
Published as a conference paper at ICLR 2019

LEARNING WHEN TO COMMUNICATE AT SCALE IN
MULTIAGENT COOPERATIVE AND COMPETITIVE
TASKS

Amanpreet Singh∗
New York University
Facebook AI Research†
amanpreet@nyu.edu

Tushar Jain∗
New York University
tushar@nyu.edu

Sainbayar Sukhbaatar
New York University
Facebook AI Research†
sainbar@cs.nyu.edu

ABSTRACT

Learning when to communicate and doing that effectively is essential in multi-agent
tasks. Recent works show that continuous communication allows efficient training
with back-propagation in multiagent scenarios, but have been restricted to fully-
cooperative tasks. In this paper, we present Individualized Controlled Continuous
Communication Model (IC3Net) which has better training efficiency than simple
continuous communication model, and can be applied to semi-cooperative and
competitive settings along with the cooperative settings. IC3Net controls continu-
ous communication with a gating mechanism and uses individualized rewards for
each agent to gain better performance and scalability while fixing credit assign-
ment issues. Using variety of tasks including StarCraft BroodWarsTM explore and
combat scenarios, we show that our network yields improved performance and
convergence rates than the baselines as the scale increases. Our results convey that
IC3Net agents learn when to communicate based on the scenario and profitability.

1 INTRODUCTION

Communication is an essential element of intelligence as it helps in learning from others experience,
work better in teams and pass down knowledge. In multi-agent settings, communication allows agents
to cooperate towards common goals. Particularly in partially observable environments, when the
agents are observing different parts of the environment, they can share information and learnings
from their observation through communication.

Recently, there have been a lot of success in the field of reinforcement learning (RL) in playing Atari
Games (Mnih et al., 2015) to playing Go (Silver et al., 2016), most of which have been limited to the
single agent domain. However, the number of systems and applications having multi-agents have
been growing (Lazaridou et al., 2017; Mordatch & Abbeel, 2018); where size can be from a team
of robots working in manufacturing plants to a network of self-driving cars. Thus, it is crucial to
successfully scale RL to multi-agent environments in order to build intelligent systems capable of
higher productivity. Furthermore, scenarios other than cooperative, namely semi-cooperative (or
mixed) and competitive scenarios have not even been studied as extensively for multi-agent systems.

The mixed scenarios can be compared to most of the real life scenarios as humans are cooperative
but not fully-cooperative in nature. Humans work towards their individual goals while cooperating
with each other. In competitive scenarios, agents are essentially competing with each other for better
rewards. In real life, humans always have an option to communicate but can choose when to actually
communicate. For example, in a sports match two teams which can communicate, can choose to not
communicate at all (to prevent sharing strategies) or use dishonest signaling (to misdirect opponents)
(Lehman et al., 2018) in order to optimize their own reward and handicap opponents; making it
important to learn when to communicate.
∗Equal contribution.
†Current affiliation. This work was completed when authors were at New York University.

1

Published as a conference paper at ICLR 2019

Teaching agents how to communicate makes it is unnecessary to hand code the communication
protocol with expert knowledge (Sukhbaatar et al., 2016)(Kottur et al., 2017). While the content of
communication is important, it is also important to know when to communicate either to increase
scalability and performance or to increase competitive edge. For example, a prey needs to learn when
to communicate to avoid communicating its location with predators.

Sukhbaatar et al. (2016) showed that agents communicating through a continuous vector are easier to
train and have a higher information throughput than communication based on discrete symbols. Their
continuous communication is differentiable, so it can be trained efficiently with back-propagation.
However, their model assumes full-cooperation between agents and uses average global rewards. This
restricts the model from being used in mixed or competitive scenarios as full-cooperation involves
sharing hidden states to everyone; exposing everything and leading to poor performance by all
agents as shown by our results. Furthermore, the average global reward for all agents makes the
credit assignment problem even harder and difficult to scale as agents don’t know their individual
contributions in mixed or competitive scenarios where they want themselves to succeed before others.

To solve above mentioned issues, we make the following contributions:

1. We propose Individualized Controlled Continuous Communication Model (IC3Net), in
which each agent is trained with its individualized reward and can be applied to any scenario
whether cooperative or not.

2. We empirically show that based on the given scenario–using the gating mechanism–our model can
learn when to communicate. The gating mechanism allows agents to block their communication;
which is useful in competitive scenarios.

3. We conduct experiments on different scales in three chosen environments including StarCraft and
show that IC3Net outperforms the baselines with performance gaps that increase with scale. The
results show that individual rewards converge faster and better than global rewards.

2 RELATED WORK

The simplest approach in multi-agent reinforcement learning (MARL) settings is to use an independent
controller for each agent. This was attempted with Q-learning in Tan (1993). However, in practice it
performs poorly (Matignon et al., 2012), which we also show in comparison with our model. The
major issue with this approach is that due to multiple agents, the stationarity of the environment is
lost and naïve application of experience replay doesn’t work well.

The nature of interaction between agents can either be cooperative, competitive, or a mix of both.
Most algorithms are designed only for a particular nature of interaction, mainly cooperative settings
(Omidshafiei et al., 2017; Lauer & Riedmiller, 2000; Matignon et al., 2007), with strategies which
indirectly arrive at cooperation via sharing policy parameters (Gupta et al., 2017). These algorithms
are generally not applicable in competitive or mixed settings. See Busoniu et al. (2008) for survey of
MARL in general and Panait & Luke (2005) for survey of cooperative multi-agent learning.

Our work can be considered as an all-scenario extension of Sukhbaatar et al. (2016)’s CommNet for
collaboration among multiple agents using continuous communication; usable only in cooperative
settings as stated in their work and shown by our experiments. Due to continuous communication, the
controller can be learned via backpropagation. However, this model is restricted to fully cooperative
tasks as hidden states are fully communicated to others which exposes everything about agent. On the
other hand, due to global reward for all agents, CommNet also suffers from credit assignment issue.

