE IMAGE CLASSIFICATION

The training curve for large-scale image classification is shown in Figure 10. We can see PAD-Nets
have similar and even better convergence rates comparing to their conventional counterparts.

Table 12: PAD-ResNet-101 IoUs on VOC-2012 across all classes

background aeroplane bicycle bird boat bottle bus car cat chair cow
PAD-ResNet-101 0.932 0.838 0.393 0.848 0.622 0.756 0.908 0.848 0.918 0.373 0.874

ResNet-101 0.922 0.770 0.388 0.853 0.626 0.698 0.913 0.836 0.886 0.225 0.835
dining table dog horse motorbike person potted plant sheep sofa train tv/monitor mIoU

PAD-ResNet-101 0.584 0.879 0.851 0.805 0.833 0.554 0.852 0.534 0.835 0.648 0.772
ResNet-101 0.568 0.862 0.791 0.810 0.815 0.452 0.764 0.461 0.824 0.691 0.751
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Table 13: PAD-DRN-54 IoUs on VOC-2012 across all classes

background aeroplane bicycle bird boat bottle bus car cat chair cow
PAD-DRN-54-D 0.927 0.823 0.384 0.845 0.668 0.729 0.915 0.838 0.852 0.294 0.876

DRN-54-D 0.921 0.799 0.345 0.846 0.660 0.723 0.868 0.848 0.884 0.313 0.820
dining table dog horse motorbike person potted plant sheep sofa train tv/monitor mIoU

PAD-DRN-54-D 0.568 0.839 0.836 0.814 0.813 0.491 0.805 0.434 0.781 0.693 0.772
DRN-54-D 0.528 0.840 0.801 0.805 0.800 0.475 0.739 0.492 0.750 0.675 0.754

Table 14: PAD-ResNet-101 IoUs on Cityscapes across all classes

road sidewalk building wall fence pole light sign vegetation terrain
PAD-ResNet-101 0.984 0.867 0.934 0.610 0.654 0.668 0.737 0.817 0.930 0.653

ResNet-101 0.983 0.860 0.931 0.625 0.638 0.648 0.726 0.801 0.929 0.659
sky person rider car truck bus train motorcycle bicycle mIoU

PAD-ResNet-101 0.954 0.840 0.674 0.956 0.810 0.919 0.808 0.722 0.796 0.807
ResNet-101 0.953 0.833 0.658 0.953 0.797 0.912 0.815 0.720 0.787 0.801

(a) Image (b) GT (c) FCN8s (d) PAD-
FCN8s

(e) ResNet-
101

(f) PAD-
ResNet-101

(g) DRN (h) PAD-
DRN

Figure 7: Semantic segmentation results on Pascal VOC 2012.

(a) Image (b) GT (c) ResNet-101 (d) PAD-ResNet-101

Figure 8: Semantic segmentation results from ResNet-101 and PAD-ResNet-101 on Cityscapes.
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(a) Image (b) GT (c) Xception (d) PAD-Xception

Figure 9: Semantic segmentation results from Xception and PAD-Xception on Cityscapes.

Figure 10: The training curve of large-scale image classification using PAD-Nets based on the VGG-
16 and ResNet-50 .
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(a) Image (b) Layer1 (c) Layer2 (d) Layer3 (e) Layer4 (f) Layer5 (g) Layer6 (h) Layer7 (i) Layer8

Figure 11: Activation maps of regular DRN-C-26 (Odd rows) and PAD-DRN-C-26 (Even row) for
samples from Stanford Cars and FGVC-Airecrafts.
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