Under review as a conference paper at ICLR 2017

ALTERNATING DIRECTION METHOD OF MULTIPLIERS
FOR SPARSE CONVOLUTIONAL NEURAL NETWORKS

Farkhondeh Kiaee, Christian Gagné, and Mahdieh Abbasi
Computer Vision and Systems Laboratory

Department of Electrical Engineering and Computer Engineering
Université Laval, Québec, QC G1V 0A6, Canada
{farkhondeh.kiaee.l,mahdieh.abbasi.l}@ulaval.ca
christian.gagne@gel.ulaval.ca

ABSTRACT

The storage and computation requirements of Convolutional Neural Networks
(CNNS5s) can be prohibitive for exploiting these models over low-power or em-
bedded devices. This paper reduces the computational complexity of the CNNs by
minimizing an objective function, including the recognition loss that is augmented
with a sparsity-promoting penalty term. The sparsity structure of the network is
identified using the Alternating Direction Method of Multipliers (ADMM), which
is widely used in large optimization problems. This method alternates between
promoting the sparsity of the network and optimizing the recognition perfor-
mance, which allows us to exploit the two-part structure of the corresponding
objective functions. In particular, we take advantage of the separability of the
sparsity-inducing penalty functions to decompose the minimization problem into
sub-problems that can be solved sequentially. Applying our method to a variety
of state-of-the-art CNN models, our proposed method is able to simplify the orig-
inal model, generating models with less computation and fewer parameters, while
maintaining and often improving generalization performance. Accomplishments
on a variety of models strongly verify that our proposed ADMM-based method
can be a very useful tool for simplifying and improving deep CNNSs.

1 INTRODUCTION

Deep Convolutional Neural Networks (CNNs) have achieved remarkable performance in challeng-
ing computer vision problems such as image classification and object detection tasks, at the cost of
a large number of parameters and computational complexity. These costs can be problematic for
deployment especially on mobile devices and when real-time operation is needed.

To improve the efficiency of CNNs, several attempts have been made to reduce the redundancy
in the network. Jaderberg et al.| (2014) proposed to represent the full-rank original convolutional
filters tensor by a low-rank approximation composed of a sequence of two regular convolutional
layers, with rectangular filters in the spatial domain. A different network connection structure is
suggested by|loannou et al.|(2015), which implicitly learns linear combinations of rectangular filters
in the spatial domain, with different vertical/horizontal orientations. [Tai et al.| (2015) presented an
exact and closed-form solution to the low-rank decomposition approach of |Jaderberg et al.|(2014)
to enforce connection sparsity on CNNs.

Sparse learning has been shown to be efficient at pruning the irrelevant parameters in many practical
applications, by incorporating sparsity-promoting penalty functions into the original problem, where
the added sparsity-promoting terms penalize the number of parameters (Kiaee et al.| (2016ajbic)).
Motivated by learning efficient architectures of a deep CNN for embedded implementations, our
work focuses on the design of a sparse network using an initial pre-trained dense CNN.

The alternating direction method of multipliers (ADMM) (Boyd et al. (2011)) has been extensively
studied to minimize the augmented Lagrangian function for optimization problems, by breaking
them into smaller pieces. It turns out that ADMM has been recently applied in a variety of contexts
(Lin et al.[(2013a);|Shen et al.[(2012);Mesh1 & Globerson|(2011))). We demonstrate that the ADMM
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Figure 1: Architecture of a typical CNN, selected sparsity blocks at convolutional and fully con-
nected layers are shown in blue.

provides an effective tool for optimal sparsity imposing on deep neural connections. This is achieved
by augmenting a sparsity-inducing penalty term to the recognition loss of a pre-trained network.
Different functions including the [p-norm and its convex [;-norm relaxations can be considered as
a penalty term. The variables are then partitioned into two subsets, playing two different roles: 1)
promoting the sparsity of the network at the level of a predetermined sparse block structure; 2)
minimizing the recognition error.

The augmented Lagrangian function is then minimized with respect to each subset by fixing all other
subsets at each iteration. In the absence of the penalty term, the performance results correspond to
the original network with a dense structure. By gradually increasing the regularization factor of
the sparsity-promoting penalty term, the optimal parameters move from their initial setting to the
sparse structure of interest. This regularization factor is increased until the desired balance between
performance and sparsity is achieved.