The Multi-Agent Deep Deterministic Policy Gradient (MADDPG) model presented by Lowe et al.
(2017) also tries to achieve similar goals. However, they differ in the way of providing the coordination
signal. In their case, there is no direct communication among agents (actors with different policy per
agent), instead a different centralized critic per agent – which can access the actions of all the agents –
provides the signal. Concurrently, a similar model using centralized critic and decentralized actors
with additional counterfactual reward, COMA by Foerster et al. (2018) was proposed to tackle the
challenge of multiagent credit assignment by letting agents know their individual contributions.

Vertex Attention Interaction Networks (VAIN) (Hoshen, 2017) also models multi-agent communi-
cation through the use of Interaction Networks (Battaglia et al., 2016) with attention mechanism
(Bahdanau et al., 2015) for predictive modelling using supervised settings. The work by Foerster

2

Published as a conference paper at ICLR 2019

et al. (2016b) also learns a communication protocol where agents communicate in a discrete manner
through their actions. This contrasts with our model where multiple continuous communication
cycles can be used at each time step to decide the actions of all agents. Furthermore, our approach is
amenable to dynamic number of agents. Peng et al. (2017) also attempts to solve micromanagement
tasks in StarCraft using communication. However, they have non-symmetric addition of agents in
communication channel and are restricted to only cooperative scenarios.

In contrast, a lot of work has focused on understanding agents’ communication content; mostly in
discrete settings with two agents (Wang et al., 2016; Havrylov & Titov, 2017; Kottur et al., 2017;
Lazaridou et al., 2017; Lee et al., 2018). Lazaridou et al. (2017) showed that given two neural network
agents and a referential game, the agents learn to coordinate. Havrylov & Titov (2017) extended this
by grounding communication protocol to a symbols’s sequence while Kottur et al. (2017) showed
that this language can be made more human-like by placing certain restrictions. Lee et al. (2018)
demonstrated that agents speaking different languages can learn to translate in referential games.

3 MODEL

LSTM LSTM LSTM LSTM

f
g f

g f
g f

g

g0
t gi

t gi+1
t gJ

t

h0
t hi

t hi+1
t hJ

t

mean

LSTM LSTM LSTM LSTM

c0
t ci

t ci+1
t cJ

t

Agent0 Agenti
Agenti+1 AgentJ

o0
t oi

t ot
i+1 oJ

t

Environment

a0
t ai

t at
i+1 aJ

t

r0
t ri

t rt
i+1 rJ

t

Environment

t

t+1

......

... ...

... ...

Figure 1: An overview of IC3Net. (Left) In-depth view of a single communication step. LSTM gets
hidden state, ht and cell state, st (not shown) from previous time-step. Hidden state ht is passed to
Communication-Action module fg for a communication binary action gt. Finally, communication
vector ct is calculated by averaging hidden states of other active agents gated by their communication
action act and is passed through a linear transformation C before fed to LSTM along with the
observation. (Right) High-level view of IC3Net which optimizes individual rewards rt for each agent
based on observation ot.

In this section, we introduce our model Individualized Controlled Continuous Communication
Model (IC3Net) as shown in Figure 1 to work in multi-agent cooperative, competitive and mixed
settings where agents learn what to communicate as well as when to communicate.

First, let us describe an independent controller model where each agent is controlled by an individual
LSTM. For the j-th agent, its policy takes the form of:

ht+1
j , st+1

j = LSTM(e(otj), h
t
j , s

t
j)

atj = π(htj),

where otj is the observation of the j-th agent at time t, e(·) is an encoder function parameterized by a
fully-connected neural network and π is an agent’s action policy. Also, htj and stj are the hidden and
cell states of the LSTM. We use the same LSTM model for all agents, sharing their parameters. This
way, the model is invariant to permutations of the agents.

3

Published as a conference paper at ICLR 2019

IC3Net extends this independent controller model by allowing agents to communicate their internal
state, gated by a discrete action. The policy of the j-th agent in a IC3Net is given by

gt+1
j = fg(htj)

ht+1
j , st+1

j = LSTM(e(otj) + ctj , h
t
j , s

t
j)

ct+1
j =

1

J − 1
C

∑
j′ 6=j

ht+1
j′ � g

t+1
j′

atj = π(htj),

where ctj is the communication vector for the j-th agent, C is a linear transformation matrix for
transforming gated average hidden state to a communication tensor, J is the number of alive agents
currently present in the system and fg(.) is a simple network containing a soft-max layer for 2 actions
(communicate or not) on top of a linear layer with non-linearity. The binary action gtj specifies
whether agent j wants to communicate with others, and act as a gating function when calculating the
communication vector. Note that the gating action for next time-step is calculated at current time-step.
We train both the action policy π and the gating function fg with REINFORCE (Williams, 1992).

In Sukhbaatar et al. (2016), individual networks controlling agents were interconnected, and they as a
whole were considered as a single big neural network. This single big network controller approach
required a definition of an unified loss function during training, thus making it impossible to train
agents with different rewards.

In this work, however, we move away from the single big network controller approach. Instead, we
consider multiple big networks with shared parameters each controlling a single agent separately.
Each big network consists of multiple LSTM networks, each processing an observation of a single
agent. However, only one of the LSTMs need to output an action because the big network is only
controlling a single agent. Although this view has a little effect on the implementation (we can still
use a single big network in practice), it allows us to train each agent to maximize its individual reward
instead of a single global reward. This has two benefits: (i) it allows the model to be applied to both
cooperative and competitive scenarios, (ii) it also helps resolve the credit assignment issue faced
by many multi-agent (Sukhbaatar et al., 2016; Foerster et al., 2016a) algorithms while improving
performance with scalability and is coherent with the findings in Chang et al. (2003).

4 EXPERIMENTS1

We study our network in multi-agent cooperative, mixed and competitive scenarios to understand its
workings. We perform experiments to answer following questions:

1. Can our network learn the gating mechanism to communicate only when needed according to the
given scenario? Essentially, is it possible to learn when to communicate?

2. Does our network using individual rewards scales better and faster than the baselines? This would
clarify, whether or not, individual rewards perform better than global rewards in multi-agent
communication based settings.

We first analyze gating action’s (gt) working. Later, we train our network in three chosen environments
with variations in difficulty and coordination to ensure scalability and performance.

