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Abstract— Although face detection has been intensely studied
for decades, it is still a challenging topic due to numerous
conditions, e.g. heavy occlusions, low resolutions, extreme poses,
non-face patterns that look like human faces, etc. This paper
proposes a novel region-based ConvNet to address these issues.
Our approach enhances the interior deep facial features and
explicitly incorporates the exterior deep features. The enhanced
interior features provide fine details for small faces. The exterior
features capture the local information surrounding the face,
supporting the detection under challenging conditions. Experi-
ments show that our proposed components improve the baseline
method significantly. Additionally, our approach consistently
achieves competitive performance in four challenging databases,
i.e. Wider Face, AFW, PASCAL Faces, and FDDB. We also
introduce a new challenging non-face dataset1 of 6,000 images
to benchmark false positive rates for future research.

I. INTRODUCTION

Face detection has been studied for decades to find robust

solutions to detect faces in the wild [32], [44], [19], [15],

[23], [16], [24], [3], [34], [21], [7]. In recent years, the use

of Convolutional Neural Networks (ConvNets) has brought

a huge performance improvement in face detection [17], [6],

[37], [26], [35], [27], [42], [2], [20]. However, there is no

current method that can match the capability of human in

face detection, not to mention beating it. We argue that the

difficulty mainly comes from two challenges: 1) small faces
(Figure 1 top) and 2) unclear faces (Figure 1 bottom). By

small it means the face consists of very few pixels, so that

little information can be acquired from the face region. By

unclear it means that the face lacks the explicit patterns

due to occlusion, low resolution, or large pose. These two

challenges are common in the wild and they often appear

at the same time. One may argue that we can upscale a

small face into a bigger one and do detection on top of it.

But the enlarged small face becomes an unclear face due to

low resolution. So naively upscaling before detection is not

enough. Therefore we should address these two challenges

simultaneously.

Instead of training a ConvNet that is invariant to all

the challenging conditions, we argue the solution lies in

the design of features which explicitly address these chal-

lenges. [41] shows that features in deep ConvNets have

the hierarchical nature. Low-level layers respond to corners

and other edge/color conjunctions. Middle-level layers have

more complex invariances. And high-level layers show sig-

nificant invariance and are more class-specific. Based on

1will be publicly available

Fig. 1. Detection examples of crowded small faces (top) and heavily
occluded faces (bottom) in the wild using our proposed approach. Box colors
indicate confidence given by the colorbar. Best viewed in color.

this property, we design a novel region-based ConvNet with

challenge-oriented features constructed from given features

in the base ConvNet.

Dealing with small faces: The network should be able

to extract good interior features with very fine details such

as structures of eyes, mouth and nose. In ConvNets, the

fine detailed features appear in the low-level layers with

local receptive fields and have high resolutions. But they

lack the class-specific information. On the other hand, many

detection systems use coarse high-level features from layers

with global receptive fields. But they are invariant to fine

details. Therefore, we enhance the high-level features with
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Fig. 2. The 2-stage network overview of our detection method.

fine detailed features by constructing multi-scale features.

Dealing with unclear faces: In this case, the interior

features are somehow corrupted because of occlusion or blur.

So we also need to look outside the face region for exterior

features. This is actually the way humans detect faces.

Because we have the prior knowledge of the human body,

we not only look into the face region for facial components,

but also outside the face for surrounding contextual cues like

hair, shoulder and torso. Indeed, the contextual information

helps verify the existence of challenging faces. On the other

hand, it can also help to reject false positives. Based on

this intuition, we let the network predict an exterior region

for each interior region proposal and extract the features in

exterior regions to support face detection.

Model design and evaluation: Our region-based ConvNet

is illustrated in Figure 2. We first conduct ablation studies

to verify the effect of proposed components. Then our best

model is evaluated on four public face detection databases,

the Wider Face [38], the Face Detection Dataset and Bench-

mark (FDDB) [12], the Annotated Faces in the Wild (AFW)

[44] and the PASCAL Faces [36]. It is compared against

many other recent face detection methods [24], [3], [34],

[37], [17], [6], [26], [35], [38], [27], [42], [20]. Experimental

results show that our approach outperforms these approaches

by a considerable margin and is robust when dealing with

faces under extreme conditions. We also evaluate our ap-

proach on a collected non-face dataset with around 6,000

images to benchmark the false positive rates.

