
Matrix Product Operator Restricted Boltzmann
Machines

Anonymous Author(s)
Affiliation
Address
email

Abstract

A restricted Boltzmann machine (RBM) learns a probabilistic distribution over its1

input samples and has numerous uses like dimensionality reduction, classification2

and generative modeling. Conventional RBMs accept vectorized data that dismisses3

potentially important structural information in the original tensor (multi-way) input.4

Matrix-variate and tensor-variate RBMs, named MvRBM and TvRBM, have been5

proposed but are all restrictive by construction. This work presents the matrix6

product operator RBM (MPORBM) that utilizes a tensor network generalization7

of Mv/TvRBM, preserves input formats in both the visible and hidden layers,8

and results in higher expressive power. A novel training algorithm integrating9

contrastive divergence and an alternating optimization procedure is also developed.10

1 Introduction11

A restricted Boltzmann machine (RBM) [1] is a probabilistic model that employs a layer of hidden12

variables to achieve highly expressive marginal distributions. RBMs are an unsupervised learn-13

ing technique and have been extensively explored and applied in various fields [2–4]. However,14

conventional RBMs are designed for vector data and cannot directly deal with matrices and higher-15

dimensional data, which are common in real-life. The traditional approach to apply an RBM on16

high-dimensional data is through vectorization of the data which leads to two drawbacks. First, the17

spatial information in the original data is lost, thus weakening the model’s capability to represent these18

structural correlations. Second, the fully connected visible and hidden units may cause overfitting19

since the intrinsic low-rank property of many real-life data is disregarded.20

Researchers have been motivated to develop corresponding multiway RBMs [5, 3]. However, those21

works are both aiming to capture the interaction among different vector inputs and are hence not22

directly applicable to matrix and tensor data. The first RBM designed for tensor inputs is described in23

[6], where the visible layer is represented as a tensor but the hidden layer is still a vector. Furthermore,24

the connection between the visible and hidden layers is described by a canonical polyadic (CP) tensor25

decomposition [7], which constrains the model representation capability [8]. Another RBM related26

model that utilizes tensor input is the matrix-variate RBM (MvRBM) [8]. The visible and hidden27

layers in an MvRBM are both matrices. Nonetheless, to limit the number of parameters, an MvRBM28

models the connection between the visible and hidden layers through two separate matrices, which29

restricts the ability of the model to capture correlations between different data modes.30

All these issues have motivated this work. Specifically, we propose a matrix product operator (MPO)31

restricted Boltzmann machine (MPORBM) where both the visible and hidden layers are in tensor32

forms. Moreover, MPORBM utilizes a general and powerful tensor network, namely an MPO, to33

connect the tensorial visible and hidden layers. By doing so, an MPORBM achieves a more powerful34

model representation capacity than MvRBM and at the same time greatly reduces the number of35

model parameters compared to a standard RBM.36
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Figure 1: Negative energy functions (−E) of the MPORBM.

2 Method37

In an MPORBM, both the visible layer V ∈ RI1×···×Id and the hidden layer H ∈ RJ1×···×Jd are38

d-way tensors. As a result, the weight matrix W is now a 2d-way tensor W ∈ RI1×···×Id×J1×···×Jd ,39

which is represented by an MPO instead in order to lift the curse of dimensionality. Per definition,40

the corresponding MPO decomposition represents each entry of W as41

W(i1, . . . , id, j1, . . . , jd) =

R1,R2,...,Rd∑
r1,r2,...,rd

W(1)(r1, i1, j1, r2) · · ·W(d)(rd, id, jd, r1). (1)

The “building blocks" of the MPO are the 4-way tensors W(1), . . . ,W(d), also called the MPO-cores.42

The dimensions R1, . . . , Rd of the summation indices r1, . . . , rd are called the MPO-ranks. With both43

the visible and hidden layers being tensors, it is therefore also required that the bias vectors b, c are44

tensors B ∈ RI1×···×Id ,C ∈ RJ1×···×Jd , respectively. A tensor network diagram representation of45

the negative energy function of the MPORBM is shown in Figure 1, where each tensor is represented46

by a node in the network and the number of edges connected to a node represents the order of the47

corresponding tensor. The vertical edges between the different MPO-cores W(1), . . . ,W(d) represent48

the summations in (1) and are the key ingredients in being able to express generic weight tensors W .49

The storage complexity of an MPORBM with uniform ranks and dimensions is O(dIJR2), which is50

linear on the order d and therefore removes the curse of dimensionality. The MvRBM model can be51

interpreted as a very specific case of an MPORBM where there are only 2 MPO-cores without any52

vertical edge, which limits the expressive power. The corresponding conditional distribution over the53

hidden or visible layer involves the summation of the weight MPO with either the hidden or visible54

layer tensors into a d-way tensor, which is then added elementwise with the corresponding bias tensor.55