4.1 ENVIRONMENTS

We consider three environments for our analysis and experiments. (i) a predator-prey environment
(PP) where predators with limited vision look for a prey on a square grid. (ii) a traffic junction
environment (TJ) similar to Sukhbaatar et al. (2016) where agents with limited vision must learn
to communicate in order to avoid collisions. (iii) StarCraft BroodWars2 (SC) explore and combat

1The code is available at https://github.com/IC3Net/IC3Net.
2StarCraft is a trademark or registered trademark of Blizzard Entertainment, Inc., in the U.S. and/or other

countries. Nothing in this paper should not be construed as approval, endorsement, or sponsorship by Blizzard
Entertainment, Inc

4

https://github.com/IC3Net/IC3Net

Published as a conference paper at ICLR 2019

Vision

Predator moving down

Fixed prey

Car entering

Car leaving
One way

Figure 2: Environments’ Visualizations. (Left) 10×10 version of predator-prey task where 5
predators(red circles) with limited vision of size 1 (blue region) try to catch a randomly initialized
fixed prey (green circle). (Center and Right) Easy and medium versions of traffic junction task
where cars have to cross the the whole path minimizing collisions using two actions, gas and brake
respectively. Agents have zero vision and can only observe their own location. (Right) In medium
version, chances of collision are increased due to more possible routes and increased number of cars.

tasks which test control on multiple agents in various scenarios where agent needs to understand and
decouple observations for multiple opposing units.

4.1.1 PREDATOR PREY

In this task, we have n predators (agents) with limited vision trying to find a stationary prey. Once a
predator reaches a prey, it stays there and always gets a positive reward, until end of episode (rest of
the predators reach prey, or maximum number of steps). In case of zero vision, agents don’t have a
direct way of knowing prey’s location unless they jump on it.

We design three cooperation settings (competitive, mixed and cooperative) for this task with different
reward structures to test our network. See Appendix 6.3 for details on grid, reward structure,
observation and action space. There is no loss or benefit from communicating in mixed scenario. In
competitive setting, agents get lower rewards if other agents reach the prey and in cooperative setting,
reward increases as more agents reach the prey. We compare with baselines using mixed settings in
subsection 4.3.2 while explicitly learning and analyzing gating action’s working in subsection 4.2.

We create three levels for this environment – as mentioned in Appendix 6.3 – to compare our
network’s performance with increasing number of agents and grid size. 10×10 grid version with 5
agents is shown in Figure 2 (left). All agents are randomly placed in the grid at start of an episode.

4.1.2 TRAFFIC JUNCTION

Following Sukhbaatar et al. (2016), we test our model on the traffic junction task as it is a good proxy
for testing whether communication is working. This task also helps in supporting our claim that
IC3Net provides good performance and faster convergence in fully-cooperative scenarios similar
to mixed ones. In the traffic junction, cars enter a junction from all entry points with a probability
parr. The maximum number of cars at any given time in the junction is limited. Cars can take two
actions at each time-step, gas and brake respectively. The task has three difficulty levels (see Figure
2) which vary in the number of possible routes, entry points and junctions. We make this task harder
by always setting vision to zero in all the three difficulty levels to ensure that task is not solvable
without communication. See Appendix 6.4 for details on reward structure, observation and training.

4.1.3 STARCRAFT: BROODWARS

To fully understand the scalability of our architecture in more realistic and complex scenarios, we
test it on StarCraft combat and exploration micro-management tasks in partially observable settings.
StarCraft is a challenging environment for RL because it has a large observation-action space, many
different unit types and stochasticity. We train our network on Combat and Explore task. The task’s
difficulty can be altered by changing the number of our units, enemy units and the map size.

5

Published as a conference paper at ICLR 2019

(a) (b) (c)

(d) (e) gt vs Timesteps, Cooperative (f) gt vs Timesteps, Competitive

Figure 3: Learning the Gating Action: Plots show gating action gt for predators and prey averaged
over each epoch in PP. In cooperative setting (a, e) agent almost always communicate to increase
their own reward. In (b) mixed setting and (c) competitive setting, predators only communicate when
necessary and profitable. As is evident from (f), they stop communicating once they reach prey. In
all cases, prey almost never communicates with predators as it is not profitable for it. Similarly, in
competitive scenario (d) for SC, team agents learn to communicate only when necessary due to the
division of reward when near enemy, while enemy agent learns not to communicate as in PP.

By default, the game has macro-actions which allow a player to directly target an enemy unit
which makes player’s unit find the best possible path using the game’s in-built path-finding system,
move towards the target and attack when it is in a range. However, we make the task harder by (i)
removing macro-actions making exploration harder (ii) limiting vision making environment partially
observable(iii) unlike previous works (Wender & Watson, 2012; Ontanón et al., 2013; Usunier et al.,
2017; Peng et al., 2017), initializing enemy and our units at random locations in a fixed size square
on the map, which makes it challenging to find enemy units. Refer to Appendix 6.5.1 for reward,
action, observation and task details. We consider two types of tasks in StarCraft:

Explore: In this task, we have n agents trying to explore the map and find an enemy unit. This is a
direct scale-up of the PP but with more realistic and stochastic situations.

Combat: We test an agent’s capability to execute a complex task of combat in StarCraft which
require coordination between teammates, exploration of a terrain, understanding of enemy units and
formalism of complex strategies. We specifically test a team of n agents trying to find and kill a team
of m enemies in a partially observable environment similar to the explore task. The agents, with their
limited vision, must find the enemy units and kill all of them to score a win. More information on
reward structure, observation and setup can be found in Appendix 6.5.1 and 6.5.2.

4.2 ANALYSIS OF THE GATING MECHANISM

We analyze working of gating action (gt) in IC3Net by using cooperative, competitive and mixed
settings in Predator-Prey (4.1.1) and StarCraft explore tasks (4.1.3). However, this time the enemy
unit (prey) shares parameters with the predators and is trained with them. All of the enemy unit’s
actions are noop which makes it stationary. The enemy unit gets a positive reward equivalent to rtime
= 0.05 per timestep until no predator/medic is captures it; after that it gets a reward of 0.