Our Contributions: 1) We propose a novel region-based

ConvNet method with enhanced interior and exterior deep

facial features to find faces in the wild. 2) We demon-

strate state-of-the-art performance on numerous challenging

datasets, i.e. Wider Face, AFW, PASCAL Faces and FDDB.

3) We also introduce a new challenging non-face dataset to

benchmark false positive rates in the wild.

II. RELATED WORK

Cascade interior ConvNet features: Thanks to the devel-

opment of deep ConvNets [14], [30], robust features can be

extracted from large-scale raw data. Thus, the recent CNN-

based face detection methods can address the wildness of

environments. Some works adopt the boosting style meth-

ods with a cascade of ConvNets [17], [42]. Some studies

follow Deformable Part Models approaches, splitting a face

into several parts and training each part to give scores for

the whole face [37], [26]. However, these methods require

training multiple networks that are computational expensive.

Shared interior ConvNet features: Feature sharing is

the key to alleviate computational inefficiency. For example,

DDFD [6] combines sliding window approaches with fine-

tuned CNN models to detect faces. Chen et al. [2] and

Li et al. [20] incorporate the region proposal step into the

networks. However, these methods extract features purely

from the last convolution feature map, which may fail to

deal with faces in different scales.

Multi-scale interior ConvNet features: For tiny faces,

low-level features are more discriminative than high-level

features. ScaleFace [39] splits a large range of target scales

into a set of sub-ranges and addresses each sub-range with a

feature map of specialized scale. HyperFace [27] follows the

framework of R-CNN [9], but concatenates features from low

to high levels. However, the region proposals are generated
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(a) Stage 1

(b) Stage 2

Fig. 3. Visualization of interior and exterior features for each stage.

by external modules, which can be inconsistent and is the

bottleneck to the performance. Also, purely using interior

features makes the system not robust if faces are occluded

or in poor quality.

Integrating exterior ConvNet features: Features outside

the region proposal is the only clue for the system under

some circumstances, e.g. a person wearing a mask. It is

also helpful to use additional exterior information in ordi-

nary cases. Inside-Outside Networks (ION) [1] apply 4-way

within-layer recurrent structure to make feature maps learn

global information. However, for any region, it uses global

features, which may bring noise. MultiPath [40] network

concatenates features from enlarged RoI regions to capture

exterior information. However, the exterior region is binded

to the RoI, making it agnostic to specific objects.

III. OUR APPROACH

A. Method Overview

Our network is a generalization of Faster R-CNN [28]. The

overall architecture is illustrated in Figure 2. Given an input

image with faces, it first passes through a set of convolution

layers to generate the convolutional feature maps. In this

work we use the convolution layers fine-tuned from the

VGG-16 network [30]. Then the feature maps are shared

by three stages to construct features for their tasks.

Stage 1 is a Multi-Task Region Proposal Network (MT-

RPN). It constructs a multi-scale feature map from the con-

volutional feature maps to predict a set of candidate interior

regions, as well as associated exterior regions simultaneously.

MT-RPN is in fully convolutional style so it can take an

input image of arbitrary size. In Stage 2 the interior and

exterior features are extracted from the convolutional feature

Fig. 4. Region proposals generated rely solely on the last convolution
feature map (left) and multi-scale feature maps (right). The high confidence
RoIs become much more consistent by introducing features from multiple
layers. Box colors indicate confidence scores given by the colorbar on the
right.

maps given each interior region and exterior region. They

are fused (concatenated) together to predict the final face

bounding box.

We discuss about how to enhance interior features and

incorporate exterior features in the following sections. The

visualization of interior and exterior features are illustrated

in Figure 3.

B. Enhancing Interior Features

Traditional region-based ConvNets extract interior features

from a single coarse high-level feature map. We argue that

this is insufficient to detect challenging faces, especially the

small ones. Because small faces require extraction of very

fine details but the high-level features are invariant to fine

details.