Several approaches have been developed to create sparse networks by applying pruning or sparsity
regularizers: [Wen et al.| (2016)); /Alvarez & Salzmann!(2016)); Liu et al.|(2015)); [Han et al.|(2015). The
most relevant to our work in these papers is the Structured Sparsity Learning (SSL) method of Wen
et al.| (2016), that regularizes the structures (i.e., filters, channels, filter shapes, and layer depth) of
CNNs using a group lasso penalty function. However, the SSL approach suffers from two limitations
compared to our proposed method. First, it relies on a rigid framework that disallows incorporation
of non-differentiable penalty functions (e.g., [p-norm). Second, it requires training the original full
model, while our proposed method allows to decompose the corresponding optimization problems
into two sub-problems and exploit the separability of the sparsity-promoting penalty functions to
find an analytical solution for one of the sub-problems (see Sec. [5|for more details).

Our numerical experiments on three benchmark datasets, namely CIFAR-10, CIFAR-100, and
SVHN, show that the structure of the baseline networks can be significantly sparsified. While most
previous efforts report a small drop or no change in performance, we found a slight increase of
classification accuracy in some cases.

2 CNN WITH SPARSE FILTERS

Consider a CNN network consisting of a total of L layers, including convolutional and fully con-
nected layers, which are typically interlaced with rectified linear units and pooling (see Fig. [I). Let
the I-th layer includes m! input feature maps and n! output feature maps, with Wﬁj representing the

convolution filter between the i-th and j-th input and output feature maps, respectivelyﬂ Our goal

"Each fully connected layer can also be thought to be composed of several 1-dim convolutions, where the
filter is of the same size as the input, hence is applied only at one location. In this context, if you look at the
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is to design the optimal filters, subject to sparse structural constraints. In order to obtain the filters
which balance a trade-off between the minimization of the loss function and sparseness, we consider
the following objective function

min‘i/‘r/nize Loet(W) + pf(W), (1)
where L.+ stands for the logistic loss function of the output layer of the network which is a function
of the convolutional filters of all layers W = {Wi]\z =1,....mhj=1,....n"1=1,...,L}.
The term f(W) is a penalty function on the total size of the filters. The lo-norm (cardinality)

function or relaxations to higher orders such as /;-norm function can be employed to promote the
sparsity of the filters.

The parameter £ controls the effect of sparse penalty term. As p varies, the solution of (I]) traces the
trade-off path between the performance and the sparsity. In the next section, the alternating direction
method of multipliers (ADMM) which is employed to find the optimal solution of (1) is described.

3 USING ADMM FOR SPARSIFYING CNNSs

Consider the following constrained optimization problem:
ml‘I}‘}I’I}IZG Lnet(W) + uf(F),

st. W—-F =0, 2)
which is clearly equivalent to the problem stated in (I). The key point here is that by introducing
an additional variable F' and an additional constraint W — F' = 0, the objective function of the
problem (T) is decoupled into two parts that depend on two different variables.

The augmented Lagrangian associated with the constrained problem (2) is given by

C(W7F,I‘) = »Cnet(W) + :u’f(F)

T
3 race(T; (Wi = L))+ 530 | Wi = Fij [l g

Li,g 1,i.j
where I‘éj is the dual variable (i.e., the Lagrange multiplier), p is a positive scalar, || . || 7 and is the

Frobenius norm.

In order to find a minimizer of the constrained problem (3], the ADMM algorithm uses a sequence
of iterative computations:

1. Make use of a descent method to solve the following performance promoting problem,

W1 — areminC (W, FiR r{k}) : )
w

2. Find the analytical expressions for the solutions of the following sparsity promoting prob-
lem,

Fl1} = arg min C (W{k+1},F,I‘{k}) ; 5)
F

3. Update the dual variable I‘ﬁ ; using a step-size equal to p, in order to guarantee that the dual
feasibility conditions is satisfied in each ADMM iteration,
1 {k+1} 1 {k} 1 {k+1} 1 {k+1}

o, = (T e T (©6)
The three described computation steps are applied in an alternating manner. Re-estimation stops
when the Frobenius distance of F' in two consecutive iterations as well as the Frobenius distance of
W and F at current iterations are less than a small threshold value. The details of steps 1 and 2 are
described in the next sections. The outline of the proposed sparse CNN approach is summarized in
Algorithm[I] At each individual regularization f, in order to improve the performance of the sparse-
structured network we fine tune the initial non-augmented recognition loss subject to the parameters

belonging to the identified sparse structure.