For 5×5 grid in PP task, Figure 3 shows gating action (averaged per epoch) in all scenarios for (i)
communication between predator and (ii) communication between prey and predators. We also test

6

Published as a conference paper at ICLR 2019

on 50×50 map size for competitive and cooperative StaraCraft explore task and found similar results
(Fig. 3d). We can deduce following observations:

• As can be observed in Figure 3a, 3b, 3c and 3d, in all the four cases, the prey learns not to
communicate. If the prey communicates, predators will reach it faster. Since it will get 0 reward
when an agent comes near or on top of it, it doesn’t communicate to achieve higher rewards.
• In cooperative setting (Figure 3a, 3e), the predators are openly communicating with g close to

1. Even though the prey communicates with the predators at the start, it eventually learns not to
communicate; so as not to share its location. As all agents are communicating in this setting, it
takes more training time to adjust prey’s weights towards silence. Our preliminary tests suggest
that in cooperative settings, it is beneficial to fix the gating action to 1.0 as communication is
almost always needed and it helps in faster training by skipping the need to train the gating action.
• In the mixed setting (Figure 3b), agents don’t always communicate which corresponds to the fact

that there is no benefit or loss by communicating in mixed scenario. The prey is easily able to
learn not to communicate as the weights for predators are also adjusted towards non-cooperation
from the start itself.
• As expected due to competition, predators rarely communicate in competitive setting (Figure 3c,

3d). Note that, this setting is not fully-adversarial as predators can initially explore faster if they
communicate which can eventually lead to overall higher rewards. This can be observed as the
agents only communicate while it’s profitable for them, i.e. before reaching the prey (Figure 3f))
as communicating afterwards can impact their future rewards.

Experiments in this section, empirically suggest that agents can “learn to communicate when it is
profitable”; thus allowing same network to be used in all settings.

4.3 SCALABILITY AND GENERALIZATION EXPERIMENTS

In this section, we look at bigger versions of our environments to understand scalability and general-
ization aspects of IC3Net.

4.3.1 BASELINES

For training details, refer to Appendix 6.1. We compare IC3Net with baselines specified below in
all scenarios.

Individual Reward Independent Controller (IRIC): In this controller, model is applied individu-
ally to all of the agents’ observations to produce the action to be taken. Essentially, this can be seen
as IC3Net without any communication between agents; but with individualized reward for each agent.
Note that no communication makes gating action (gt) ineffective.

Independent Controller (IC - IC3Net w/o Comm and IR): Like IRIC except the agents are trained
with a global average reward instead of individual rewards. This will help us understand the credit
assignment issue prevalent in CommNet.

CommNet: Introduced in Sukhbaatar et al. (2016), CommNet allows communication between
agents over a channel where an agent is provided with the average of hidden state representations
of other agents as a communication signal. Like IC3Net, CommNet also uses continuous signals to
communicate between the agents. Thus, CommNet can be considered as IC3Net without both the
gating action (gt) and individualized rewards.

4.3.2 RESULTS

We discuss major results for our experiments in this section and analyze particular behaviors/patterns
of agents in Appendix 6.2.

Predator Prey: Table 1 (left) shows average steps taken by the models to complete an episode i.e.
find the prey in mixed setting (we found similar results for cooperative setting shown in appendix).
IC3Net reaches prey faster than the baselines as we increase the number of agents as well as the size
of the maze. In 20×20 version, the gap in average steps is almost 24 steps, which is a substantial
improvement over baselines. Figure 4 (right) shows the scalability graph for IC3Net and CommNet
which supports the claim that with the increasing number of agents, IC3Net converges faster at a

7

Published as a conference paper at ICLR 2019

Figure 4: Result Plots for PP and TJ task. (Left) Average steps taken to complete an episode in
20×20 grid. (Center) IC3Net converges faster than CommNet as the number of predators (agents)
increase in Predator-Prey environment. (Right) Success % in medium TJ task trained with curriculum.
Performance and convergence of IC3Net is superior than baselines.

Predatory-Prey Mixed (Avg. Steps)
Model 5x5, n=3 10x10, n=5 20x20, n=10

IRIC 16.5± 0.1 28.1± 0.2 75.0± 1.4
IC 16.4± 0.49 28.0± 0.74 77.4± 0.8
CommNet 9.1± 0.1 13.1± 0.01 76.5± 1.3
IC3Net 8.9± 0.02 13.0± 0.02 52.4± 3.4

Traffic Junction (Success %)
Model Easy Medium Hard

IRIC 29.8± 0.7 3.4± 0.5 35.0± 0.6
IC 30.2± 0.4 3.4± 0.5 47.0± 2.9
CommNet 93.0± 4.2 54.3± 14.2 50.2± 3.5
IC3Net 93.0± 3.7 89.3± 2.5 72.4± 9.6

Table 1: Predator Prey (Left): Avg. number of steps taken to complete the episode in three different
environment sizes in mixed settings. IC3Net completes the episode faster than the baselines by finding
the prey. Traffic Junction (Right): Success rate on various difficulty levels with zero vision for all.
IC3Net provides better performance than baselines consistently especially as the scale increases.

better optimum than CommNet. Through these results on the PP task, we can see that compared to
IC3Net, CommNet doesn’t work well in mixed scenarios. Finally, Figure 4 (left) shows the training
plot of 20×20 grid with 10 agents trying to find a prey. The plot clearly shows the faster performance
improvement of IC3Net in contrast to CommNet which takes long time to achieve a minor jump. We
also find same pattern of the gating action values as in 4.2.

Traffic Junction: Table 1 (right) shows the success ratio for traffic junction. We fixed the gating
action to 1 for TJ as discussed in 4.2. With zero vision, it is not possible to perform well without
communication as evident by the results of IRIC and IC. Interestingly, IC performs better than IRIC in
the hard case, as we believe without communication, the global reward in TJ acts as a better indicator
of the overall performance. On the other hand, with communication and better knowledge of others,
the global reward training face a credit assignment issue which is alleviated by IC3Net as evident
by its superior performance compared to CommNet. In Sukhbaatar et al. (2016), well-performing
agents in the medium and hard versions had vision > 0. With zero vision, IC3Net is to CommNet
and IRIC with a performance gap greater than 30%. This verifies that individualized rewards in
IC3Net help achieve a better or similar performance than CommNet in fully-cooperative tasks with
communication due to a better credit assignment.