In order to solve this problem, our proposed network

employs both high-level and low-level features, i.e. multi-

scale features. The feature maps are incorporated from lower

level convolution layers with the last convolution layer for

all three stages as shown in Figure 3. Therefore, both low-

level features with localization capability and high-level

feature with semantic information are fused together [10].

Specifically, Stage 1 concatenates “pool3”, “pool4”, and

“conv5 3” from the convolutional feature maps and reduce

the dimension to construct the multi-scale RPN feature

(Figure 3 (a)). Notice that “pool3” has twice the width and

height as “pool4” and “conv5 3”, it is down sampled using

max-pooling before concatenation. In Stage 2 the proposed

interior regions are projected into not only “conv5 3” but

also “conv3 3” and “conv4 3”. Then features with fixed size

are extracted from these layers using RoI-pooling [8] and

are concatenated followed by dimension reduction (Figure

3 (b)). The multi-scale features can help to generate more

accurate region proposals as visualized in Figure 4.

To construct the multi-scale features, naive concatenation

of feature maps is infeasible since the feature maps from

different layers have different properties in terms of number

of channels, scale of values and norm of feature map pixels.

Generally, the values in higher layers are usually much

smaller than the ones in lower layers, which leads to the dom-

inance of low-level features. This problem is addressed by

performing normalization right before the concatenation (not

visualized in Figure 3) using �-2 normalization layer [22].
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The feature maps are re-scaled such that they have learnable

norms along the channel direction after normalization. The

initial learnable norms are set following two rules. Firstly,

the average norm for each feature map is roughly identical.

Secondly, after dimension reduction the resulting feature map

should have the same average norm as the original feature

map in Faster R-CNN.

C. Incorporating Exterior Features

When people search for faces, we look for not only the

facial patterns, e.g. eyes, nose, mouth, etc., but also surround-

ing information outside the faces, such as hair, shoulders,

torso, etc, as the supporting information. On one hand, these

exterior information helps to confirm the existence of a face.

On the other hand, exterior information also helps to reject

confusing false positives as shown in Figure 5. Based on this

intuition, our network is designed to make explicit reference

to the exterior information.

To be more specific, in Stage 1 the MT-RPN generates

both interior and exterior region candidates in a multi-task

fashion from the shared mutli-scale features (Figure 3 (a)).

The multi-task fashion allows two tasks benefit each other

[27]. Then in Stage 2 the exterior region candidates are

projected into “conv3 3”, “conv4 3” and “conv5 3” to extract

feature maps from these layers using RoI-warping [5]. Sim-

ilar to the extraction of interior feature, these feature maps

are then normalized, concatenated and dimension-reduced to

a single feature blob. After two fully connected layers, the

final exterior feature vector is concatenated with the interior

feature vector. They together contribute to the computation

of confidence scores and bounding box regression (Figure 3

(b)).

In order to model the one-to-one spatial relation between

interior and exterior regions, the exterior regions are param-

eterized as box offsets w.r.t. their associated interior regions.

Mathematically, there are four spatial parameters tx, ty, tw,

and th defined in Equation (1).

tx = (xe− xi)/wi tw = log(we/wi)

ty = (ye− yi)/hi th = log(he/hi)
(1)

where x(∗), y(∗), w(∗), and h(∗) denote the two coordinates of

the box center, width, and height respectively. e and i stand

for exterior and interior respectively. The back-propagation

rules are straightforward as presented in Equation (2) derived

from Equation (1).

∂ l
∂ tx

=
∂ l
∂xe

wi
∂ l
∂ tw

=
∂ l

∂we
wi exp(tw)

∂ l
∂ ty

=
∂ l
∂ye

hi
∂ l
∂ th

=
∂ l

∂he
hi exp(th)

(2)

where ∂ l
∂xe

, ∂ l
∂ye

, ∂ l
∂we

, and ∂ l
∂he

are back-propagated from the

RoI-warping layer. During training, the spatial parameters

are initialized such that the interior region and exterior region

roughly satisfy the spatial relation between the face and the

surrounding region of a standard human body. In this work

we set the initial spatial parameters as tx = 0.07, ty = 1.53,

tw = 0.95, and th = 1.34. These parameters are computed

Fig. 5. Examples of images in our collected non-face dataset. These images
contain objects similar to human faces. In these cases, exterior information
is important to reject fake faces.

using the PASCAL-Part Dataset [4]. Specifically, we go

through all the person instances with visible face and torso

parts and retrieve the face boxes and body boxes which

tightly enclose their part segmentation. Note that face box

encloses only the face part while body box encloses both

face and torso part. We ignore the arms and legs because

they may be self-occluded. For each face and body box pair,

parameters are computed using Equation (1). In the end all

parameters are averaged across all the instances.