fully connected layer at Fig. [1| you can see that it is just composed of one (m' = 1) vectorized input feature
map and n' 1-dim convolutions, one for each output class.
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Algorithm 1 Outline of the proposed sparse CNN algorithm

1: function SPARSE-CNN(data, model)
2: Set W to a pre-trained reference CNN model
I'=0,F=W
S: a set of small logarithmically spaced points in increasing order, as regularization factor.
for each 1 in S do
do
Find the estimate of W {#*1} by minimi
(10)

Find the estimate of F{**1} from (9) or
Update dual variable T'***1} from (6)
while | W+t _ pli1l | ps cor || U — PO | o> e
Fix the identified sparse structure and fine-tune network according to L, w.r.t. non-
Zero parameters
12: end for
13: return Wéj
14: end function

ra D B A A A

—_ =

3.1 PERFORMANCE PROMOTING STEP

By completing the squares with respect to W' in the augmented Lagrangian C(W, F,T'), we obtain
the following equivalent problem to ()

R P l L2
minimize Lopet(W) + B Z | Wi = Ui % 7

Li,g

where Uéj = Fﬁj — %I‘éj. From , it can be seen that by exploiting the separability property of
ADMM method in the minimization of the augmented Lagrangian, the sparsity penalty term which
might be non-differentiable is excluded from (7). Consequently, descent algorithms that rely on the
differentiability can be utilized to solve the performance promoting sub-problem

This property allows that popular software and toolkit resources for Deep Learning, including Caffe,
Theano, Torch, and TensorFlow, to be employed for implementing the proposed approach. In our
work, we use Stochastic Gradient Descent (SGD) method of TensorFlow to optimize the weights
(W), which seemed a reasonable choice for the high-dimensional optimization problem at hand.
The entire procedure relies mainly on the standard forward-backward pass that is used to train the
convolutional network.

3.2 SPARSITY PROMOTING STEP

The completion of squares with respect to F' in the augmented Lagrangian can be used to show that
(3) is equivalent to

. 4 l I 2
mln%nlzeuf(F) + 5 Z | Fij — Vi lIw ®)

Lyi,j

where Vf;j = Wij + %I‘éj. From @i it can be seen that the proposed method provides a flexible
framework to select arbitrary sparsity blocks. Sparse structure can then be achieved at the level of
the selected block. Specifically, both terms on the right-hand side of , f(F) (for either the case of
l1-norm or [y-norm) as well as the square of the Frobenius norm can be written as a summation of
component-wise functions of a tensor. In our experiments, individual filter components are selected
as the sparsity blocks (see Fig. . Hence (8) can simply be expressed in terms of Fﬁ ,j components
corresponding to the filters. However, any other individual sub-tensor components can be selected
as the sparsity block.

More precisely, if f(F') is selected to be the /;-norm function, then C(F') = >_, (k|| Fﬁj Ilr

+2 || Fi; — V', ||%) and consequently (8) is converted to a minimization problem that only
involves spatial filters. The solution of (8) can then be determined analytically by the following soft
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thresholding operation,

a 1 . .
FIL]* — (1 - W) Vija if H Vij ||F> a 7 (9)
0, otherwise

where a = %. Similarly, the following hard thresholding operation is the analytical solution for the
case of the selection of the l[o-norm f(F) penalty term.

! . !
Lx_ ) Vi if [|Vi;llr>0b
Fi _{ 0, otherwise ’ (10)

where b = 27“.

3.3 CONVERGENCE OF THE PROPOSED ADMM-BASED SPARSE CNN METHOD

For convex problems, the ADMM is guaranteed to converge to the global optimum solution (Boyd
et al.[(2011)). For non-convex problems, where there is a general lack of theoretical proof, extensive
computational experience suggests that ADMM works well when the penalty parameter p in the
augmented Lagrangian is chosen to be sufficiently large. This is related to the quadratic term that
tends to locally convexify the objective function for sufficiently large p.

Unfortunately, in the deep learning problems, the objective is inherently highly non-convex and
consequently there is the risk that it becomes trapped into a local optimum. This difficulty could be
circumvented by considering a warm start that may be obtained by running a pre-trained version of
the network. The proposed ADMM approach is then used to sparsify the final solution. Using this
procedure, as the experiments in the next section show, we have obtained good empirical results.

4 EXPERIMENTAL RESULTS

In order to validate our approach, we show that our proposed sparse CNN approach can be efficiently
applied to existing state-of-the-art network architectures to reduce the computational complexity
without reducing the accuracy performance. For this purpose, we evaluate the proposed scheme on
the CIFAR-10, CIFAR-100, and SVHN datasets with several CNN models.