Figure 5: Average steps taken to com-
plete an episode of StarCraft Explore-
10 Medic 50×50 task.

StarCraft: Table 2 displays win % and the average number
of steps taken to complete an episode in StarCraft explore
and combat tasks. We specifically test on (i) Explore task:
10 medics finding 1 enemy medic on 50×50 cell grid (ii)
On 75×75 cell grid (iii) Combat task: 10 Marines vs 3
Zealots on 50 x 50 cell grid. Maximum steps in an episode
are set to 60. The results on the explore task are similar to
Predator-Prey as IC3Net outperforms the baselines. Moving
to a bigger map size, we still see the performance gap even
though performance drops for all the models.

On the combat task, IC3Net performs comparably well to
CommNet. A detailed analysis on IC3Net’s performance in
StarCraft tasks is provided in Appendix 6.2.1. To confirm
that 10 marines vs 3 zealots is hard to win, we run an experi-

8

Published as a conference paper at ICLR 2019

IRIC IC CommNet IC3Net
StarCraft task Win % Steps Win % Steps Win % Steps Win % Steps

Exp-10M 50× 50 35.4± 1.7 52.7± 0.6 18.0± 1.63 55.5± 0.4 9.2± 3.12 58.4± 0.5 64.2± 17.7 41.2± 8.4
Exp-10M 75× 75 9.0± 4.2 58.6± 0.9 1.0± 0.2 59.1± 0.4 2.1± 0.3 59.9± 0.1 17.0± 15.2 57.2± 3.5
Cbt-10Mv3Ze 74.6± 5.1 35.0± 0.8 51.8± 3.0 48.6± 0.4 88.0± 7.2 33.3± 1.2 87.4± 1.0 33.6± 0.2

Table 2: StarCraft Results: Win Ratio and average number of steps taken to complete episodes for
explore (Exp) tasks with 10 Marines (M) on different grid sizes (50×50 and 75×75) and a combat
(Cbt) task with 10 Marines (M) vs 3 Zealots (Ze) on a grid of size 50×50. IC3Net beats the baselines
with huge margin in case of exploration tasks, while it is as good as CommNet in case of 10 Marines
vs 3 Zealots combat task.

ment on reverse scenario where our agents control 3 Zealots initialized separately and enemies are 10
marines initialized together. We find that both IRIC and IC3Net reach a success percentage of 100%
easily. We find that even in this case, IC3Net converges faster than IRIC.

5 CONCLUSIONS AND FUTURE WORK

In this work, we introduced IC3Net which aims to solve multi-agent tasks in various cooperation
settings by learning when to communicate. Its continuous communication enables efficient training
by backpropagation, while the discrete gating trained by reinforcement learning along with individual
rewards allows it to be used in all scenarios and on larger scale.

Through our experiments, we show that IC3Net performs well in cooperative, mixed or competitive
settings and learns to communicate only when necessary. Further, we show that agents learn to stop
communication in competitive cases. We show scalability of our network by further experiments. In
future, we would like to explore possibility of having multi-channel communication where agents
can decide on which channel they want to put their information similar to communication groups but
dynamic. It would be interesting to provide agents a choice of whether to listen to communication
from a channel or not.

Acknowledgements Authors would like to thank Zeming Lin for his consistent support and sugges-
tions around StarCraft and TorchCraft.

REFERENCES

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. Proceedings of ICLR, 2015.

Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interaction networks
for learning about objects, relations and physics. In Advances in neural information processing
systems, pp. 4502–4510, 2016.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Proceedings of the 26th Annual International Conference on Machine Learning, ICML ’09, pp.
41–48, 2009.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Lucian Busoniu, Robert Babuska, and Bart De Schutter. A comprehensive survey of multiagent
reinforcement learning. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), 38(2):156–172, March 2008.

Yu-Han Chang, Tracey Ho, and Leslie Pack Kaelbling. All learning is local: Multi-agent learning in
global reward games. In Proceedings of the 16th International Conference on Neural Information
Processing Systems, NIPS’03, pp. 807–814, 2003.

9

Published as a conference paper at ICLR 2019

Jakob Foerster, Ioannis Alexandros Assael, Nando de Freitas, and Shimon Whiteson. Learning to
communicate with deep multi-agent reinforcement learning. In Advances in Neural Information
Processing Systems 29, pp. 2137–2145. 2016a.

Jakob N Foerster, Yannis M Assael, Nando de Freitas, and Shimon Whiteson. Learning to communi-
cate to solve riddles with deep distributed recurrent q-networks. arXiv preprint arXiv:1602.02672,
2016b.

Jakob N Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon White-
son. Counterfactual multi-agent policy gradients. Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

Jayesh K. Gupta, Maxim Egorov, and Mykel J. Kochenderfer. Cooperative multi-agent control
using deep reinforcement learning. In Adaptive Learning Agents Workshop, 2017. doi: 10.1007/
978-3-319-71682-4_5.

Serhii Havrylov and Ivan Titov. Emergence of language with multi-agent games: learning to
communicate with sequences of symbols. In Advances in Neural Information Processing Systems,
pp. 2149–2159, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Yedid Hoshen. Vain: Attentional multi-agent predictive modeling. In Advances in Neural Information
Processing Systems 30, pp. 2701–2711. 2017.

Satwik Kottur, José Moura, Stefan Lee, and Dhruv Batra. Natural language does not emerge
‘naturally’in multi-agent dialog. In Proceedings of the 2017 Conference on Empirical Methods in
Natural Language Processing, pp. 2962–2967, 2017.

Martin Lauer and Martin Riedmiller. An algorithm for distributed reinforcement learning in coop-
erative multi-agent systems. In In Proceedings of the Seventeenth International Conference on
Machine Learning, pp. 535–542. Morgan Kaufmann, 2000.

Angeliki Lazaridou, Alexander Peysakhovich, and Marco Baroni. Multi-agent cooperation and the
emergence of (natural) language. In Proceedings of ICLR, 2017.

Jason Lee, Kyunghyun Cho, Jason Weston, and Douwe Kiela. Emergent translation in multi-agent
communication. In Proceedings of ICLR, 2018.