D. Network Training

Our network is implemented in the Caffe [13] framework.

We train the whole network jointly. Here we adopt the same

hyper-parameters in [28]. In Stage 1 the smooth �-1 loss is

applied on proposed interior bounding box regression and the

softmax loss is applied on interior region scores. Since there

is no ground-truth for proposed exterior bounding boxes, they

are supervised by the gradients back-propagated from Stage

2. In Stage 2 the final face scores are supervised by softmax

loss and face bounding box regression are again supervised

using smooth �-1 loss.

IV. EXPERIMENTS

This section presents the experimental results in face

detection2. We first conduct the ablative study to analyze

the effectiveness of each of our proposed components. Then

we evaluate the final model on common face detection

benchmarks. Finally we also provide the reference time.

A. Ablation Study

To investigate the effect of each component in our net-

work, we conduct several ablation experiments. All models

are trained on the Wider Face training set and evaluated on

the validation set with 3,226 images. The validation images

are divided into three parts based on their detection rates

on EdgeBox [45]. In other words, face images are divided

into three levels according to the difficulties of the detection,

i.e. Easy, Medium and Hard. The Hard level includes more

challenging faces such as small faces or heavily occluded

faces. The performance comparison are presented in Table I.

Baseline. Our detector is a generalization of Faster R-

CNN [28], so we directly train a slightly modified version as

our baseline method termed FRCNN-face with no enhanced

interior features nor exterior features. Different from [28],

2More qualitative results can be seen in the supplementary materials
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Fig. 6. Visualization of exterior regions (magenta) predicted by the
network. Green boxes are the detection of faces.

we only use square anchors. All other hyper-parameters are

kept the same. It can give decent performance on Easy and

Medium cases, but unsatisfying results on Hard level (shown

as the first row of Table I).

The effect of enhanced interior features. Then we

add enhanced interior features (IF). This is implemented by

adding multi-scale features in Stage 1 and 2 as mentioned in

Section III-B, which improves the performance on all three

levels (shown as the second row of Table I). Especially, we

observe about 20% absolute improvement on Hard level. This

suggests that enhanced interior features help finding more

challenging faces.

The effect of exterior features. Next we incorporate the

exterior features (EF). This is implemented by predicting

additional exterior region proposals in Stage 1 and fusing

the interior and exterior features in Stage 2. We observe

another improvement on all three levels, especially the Hard

case (shown as the third row of Table I). This is a clear

evidence that explicit reference to exterior features can

support detection of challenging faces. To better understand

how exterior features help improve the performance, we

visualize all the interior and exterior region pairs, i.e. the

face and body box pairs, predicted by the network. Some

examples of challenging faces and their corresponding body

regions are illustrated in Fig. 6. It shows the exterior regions

roughly focus on the face and torso parts and adapt across

instances. This means the features from the exterior regions

(torso part) provide visual cues for finding hard faces.

The effect of multi-scale testing. Inspired by [11], we

apply the multi-scale testing technique (MST) to our method

and compare with the VGG version of [11] termed as HR-

VGG16. We rescale each image to 0.5X, 1.0X and 2.0X

and run our detector. The detection results are gathered

from three images and combined together. We use non-

maximum suppression with a threshold of 0.3 to remove

redundant detections. This gives another performance boost,

outperforming [11] on all three cases. This indicates that our

method can find more faces on various scale level.

B. Benchmark Evaluation

We run our model with IF, EF and MST on the Wider

Face dataset [38]. Under this database, our approach robustly

outperforms strong baseline methods, including Two-stage

TABLE I

ABLATION STUDIES ON THE EASY, MEDIUM, AND HARD LEVEL OF

WIDER FACE VALIDATION SET. NUMBERS ARE THE AVERAGE

PRECISION SCORES. IF: ENHANCED INTERIOR FEATURES; EF:

EXTERIOR FEATURES; MST: MULTI-SCALE TESTING.