In the implementation of the performance promoting step in Sec. [3.1] the batch size is 128 and the
learning rate is set to a rather small value (i.e., 0.001 to search the space around the dense initialized
filters to find a sparse solution). Since the regularization factor p is selected from gradually increas-
ing values, for the first small values of u the selection of long epochs for performance-promoting
step (inner loop) and fine-tuning steps is computationally prohibitive and would result in over-fitting.
Instead, we start with one epoch for the first ;2 and increase the number of epochs by § for the next
1 values up to the v-th p value, after which the number of epochs is limited to §v. We found that
0 = 1 and v = 15 generally work well in our experiments. We already incorporated the number of
training epochs at tables and [5) of Appendix [B] If the maximum limiting number of iterations
of inner loop is £ (suggested value of £=10), the training time of the v-th p value takes a total of
0v€ + dv epochs (dv€ for performance-promoting step and Jv for fine-tuning) under the worst-case
assumption, where the inner loop has not converged and completes only at the £-th iteration.

4.1 RESULTS ON CIFAR-10 OBJECT CLASSIFICATION

The CIFAR-10 dataset is a well-known small dataset of 60,000 32 x 32 images in 10 classes. This
dataset comprises standard sets of 50,000 training images, and 10,000 test images. As a baseline
for the CIFAR-10 dataset, we deploy four models: the Network in Network (NIN) architecture
(Lin et al., 2013Db), its low-rank version (Ioannou et al.l [2015)), a custom CNN, and its low-rank
counterpart as well, two last being learned from scratch on the CIFAR dataset. The configurations of
the baseline models are outlined in Table|l| The architecture of the NIN model is slightly different
from the one introduced in [Lin et al.| (2013b). The original NIN uses 5x5 filters in the first and
second convolutional layer which are replaced with one and two layers of 3x3 filters, respectively.
As suggested by [oannou et al.| (2015), this modified architecture has comparable accuracy and less
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Table 1: Structure of the baseline networks.

NIN Low-rank NIN CNN Tow-rank CNN

h: 1 x 3 x 96
convl 3 x3x192 h:1x3x48

v:3x1x96 convl | 3 x 3 x96 v 3% 1 x 46
conv2,3 1x1x160,1x1x96 .

h: 1x 3 x96 conv2 | 3x3x 128 | M Lx3x06d
conv4 3 x3x192 ’ v:3x1x064

v:3x1x96 T %3 X< 198
convS | 3x3x192 | N1x3x96 conv3 | 3 X 3x 256 1 1a 1 %128

v:3x1x96 T X3 <32
conv6,7 1x1x192,1x1x192 convd | 3 x 3 x64 )

h: 1 x 3 x 96 v:3x1x32
conv8 3 x 3 x 192 V: 3% 1 %96 fcl 1024 x 256 1024 x 256
conv9,10 | Ix1x192,1x1x10 fc2 | 256x10 256 x 10

computational complexity. In the low-rank networks, every single convolutional layer of the full-
rank model is replaced with two convolutional layers with horizontal and vertical filters. NIN and
low-rank NIN have an accuracy of 90.71 % and 90.07 %, respectively. The custom CNN and its
low-rank variant show a baseline accuracy of 80.0 % and 80.2%, respectively. The results of our
experiments are plotted in Fig. [2|for both /p-norm and /;-norm sparsity constraints.

Fig. |2| shows how the accuracy performance changes as we increase the regularization factor p.
The case with ;x = 0 can be considered as the baseline model. In order to avoid over pruning
of some layers, if the number of pruned filters in one layer exceeds 50 % of the total number of
filters in that layer, then we change the pruning threshold to the statistical mean of the Frobenius
norm of all the filters at that layer in the sparsity promoting step (explained in Sec. [3.2) to stop
the over pruning of that layer. Taking the NIN and low-rank-NIN as an example, using the /p-norm
sparsity function, the parameters in the networks are reduced by 34.13 % and 28.5 % and the relative
accuracy performance is +.5 % and +1.23 %, respectively. Using the {;-norm sparsity constraint
achieves slightly lower accuracy compared to the [p-norm, although it still conveniently sparsifies
the network.