Joel Lehman, Jeff Clune, Dusan Misevic, Christoph Adami, Julie Beaulieu, Peter J Bentley, Samuel
Bernard, Guillaume Belson, David M Bryson, Nick Cheney, et al. The surprising creativity of
digital evolution: A collection of anecdotes from the evolutionary computation and artificial life
research communities. arXiv preprint arXiv:1803.03453, 2018.

Ryan Lowe, YI WU, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-agent
actor-critic for mixed cooperative-competitive environments. In Advances in Neural Information
Processing Systems 30, pp. 6379–6390. 2017.

L. Matignon, G. J. Laurent, and N. L. Fort-Piat. Hysteretic q-learning :an algorithm for decentral-
ized reinforcement learning in cooperative multi-agent teams. In 2007 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 64–69, Oct 2007.

Laetitia Matignon, Guillaume J Laurent, and Nadine Le Fort-Piat. Independent reinforcement
learners in cooperative markov games: a survey regarding coordination problems. The Knowledge
Engineering Review, 27(1):1–31, 2012.

10

Published as a conference paper at ICLR 2019

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra,
Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 518:529–533, 2015.

Igor Mordatch and Pieter Abbeel. Emergence of grounded compositional language in multi-agent
populations. Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

Shayegan Omidshafiei, Jason Pazis, Christopher Amato, Jonathan P How, and John Vian. Deep
decentralized multi-task multi-agent reinforcement learning under partial observability. pp. 2681–
2690, 2017.

Santiago Ontanón, Gabriel Synnaeve, Alberto Uriarte, Florian Richoux, David Churchill, and Mike
Preuss. A survey of real-time strategy game ai research and competition in starcraft. IEEE
Transactions on Computational Intelligence and AI in games, 5(4):293–311, 2013.

Liviu Panait and Sean Luke. Cooperative multi-agent learning: The state of the art. Autonomous
agents and multi-agent systems, 11(3):387–434, 2005.

Peng Peng, Quan Yuan, Ying Wen, Yaodong Yang, Zhenkun Tang, Haitao Long, and Jun Wang.
Multiagent bidirectionally-coordinated nets for learning to play starcraft combat games. arXiv
preprint arXiv:1703.10069, 2017.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Vedavyas Panneershelvam, Marc Lanctot, Sander
Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy P. Lillicrap,
Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game
of go with deep neural networks and tree search. Nature, 529:484–489, 2016.

Sainbayar Sukhbaatar, Rob Fergus, et al. Learning multiagent communication with backpropagation.
In Advances in Neural Information Processing Systems, pp. 2244–2252, 2016.

Ming Tan. Multi-agent reinforcement learning: independent versus cooperative agents. In Proceedings
of the Tenth International Conference on International Conference on Machine Learning, pp. 330–
337. Morgan Kaufmann Publishers Inc., 1993.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):26–31,
2012.

Nicolas Usunier, Gabriel Synnaeve, Zeming Lin, and Soumith Chintala. Episodic exploration for
deep deterministic policies: An application to starcraft micromanagement tasks. In Proceedings of
ICLR, 2017.

Sida I Wang, Percy Liang, and Christopher D Manning. Learning language games through interaction.
In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), volume 1, pp. 2368–2378, 2016.

Stefan Wender and Ian Watson. Applying reinforcement learning to small scale combat in the
real-time strategy game starcraft: Broodwar. In Computational Intelligence and Games (CIG),
2012 IEEE Conference on, pp. 402–408. IEEE, 2012.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256, 1992.

11

Published as a conference paper at ICLR 2019

6 APPENDIX

6.1 TRAINING DETAILS

We set the hidden layer size to 128 units and we use LSTM (Hochreiter & Schmidhuber, 1997)
with recurrence for all of the baselines and IC3Net. We use RMSProp (Tieleman & Hinton, 2012)
with initial learning rate as a tuned hyper-parameter. All of the models use skip-connections (He
et al., 2016). The training is distributed over 16 cores and each core runs a mini-batch till total
episodes steps are 500 or more. We do 10 weight updates per epoch. We run predator-prey, StarCraft
experiments for 1000 epochs, traffic junction experiment for 2000 epochs and report the final results.
In mixed case, we report the mean score of all agents, while in cooperative case we report any agent’s
score as they are same. We implement our model using PyTorch and environments using Gym
(Brockman et al., 2016).We use REINFORCE (Williams, 1992) to train our setup. We conduct 5 runs
on each of the tasks to compile our results. The training time for different tasks varies; StarCraft
tasks usually takes more than a day (depends on number of agents and enemies), while predator-prey
and traffic junction tasks complete under 12 hours.

6.2 RESULTS ANALYSIS

In this section, we analyze and discuss behaviors/patterns in the results on our experiments.

6.2.1 IC3NET IN STARCRAFT-COMBAT TASK

As observed in Table 2, IC3Net performs better than CommNet in explore task but doesn’t outperform
it on Combat task. Our experiments and visualizations of actual strategy suggested that compared to
exploration, combat can be solved far easily if the units learn to stay together. Focused firepower with
more attack quantity in general results in quite good results on combat. We verify this hypothesis
by running a heuristics baseline “attack closest” in which agents have full vision on map and have
macro actions available3. By attacking the closest available enemy together the agents are able to kill
zealots with success ratio of 76.6± 8 calculated over 5 runs, even though initialized separately. Also,
as described in Appendix 6.5.2, the global reward in case of win in Combat task is relatively huge
compared to the individual rewards for killing other units. We believe that with coordination to stay
together, huge global rewards and focus fire–which is achievable through simple cooperation–add up
to CommNet’s performance in this task.

Further, in exploration we have seen that agents go in separate direction and have individual re-
wards/sense of exploration which usually leads to faster exploration of an unexplored area. Thinking
in simple terms, exploration of an house would be faster if different people handle different rooms.
Achieving this is hard in CommNet because global rewards don’t exactly tell your individual contri-
butions if you had explored separately. Also in CommNet, we have observed that agents follow a
pattern where they get together at a point and explore together from that point which further signals
that using CommNet, it is easy to get together for agents4.