Methods Easy Medium Hard

FRCNN-face 84.3% 73.1% 40.9%
Ours(IF) 88.7% 86.1% 61.2%

Ours(IF+EF) 90.6% 88.3% 66.1%

HR-VGG16 [11] 86.2% 84.4% 74.9%
Ours(IF+EF+MST) 91.6% 89.8% 79.2%

CNN [38], Multiscale Cascade CNN [38], Faceness [37] and

Aggregate Channel Features (ACF) [34], Multitask Cascade

CNN [42] by a considerable margin.

We also show that our model trained on the Wider Face

dataset generalizes well to other standard face detection

datasets including the AFW [44], the PASCAL faces [36],

and the FDDB [12]. Our network without MST alone is able

to consistently achieve state-of-the-art results against other

popular face detection methods, including MTCNN [42],

Conv3D [20], HyperFace [27], DP2MFD [26], CCF [35],

Faceness [37], NPDFace [21], MultiresHPM [7], DDFD [6],

CascadeCNN [17], ACF [34], Pico [23], HeadHunter [24],

Joint Cascade [3], Boosted Exemplar [16], and PEP-Adapt

[15], Face++ [43], SURF Cascade multiview [18], XZJY

[29].

Additionally, we collect a new challenging Non-Face

dataset with 6,000 images containing objects that look like

human faces but are not faces in the wild, which will be

released. It is used for evaluating the detector’s false positive

rates under challenging conditions. A good detector should

not only find as many faces as possible, but also reject non

faces even they look like faces.

Wider Face dataset. Wider Face is a public face detection

benchmark dataset [38] released recently. It contains 393,703

labeled human faces from 32,203 images collected based

on 61 event classes from Internet. The database has many

human faces with a high degree of pose variation, large

occlusions, low-resolutions and strong lighting conditions.

The images in this database are organized and split into three

subsets, i.e. training, validation and testing. Each contains

40%, 10% and 50% respectively of the original databases.

The images and the ground-truth labels of the training and

the validation sets are available online for experiments. In

the testing set, only the testing images are available online.

All detection results are sent to the database server for

evaluating and receiving the Precision-Recall curves. In our

face detection experiments, our model is trained on the

training set of the Wider Face dataset containing 159,424

annotated faces collected in 12,880 images. The trained

model on this database are used in testing of all databases

without further fine-tuning.

Testing and Comparison. We run our detector with IF,

EF and MST on the Wider Face testing set. Our proposed

method is compared against all published methods , i.e.
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(a) Easy level (b) Medium level (c) Hard level

Fig. 7. Precision-Recall curves obtained by our proposed method (red) and the other published strong baselines on the Wider Face testing set. Numbers
show the average precision scores.

Fig. 8. Examples of the top 20 false positives from our model tested on the Wider Face validation set. In fact these false positives include many human
faces not in the dataset due to mislabeling, which means that our method is robust to the noise in the data.

Multitask Cascade CNN [42], Two-stage CNN [38], Mul-

tiscale Cascade CNN [38], Faceness [37], and Aggregate

Channel Features (ACF) [34]. All these methods are trained

and tested following the same evaluation protocols. We don’t

compare with [11] because it doesn’t report the performance

of VGG version detector on the testing set. The Precision-

Recall curves and average precision scores are shown in

Figure 7. Our method outperforms those strong baselines by

a considerable margin. It achieves the best average precision

in all level faces, and outperforms the second best baseline by

7.06% (Easy), 8.78% (Medium) and 29.98% (Hard). These

results suggest that as the difficulty level goes up, our model

can detect challenging faces better. So it has the ability to

handle difficult conditions hence is more closed to human

detection performance.

Visualization of False Positives. As it is well known that

precision-recall curves degrade due to the false positives, we

are interested in the false positives produced by our model.

We are curious about what object can fool our model to

treat it as a face. Is it due to over-fitting, data bias, or miss

labeling? In order to visualize the false positives, we test our

model on the Wider Face validation set and pick all the false

positives according to the ground truth. Then those positives

are sorted by the confidence score in a descending order.