Using the proposed sparsity promoting approach on the custom CNN models, the networks with
sparse connections and similar accuracy (79.9% vs 80 %) are achieved, but they have approximately
49.4 % fewer parameters than the original networks model. Since the target solution is likely to
be sparse, enforcing sparsity at the beginning of the learning process with our proposed method
provides a way to avoid overfitting for achieving a better performance. However, as the experiment
results show, increasing more the sparsity strength of the solution may lead to slight oversmoothing
and drop in the performance. For the low-rank CNN, we achieve a comparable accuracy of 80.14 %,
with 25 % fewer parameters.

To further verify that the advantage of ADMM training is statistically significant, a ¢-test is con-
ducted by repeating the experiment 15 times on CIFAR-10 by using NIN model. The ¢-test results
are in Appendix [A] In Appendix [B] however, we present detailed results for random sample runs
over the configurations tested. According to the results presenting in Table |3| of Appendix |B} the
number of parameters in the network can be reduced by a large factor, especially for the higher
convolution layers. Interestingly, even with significant reductions in the number of parameters, the
performance does not decrease that much. This parameter reduction also gives rise to the speed-up
of the network, reported at the last columns of the tables. Note that most of the results listed in
Table [3|outperform the baseline model.

4.2 RESULTS ON CIFAR-100 OBJECT CLASSIFICATION

The CIFAR-100 dataset is similar to the CIFAR-10 dataset containing 100 classes with 600 images
per class. For CIFAR-100 we again use the baseline networks in Table [I| with only one structural
difference (i.e., the NIN networks contain 100 feature maps at the last convolution layer and custom
CNN networks contain 100 output labels). The baseline NIN, low-rank NIN, custom CNN, and
low-rank CNN models show a test accuracy of 63.3 %, 63.6 %, 60.11 %, and 60.23 %, respectively.
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Figure 2: Variation of accuracy measure against: (odd rows) values of py parameters and (even
rows) normalized number of zero elements for different models and datasets.

Using the proposed sparsity promoting approach on these networks, the total number of parameters
in the layers can be reduced by a large factor with comparable or even better performance accuracy.

In particular, on the CIFAR-100 dataset, we achieve 64.09 % classification accuracy with 34.1 %
sparsity for the NIN model, which improves upon the original NIN on this dataset. A test accuracy
of 65.23 % is obtained for CIFAR-100 for the low-rank NIN model with 28.5 % sparsity which
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surpasses the performance of the baseline model. The proposed method on custom CNN and low-
rank CNN show comparable performance accuracy to their corresponding baseline models (59.82 %
vs 60.11 % and 60.1 % vs 60.23 %) with much less computation (49.7 % and 24.4 % number of zero
elements, respectively). The details of changing sparsity in different layers of the networks on the
CIFAR-100 dataset are presented in Tabled of Appendix [B] The same conclusions made for CIFAR-
10 can be drawn from these results.

4.3 RESULTS ON SVHN OBJECT CLASSIFICATION

The SVHN dataset consists of 630,420 32x32 color images of house numbers collected by Google
Street View. The task of this dataset is to classify the digit located at the center of each image. The
structure of the baseline models used in SVHN is similar to those used for CIFAR-10, which are
presented in Table [I] The training and testing procedure of the baseline models follows [Lin et al.
(2013Db)). The baseline NIN, low-rank NIN, custom CNN, and low-rank CNN models show the accu-
racy of 96.2 %, 96.7 %, 85.1 %, and 87.6 %, respectively. For this dataset, by applying our proposed
sparse approach to NIN and low-rank NIN models, we obtain a higher accuracy of 96.97 % and 99 %
with 34.17 % and 28.6 % fewer parameters, respectively. We also achieve comparable accuracy of
83.3% and 86.3 % using 49.7 % and 24.7 % less parameters of the original model parameters on
custom CNN and low-rank CNN models, respectively (see Table[5]of Appendix [B]for the details on
changing the sparsity in different layers of the networks on SVHN dataset).

5 DISCUSSION

In this paper we proposed a framework to optimal sparsification of a pre-trained CNN approach. We
employed the ADMM algorithm to solve the optimal sparsity-promoting problem, whose solution
gradually moves from the original dense network to the sparse structure of interest as our emphasis
on the sparsity-promoting penalty term is increased. The proposed method could potentially reduce
the memory and computational complexity of the CNNs significantly.

Briefly, the main contributions of the proposed sparse CNN can be summarized as follows:

Separability : The penalty function is separable with respect to the individual elements of the
weight tensors. In contrast, the recognition loss function cannot be decomposed into
component-wise functions of the weight tensors. By separating the two parts in the min-
imization of the augmented Lagrangian, we can analytically determine the solution to the
sparsity promoting sub-problem (8).