6.2.2 VARIANCE IN IC3NET

In Figure 5, we have observed significant variance in IC3Net results for StarCraft. We performed
a lot of experiments on StarCraft and can attribute the significant variance to stochasticity in the
environment. There are a huge number of possible states in which agents can end up due to millions
of possible interactions and their results in StarCraft. We believe it is hard to learn each one of
them. This stochasticity variance can even be seen in simple heuristics baselines like “attack closest”
(6.2.1) and is in-fact an indicator of how difficult is it to learn real-world scenarios which also have

3Macro-actions corresponds to “right click” feature in StarCraft and Dota in which a unit can be called to
attack on other unit where units follows the shortest path on map towards the unit to be attacked and once reached
starts attacking automatically, this essentially overpowers “attack closest” baseline to easily attack anyone under
full-vision without any exploration.

4You can observe the above stated pattern for CommNet in PP in this video:
https://gfycat.com/IllustriousMarvelousKagu. This video has been generated using trained CommNet
model on PP-Hard. Here Red ‘X’ are predators and ‘P’ is the prey to be found. We can observe the pattern
where the agents get together to find the prey leading to slack eventually

12

https://gfycat.com/IllustriousMarvelousKagu

Published as a conference paper at ICLR 2019

same amount of stochasticity. We believe that we don’t see similar variance in CommNet and other
baselines because adding gating action increases the action-state-space combinations which yields
better results while being difficult to learn sometimes. Further, this variance is only observed in
higher Win % models which requires to learn more state spaces.

6.2.3 COMMNET IN STARCRAFT-EXPLORE TASKS

In Table 2, we can observe that CommNet performs worse than IRIC and IC in case of StarCraft-
Explore task. In this section, we provide a hypothesis for this result. First, we need to notice is that
IRIC is better than IC also overall, which points to the fact that individualized reward are better than
global rewards in case of exploration. This makes sense because if agents cover more area and know
how much they covered through their own contribution (individual reward), it should lead to overall
more coverage, compared to global rewards where agents can’t figure out their own coverage but
instead overall one. Second, in case of CommNet, it is easy to communicate and get together. We
observe this pattern in CommNet4 where agents first get together at a point and then start exploring
from there which leads to slow exploration, but IC is better in this respect because it is hard to gather
at single point which inherently leads to faster exploration than CommNet. Third, the reward structure
in the case of mixed scenario doesn’t appreciate searching together which is not directly visible to
CommNet and IC due to global rewards.

6.3 DETAILS OF PREDATOR PREY

In all the three settings, cooperative, competitive and mixed, a predator agent gets a constant time-step
penalty rexplore = −0.05, until it reaches the prey. This makes sure that agent doesn’t slack in finding
the prey. In the mixed setting, once an agent reaches the prey, the agent always gets a positive reward
rprey = 0.05 which doesn’t depend on the number of agents on prey. . Similarly, in the cooperative
setting, an agent gets a positive reward of rcoop = rprey * n, and in the competitive setting, an agent
gets a positive reward of rcomp = rprey / n after it reaches the prey, where n is the number of agents
on the prey. The total reward at time t for an agent i can be written as:

rppi (t) = δi ∗ rexplore + (1− δi) ∗ nλt ∗ rprey ∗ |λ|

where δi denotes whether agent i has found the prey or not, nt is number of agents on prey at
time-step t and λ is -1, 0 and 1 in the competitive, mixed and cooperative scenarios respectively.
Maximum episode steps are set to 20, 40 and 80 for 5×5, 10×10 and 20×20 grids respectively. The
number of predators are 5, 10 and 20 in 5×5, 10×10 and 20×20 grids respectively. Each predator can
take one of the five basic movement actions i.e. up, down, left, right or stay. Predator, prey and all
locations on grid are considered unique classes in vocabulary and are represented as one-hot binary
vectors. Observation obs, at each point will be the sum of all one-hot binary vectors of location,
predators and prey present at that point. With vision of 1, observation of each agent have dimension
32 × |obs|.

6.3.1 EXTRA EXPERIMENTS

Predator Prey Cooperative (Avg. Rewards)
Model 5x5, n=3 10x10, n=5 20x20, n=10

IRIC 0.48± 0.001 4.08± 0.049 5.77± 0.130
IC 0.47± 0.009 3.78± 0.082 4.99± 0.529
CommNet 1.56± 0.010 6.94± 0.020 19.99± 0.62
IC3Net 1.57± 0.008 6.85± 0.144 21.09± 0.579

Table 3: Predator-Prey Cooperative: Avg. rewards in three difficulty levels of predator-prey
environment in cooperative setting. IC3Net performs equivalently or better than baselines consistently.

Table 3 shows the results for IC3Net and baselines in the cooperative scenario for the predator-prey
environment. As the cooperative reward function provides more reward after a predator reaches the
prey, the comparison is provided for rewards instead of average number of steps. IC3Net performs
better or equal to CommNet and other baselines in all three difficulty levels. The performance gap
closes in and increases as we move towards bigger grids which shows that IC3Net is more scalable

13

Published as a conference paper at ICLR 2019

due to individualized rewards. More importantly, even with the extra gating action training, IC3Net
can perform comparably to CommNet which is designed for cooperative scenarios which suggests
that IC3Net is a suitable choice for all cooperation settings.

To analyze the effect of gating action on rewards in case of mixed scenario where individualized
rewards alone can help a lot, we test Predator Prey mixed cooperation setting on 20x20 grid on a
baseline in which we set gating action to 1 (global communication) and uses individual rewards
(IC2Net/CommNet + IR). We find average max steps to be 50.24± 3.4 which is lower than IC3Net.
This means that (i) individualized rewards help a lot in mixed scenarios by allowing agents to
understand there contributions (ii) adding the gating action in this case has an overhead but allows
the same model to work in all settings (even competitive) by “learning to communicate” which is
more close to real-world humans with a negligible hit on the performance.