The final step in the computation of the conditional probability is an elementwise application of the56

logistic sigmoid function on the resulting tensor.57

Let Θ = {B,C,W(1),W(2), . . . ,W(d)} denote the model parameters. The model learning task is58

then formulated into maximizing the training data likelihood:59

L(V ; Θ) = p(V ; Θ) =
∑
H

p(V ,H; Θ) (2)

with respect to the model parameter Θ. Similar to the standard RBM [1], the expression of the60

gradient of the log-likelihood is:61

∂

∂Θ
logL(V; Θ) = −EH|V

[
∂E(V,H)

∂Θ

]
+ EV,H

[
∂E(V,H)

∂Θ

]
(3)

We mainly use the contrastive divergence (CD) procedure to train the MPORBM model. First, a62

Gibbs chain is initialized with one particular training sample V(0)= X train, followed by K times63

Gibbs sampling which results in the chain {(V(0),H(0)), (V(1),H(1)), . . . , (V(K),H(K))}. The64

model expectation is then approximated by {V(K)}. The derivative of logL(V ; Θ) with respect to65

the k-th MPO-core W(k) can be computed by removing W(k) from two tensor network diagrams66

(one diagram with V(0),H(0) and one with V(K),H(K)), taking the elementwise difference and67

summing over all edges. The derivatives of the log-likelihood with respect to the bias tensors B,C are68

∂

∂B logL(V ; Θ) = V(0) − V(K),
∂

∂C logL(V ; Θ) = H(0) −H(K).
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Figure 2: Image completion results when given only the (a) right half; and (b) bottom half. Top row: original
binarized images; 2nd row: RBM completion; 3rd row: MvRBM completion; 4th row: MPORBM completion.

Instead of updating all MPO-cores simultaneously with one batch of input training data, we employ69

the alternating optimization procedure (AOP). This involves updating only one MPO-core at a time70

while keeping the others unchanged using the same batch of input training data. We name this71

parameter learning algorithm CD-AOP. The superiority of AOP over simultaneously updating all72

MPO-cores, which we call CD-SU henceforth, will be demonstrated through numerical experiments.73

3 Experiments74

In the first experiment, we demonstrate the superior data classification accuracy of MPORBM using75

standard datasets, namely, the Binary Alphadigits, normalized DrivFace, Arcene and COIL-10076

datasets. The vectorized sample sizes of these datasets vary from 320 to 49152. We assume a binary77

input in our RBM setting, so for non-binary datasets a multi-bit vector is used to represent each value78

in the original data. The trained RBM models were employed to extract features from the hidden79

layer. These features were then utilized to train a K Nearest Neighbor (K-NN) classifier with K = 180

for all experiments. Table 1 lists the resulting classification errors. The restrictive expressive power81

of the weight matrix in MvRBM explains why it has the worst classification performance for all82

datasets. The worse performance of the standard RBM may be caused by overfitting due to the small83

training sample size. For COIL-100 dataset, the standard RBM fails to learn the large number of84

parameters in the full weight matrix due to out-of-memory errors. We need to mention that CD-AOP85

algorithm achieves a surprisingly 0% test error because of the small test sample number. Moreover,86

the CD-AOP algorithm shows a higher classification accuracy than CD-SU, which indicates that the87

alternating updating scheme is more suitable for the proposed MPORBM model.88

Table 1: Classification errors of different RBM models.

Datasets RBM MvRBM MPORBM CD-SU MPORBM CD-AOP

Alphadigits 28.10% 31.20% 28.10% 26.90%
DrivFace 24.20% 15.48% 9.68% 8.06%
Arcene 45.00% 34.00% 32.00% 27.00%
COIL-100 − 6.82% 6.82% 0.00%

Finally, we show that an MPORBM is good at generative modeling exemplified by image completion.89

We tested this generative task on the binarized MNIST dataset: one half of the image was provided to90

the trained RBM models to complete the other half. Figure 2 shows the completed images of different91

RBM models when given the same randomly selected right and bottom halves, respectively. It is92

clear that MvRBM is not able to complete the image well, which further confirms the efficacy of the93

MPO generalization.94

4 Conclusion95

The MPORBM is proposed, which preserves the tensorial nature of the input data and utilizes a matrix96

product operator (MPO) to represent the weight matrix. The MPORBM generalizes all existing RBM97

models to tensor inputs and has better storage complexity since the number of parameters grows only98

linearly with the order of the tensor. Experiments have verified the superiority of MPORBM over99

traditional counterparts.100
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