Differentiability : The recognition loss function £,,.:(W) is typically differentiable with respect
to the parameters, as opposed to some choices of sparsity penalty terms (e.g., [p-norm
which is a non-differentiable function). In our approach, by separating the two parts in
the minimization of the augmented Lagrangian, descent algorithms can be utilized to solve
the performance promoting sub-problem while different functions (e.g., ly-norm and
l1-norm) can be incorporated as means of sparsity penalty terms in the original problem
(@.

Model size reduction : There are recent works focusing on reducing the parameters in the convo-
lutional layers (Jaderberg et al.[(2014); loannou et al.|(2015); Tai et al.| (2015)). In CNN
models, the model size is dominated by the fully connected layers. Thus, the previous ap-
proaches are not capable of reducing the size of the whole model. Our proposed approach
can be applied on both the convolution and fully connected layers and can speed up the
computation as well as compressing the size of the model.

Combinability with other methods : Several attempts have been made to compress the deep net-
works using the weights sharing and quantization (Han et al.| (2016); \Gupta et al.[ (2015));
Vanhoucke et al.[(2011)). However, these techniques can be used in conjunction with our
proposed sparse method to achieve further speedup.

Some methods such as SSL (Wen et al.| (2016))), based on group Lasso regularization of the block
structures (e.g. filters), appears to be closely related to our work. Indeed, these methods learn sparse
filters and minimize the classification error simultaneously. In contrast, our proposed approach
uses ADMM to provide a separate scheme that optimize the sparse blocks and classification error
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separately. Indeed, at the core of our contribution, ADMM brings the above major separability
and differentiability benefits to the proposed sparse CNN method. Our proposed algorithm has
the advantage that it is partially and analytically solvable due to the separability property. This
contributes to the efficient trainability of the model. Moreover, the differentiability problem of [y-
norm penalty function makes it unusable for a joint performance/sparsity optimization, while it can
be conveniently incorporated as a sparsity penalty term in our proposed method.

Furthermore, in the SSL method, strengths of structured sparsity regularization is selected by cross
validation and the networks weights are initialized by the baseline. This is computationally ben-
eficial for small regularization level. However, for larger regularization value, the presented SSL
approach requires training the original full model from scratch. In contrast, our approach gradually
modifies the regularization factor and each step continues training from the solution achieved in the
previous step (corresponding to the previous regularization factor), which plays an important role in
reducing the computational complexity of the method.
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APPENDIX A SIGNIFICANCE VALIDATION OF IMPROVEMENTS

On order to verify that the advantage of ADMM training is statistically significant, we conduct ¢-test
by repeating the experiment 15 times on CIFAR-10 using NIN to compare the error rate of ADMM
training and standard fine-tuning (by dropping the learning rate upon “convergence” and continuing
to learn), with the same number of epochs and learning rates. Initialized from the same baseline
model with 90.71 % accuracy, the ADMM training using lyp-norm and standard fine-tuning on av-
erage achieve accuracy of 91.34 % and 91.09 %, respectively. The results demonstrate the ADMM
training achieves improvement of 0.63 % from the baseline model which is statistically significant
(t-test result with p < 0.001). ADMM training performance is also significantly 25 % better than
what the standard fine-tuning achieves (¢-test result with p < 0.001). The ¢-test experiment also
shows that ADMM could reduce the variance of learning. In the 15 repeated experiments, ADMM
training has the lowest standard deviation of errors compared with their counterparts using standard
fine-tuning (standard deviation of 0.04 % for ADMM vs 0.06 % for standard fine-tuning).

Table 2: t-test results for the significance validation of the performances. Results are reported over
15 runs on CIFAR-10 using NIN.

ADMM training | Standard fine-tuning | Baseline
Mean accuracy (%) 91.34 91.09 90.71
Accuracy standard deviation (%) 0.04 0.06 -
Sparsity (%) 34.5 0 0
p-value - 0.001 0.001

APPENDIX B SINGLE RUN RESULTS

Due to space consideration, we present some extra results in the current appendix. First, the results
for our sparsity promoting approach for the different models on CIFAR-10, CIFAR-100, and SVHN
are presented in Tables 3] 4] and [5] respectively. Follows in Table 6] results showing joint variations
of accuracy and sparsity obtained with increasing p values, for the three tested datasets. All these
results are for a single random run of each method on the dataset at hand.
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Table 3: Performance of the proposed ADMM-based sparse method on the CIFAR-10 dataset.