6.4 DETAILS OF TRAFFIC JUNCTION

Traffic junction’s observation vocabulary has one-hot vectors for all locations in the grid and car
class. Each agent observes its previous action, route identifier and a vector specifying sum of one-hot
vectors for all classes present at that agent’s location. Collision occurs when two cars are on same
location. We set maximum number of steps to 20, 40 and 60 in easy, medium and hard difficulty
respectively. Similar to Sukhbaatar et al. (2016), we provide a negative reward rcoll = -10 on collision.
To cut off traffic jams, we provide a negative reward τirtime = -0.01 τi where τi is time spent by the
agent in the junction at time-step t. Reward for ith agent which is having Cti collisions at time-step t
can be written as:

rtji (t) = rcollC
t
i + rtimeτi

We utilized curriculum learning Bengio et al. (2009) to make the training process easier. The parrive
is kept at the start value till the first 250 epochs and is then linearly increased till the end value
during the course from 250th to 1250th epoch. The start and end values of parrive for different
difficulty levels are indicated in Table 4. Finally, training continues for another 750 epochs. The
learning rate is fixed at 0.003 throughout. We also implemented three difficulty variations of the
game explained as follows.

P-arrive N-total Arrival Routes per Two-Way Junctions Dimension
Difficulty Start End Points Entry Point

Easy 0.1 0.3 5 2 1 F 1 7×7
Medium 0.05 0.2 10 4 3 T 1 14×14
Hard 0.02 0.05 20 8 7 T 4 18×18

Table 4: Traffic Junction: Variations in different traffic junction difficulty levels. T refers to True as
in the difficulty level has 2-way roads and F refers to False as in the difficulty level has 1-way roads.

The easy version is a junction of two one-way roads on a 7× 7 grid. There are two arrival points,
each with two possible routes and with a Ntotal value of 5.

The medium version consists of two connected junctions of two-way roads in 14 × 14 as shown
in Figure 2 (right). There are 4 arrival points and 3 different routes for each arrival point and have
Ntotal = 20.

The harder version consists of four connected junctions of two-way roads in 18 × 18 as shown in
Figure 6. There are 8 arrival points and 7 different routes for each arrival point and have Ntotal = 20.

6.4.1 IRIC AND IC PERFORMANCE

In Table 1, we notice that IRIC and IC perform worst in medium level compared to the hard level.
Our visualizations suggest that this is due to high final add-rate in case of medium version compared
to hard version. Collisions happen much more often in medium version leading to less success rate
(an episode is considered failure if a collision happens) compared to hard where initial add-rate is low
to accommodate curriculum learning for hard version’s big grid size. The final add-rate in case of
hard level is comparatively low to make sure that it is possible to pass a junction without a collision
as with more entry points it is easy to collide even with a small add-rate.

14

Published as a conference paper at ICLR 2019

Figure 6: Hard difficulty level of traffic junction task. Level has four connected junctions, eight
entry points and at each entry point there are 7 possible routes increasing chances of a collision. We
use curriculum learning to successfully train our models on hard level.

6.5 STARCRAFT DETAILS

6.5.1 OBSERVATION AND ACTIONS

Explore: To complete the explore task, agents must be within a particular range of enemy unit called
explore vision. Once an agent is within explore vision of enemy unit, we noop further actions. The
reward structure is same as the PP task with only difference being that an agent needs to be within the
explore vision range of the enemy unit instead of being on same location to get a non-negative reward.
We use medic units which don’t attack enemy units. This ensures that we can simulate our explore
task without any of kind of combat happening and interfering with the goal of the task. Observation
for each agent is its (absolute x, absolute y) and enemy’s (relative x, relative y, visible) where visible,
relative x and relative y are 0 when enemy is not in explore vision range. Agents have 9 actions to
choose from which includes 8 basic directions and one stay action.

Combat: Agent observes its own (absolute x, absolute y, healthpoints + shield, weapon cooldown,
previous action) and (relative x, relative y, visible, healthpoints + shield, weapon cooldown) for
each of the enemies. relative x and relative y are only observed when enemy is visible which is
corresponded by visible flag. All of the observations are normalized to be in between (0, 1). Agent
has to choose from 9 + m actions which include 9 basic actions and 1 action for attacking each of the
m agents. Attack actions only work when the enemy is within the sight range of the agent, otherwise
it is a noop. In combat, we don’t compare with prior work on StarCraft because our environment
setting is much harder, restrictive, new and different, thus, not directly comparable.

6.5.2 COMBAT REWARD

To avoid slack in finding the enemy team, we provide a negative reward rtime = -0.01 at each timestep
when the agent is not involved in a combat. At each timestep, an agent gets as reward the difference
between (i) its normalized health in current and previous timestep (ii) normalized health at previous
timestep and current timestep for each of the enemies it has attacked till now. At the end of the
episode, terminal reward for each agents consists of (i) all its remaining health * 3 as negative reward
(ii) 5 * m + all its remaining health * 3 as positive reward if agents win (iii) normalized remaining
health * 3 for all of the alive enemies as negative reward on lose. In this task, the group of enemies
is initialized together randomly in one half of the map and our agents are initialized separately in
other half which makes task even harder, thus requiring communication. For an automatic way of
individualizing rewards, please refer to Foerster et al. (2018).

15

Published as a conference paper at ICLR 2019

6.5.3 EXAMPLE SEQUENCE OF STATES IN COOPERATIVE EXPLORE MODE

We provide an example sequence of states in StarCraft cooperative explore mode in Figure 7. As
soon as one of the agents finds the enemy unit, the other agents get the information about enemy’s
location through communication and are able to reach it faster.

Figure 7: State sequence in SC Cooperative Explore. We can see how agents which are randomly
initialized communicate to reach the enemy faster. Once, some agents are near the prey and other
reach very fast due to communication

16

	Introduction
	Related work
	Model
	Experiments
	Environments
	Predator prey
	Traffic junction
	StarCraft: Broodwars

	Analysis of the gating mechanism
	Scalability and Generalization Experiments
	Baselines
	Results

	Conclusions and Future Work
	Appendix
	Training Details
	Results Analysis
	IC3Net in StarCraft-Combat task
	Variance in IC3Net
	CommNet in StarCraft-Explore tasks

	Details of Predator Prey
	Extra Experiments

	Details of Traffic Junction
	IRIC and IC performance

	StarCraft Details
	Observation and Actions
	Combat Reward
	Example sequence of states in cooperative explore mode