We choose the top 20 false positives as illustrated in Figure

8. Because their confidence scores are high, they are the

objects most likely to cause our model making mistakes. It

turns out that most of the false positives are actually human

faces caused by miss labeling in the dataset. For other false

positives, we find the errors made by our model are rather

reasonable. They all have the pattern of human face as well

as the shape of human body.

AFW, PASCAL Faces and FDDB datasets. To show

that our method generalizes well to other databases, the

proposed method is also benchmarked on three challenging

face detection datasets, i.e. AFW [44], PASCAL Faces [36]

and FDDB database [12]. We choose the model with IF and

EF only. Without MST, it can already achieve the state-of-

the-art performance. The performance curves are generated

using the tool from [24].

On the PASCAL Faces and AFW datasets we compare

with DPM [24], HeadHunter [24], SquaresChnFtrs-5 [24],

Structured Models [33], Shen et al. [29], TSM [44], Picasa,

Face++ [43].

On FDDB dataset we compare with several published

methods including MTCNN [42], Conv3D [20], HyperFace

[27], DP2MFD [26], CCF [35], Faceness [37], NPDFace

[21], MultiresHPM [7], DDFD [6], CascadeCNN [17], ACF

[34], Pico [23], HeadHunter [24], Joint Cascade [3], Boosted

Exemplar [16], and PEP-Adapt [15], Face++ [43], SURF
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(a) AFW (b) PASCAL Faces (c) FDDB

Fig. 9. Comparison between our method (red) and popular state-of-the-art methods on the AFW, PASCAL Faces, and FDDB datasets.

(a) AFW (b) PASCAL Faces (c) FDDB

Fig. 10. Some examples of face detection results using our approach on the AFW, PASCAL Faces, and FDDB databases.

Cascade multiview [18], XZJY [29].

The proposed method outperforms all previous methods as

shown in Figure 9. This is a concrete evidence to demonstrate

that our method robustly detects unconstrained faces. Figure

10 shows some examples of the face detection results on

three datasets.

Non-Face dataset. This experiment is designed to test

the tolerance of our system to face-like non-face images.

Though we have different databases for testing the precision

and recall of the system, the testing images usually contain

faces, which renders the current face databases samples

from a particular distribution. To test whether our system

is over-fitting to that particular distribution and whether it

is generally robust to other kind of images, we establish

a new non-face database. The 6,000 images are selected

from the Internet and contain face-like objects in different

circumstances (Figure 5). The background are generally in

the wild. The result of our system is shown in Table II, along

with some baselines. Each face detector is first benchmarked

by setting a reasonable threshold based on its precision and

recall on the AFW dataset [44]. Then we record the number

of false alarms on the non-face dataset, the precision and

recall on AFW dataset under the benchmarked setting. Our

method triggers the fewest false alarms while achieving the

highest precision and recall on AFW dataset.

C. Inference Time

During inference, our method is running on a single Titan

X GPU machine with Intel Core i7-6700 CPU @ 3.40GHz

TABLE II

THE NUMBER OF FALSE ALARMS ON OUR NON-FACE DATASET UNDER

REASONABLE PRECISION AND RECALL ON THE AFW [44] DATASET.

Methods #False-alarms Precision Recall

Pittpatt [25] 2353 0.76 0.92
Viola-Jones [32] 117 0.96 0.45
Joint Cascade [3] 325 0.89 0.76

Deep Cascade [31] 231 0.97 0.81
HR-ResNet101 [11] 48 0.98 0.99

Ours 10 0.98 0.98

in batch size of 1. It takes 0.168s per frame running on

WiderFace or AFW (XGA quality) and 0.045s per frame on

FDDB or PASCAL Faces (VGA quality).

V. CONCLUSIONS

This paper has presented our proposed region-based Con-

vNet for unconstrained face detection. The superior perfor-

mance on four face detection datasets shows its capability to

extract robust facial feature representation which is invariant

to various challenging conditions in the real-world scenario.

In addition we also introduced a Non-Face database for

testing the system’s tolerance to images containing face-like

but non-face objects, which will be published.
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