(a) NIN model
I Accuracy (%) Filter (#) Sparsity (%) | Training epochs (#) | Speedup
0 90.71 0-0-0-0 0.00 0 1.00
0.000 91.14 33-482-968-0 1.23 4 1.06
e | 0.105 91.42 33-551-1027-0 1.36 16 1.19
g [ 0211 91.47 34-609-1144-31 1.55 30 1.31
i 0.316 91.56 41-749-1428-589 2.72 48 1.44
= 0421 o1.47 56-1822-2300-5630 12.14 90 1.56
0.526 9I.13 70-6810-4834-12451 30.73 120 1.69
0.632 91.21 107-6810-11568-12451 34.07 140 1.81
0 90.71 0-0-0-0 0.00 0 1.00
0.000 91.24 34-482-969-2 1.23 4 1.06
e | 0.105 91.52 36-554-1031-2 1.37 16 1.19
g [ 0211 91.57 39-614-1148-35 1.57 36 1.31
i 0.316 91.66 46-755-1432-596 2.75 64 1.44
= 0421 91.57 65-1828-2304-5640 12.18 80 1.56
0.526 91.23 81-6821-4843-12461 30.78 96 1.69
0.632 91.31 T18-6821-11577-12461 34.12 112 1.81
" In the order of first hidden layer to last hidden layer out of a total of 576-18432-36864-36864 filters, respec-
tively.
(b) Low-rank NIN model
I Accuracy (%) Filter (#) Sparsity (%) | Training epochs (#) | Speedup
0 90.07 0-0-0-0-0-0-0-0 0.00 0 1.00
0.000 90.65 8-9-192-96-102-96-0-1 0.54 4 1.09
e | 0.105 90.92 9-9-192-98-180-97-20-7 0.66 16 1.26
é 0.211 91.12 9-9-201-104-287-116-78-14 0.88 30 1.43
| 0316 91.25 11-10-275-135-483-177-270-58 1.53 56 1.61
= 0421 91.22 15-22-479-239-1105-411-983-225 375 100 1.78
0.526 91.21 19-28-1163-644-2832-1343-3083-871 10.76 120 1.96
0.632 91.20 30-37-2707-1989-6509-4176-7681-3232 28.43 140 2.13
0 90.07 0-0-0-0-0-0-0-0 0.00 0 1.00
0.000 90.75 9-10-194-96-103-98-2-2 0.55 4 1.09
e [ 0.105 91.02 10-10-194-102-182-99-23-8 0.68 16 1.26
§ 0.211 91.22 13-11-204-110-293-119-81-15 091 36 1.43
- | 0316 91.35 18-16-281-141-490-181-277-59 1.58 48 1.61
= [0.421 91.32 23-30-485-245-1112-420-990-233 3.82 80 1.78
0.526 91.31 29-36-1173-651-2839-1354-3092-879 10.84 108 1.96
0.632 91.30 40-46-2719-1996-6519-4188-7692-3240 2851 126 2.13
*In the order of first hidden layer to last hidden layer out of a total of 288-288-9216-9216-18432-18432-18432-18432 filters,
respectively.
(c) CNN model
" Accuracy (%) Filter (#)” Sparsity (%) | Training epochs (#) | Speedup
0 80.00 0-0-0-0-0 0.00 0 1.00
0.000 81.24 0-0-0-0-0 0.00 4 1.00
e | 0.105 81.44 0-0-0-0-0 0.00 16 1.00
‘g‘ 0.211 81.46 0-0-0-0-0 0.00 30 1.00
~ [ 0316 81.24 0-5-20-9-57 2.40 64 1.21
= 0421 81.48 0-267-843-792-57 5.11 80 1.37
0.526 80.92 3-2870-8922-7161-57 29.82 120 1.94
0.579 79.80 7-5383-17189-10736-57 50.63 130 2.15
0 80.00 0-0-0-0-0 0.00 0 1.00
0.000 81.34 [-2-2-1-1 0.05 4 1.01
e | 0.105 81.54 1-2-3-2-3 0.14 16 1.02
é 0.211 81.56 5-3-53-5-5 0.23 36 1.03
T | 0.316 81.34 5-8-25-17-21 0.95 56 1.10
= 0421 81.58 10-273-853-800-23 375 80 1.30
0.526 81.02 13-2879-8933-7173-23 28.48 96 1.93
0.579 79.90 17-5395-17200-10748-23 49.29 117 2.15
“In the order of first hidden layer to last hidden layer out of a total of 288-12288-32768-16384-256 filters,
respectively.
(d) Low-rank CNN model
I Accuracy (%) Filter (#) Sparsity (%) | Training epochs (#) | Speedup
0 80.20 0-0-0-0-0-0-0-0-0 0.00 0 1.00
0.000 81.76 2-1-2-3-2-2-2-3-2 0.22 4 1.08
E 0.105 81.79 3-2-2-5-5-3-4-3-6 0.64 16 1.21
g 0.211 81.75 6-5-4-5-7-7-6-6-8 0.87 36 1.26
. [ 0316 81.70 6-6-8-7-12-15-9-12-24 2.54 56 1.53
= [0421 81.77 10-11-78-75-221-222-205-208-28 4.09 90 1.69
0.526 81.36 14-12-729-728-2241-2246-1804-1806-33 14.83 108 2.18
0.579 80.14 18-15-1358-1357-4311-4312-2697-2699-34 23.53 104 2.37
0 80.20 0-0-0-0-0-0-0-0-0 0.00 0 1.00
0.000 82.01 1-3-1-3-1-2-4-1-3 0.33 4 I.I1
= [ 0.105 82.01 5-3-9-9-4-8-9-6-8 0.88 16 1.26
§ 0.211 81.91 13-8-9-9-13-12-10-12-13 1.43 30 1.37
T | 0316 82.10 13-9-12-14-20-18-17-19-32 3.41 56 1.62
= 0421 82.00 14-18-83-87-228-227-212-215-39 528 90 1.77
0.526 81.38 19-19-737-738-2249-2250-1807-1813-39 1551 96 2.19
0.579 80.25 25-20-1368-1367-4315-4322-2703-2706-40 2422 104 237

" In the order of first hidden layer to last hidden layer out of a total of 144-144-6144-6144-16384-16384-8192-8192-256 filters,
respectively.
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Table 4: Performance of the proposed ADMM-based sparse method on CIFAR-100 dataset.

(a) NIN model
I Accuracy (%) Filter (#) Sparsity (%) | Training epochs (#) | Speedup
0 63.30 0-0-0-0 0.00 0 1.00
0.000 63.97 34-484-970-1 1.24 4 1.07
e | 0.105 64.33 36-553-1029-4 1.37 16 1.07
g [ 0211 64.46 40-611-1149-35 1.57 30 1.08
i 0.316 64.34 48-751-1433-593 2.74 64 1.14
= 0421 64.18 65-1824-2307-5639 12.17 90 1.42
0.526 64.01 80-6815-4843-12460 30.76 96 1.71
0.632 64.30 117-6816-11581-12464 34.12 112 1.75
0 63.30 0-0-0-0 0.00 0 1.00
0.000 64.32 36-485-969-0 1.24 4 1.07
e | 0.105 64.23 40-558-1033-6 1.39 16 1.07
g [ 0211 64.44 43-618-1152-37 1.59 30 1.08
i 0.316 64.76 50-759-1438-598 2.77 48 1.14
= 0421 64.59 71-1834-2315-5649 12.21 100 1.42
0.526 64.10 85-6824-4850-12472 30.81 120 1.71
0.632 63.93 124-6832-11587-12472 34.17 140 1.75
" In the order of first hidden layer to last hidden layer out of a total of 576-18432-36864-36864 filters, respec-
tively.
(b) Low-rank NIN model
I Accuracy (%) Filter (#) Sparsity (%) | Training epochs (#) | Speedup
0 63.60 0-0-0-0-0-0-0-0 0.00 0 1.00
0.000 64.62 10-9-194-98-102-96-2-3 0.55 4 1.08
£ [0.105 6451 12-11-196-101-183-100-22-9 0.68 6 .10
é 0.211 64.83 13-14-205-107-291-122-82-16 0.92 36 1.13
| 0316 65.22 18-18-282-142-489-183-275-60 1.58 48 1.21
= 0421 65.18 22-31-486-246-1113-417-992-234 3.82 90 1.39
0.526 65.12 31-37-1170-653-2843-1349-3092-881 10.84 120 1.72
0.632 64.85 42-49-2721-1998-6520-4189-7691-3242 28.52 112 2.08
0 63.60 0-0-0-0-0-0-0-0 0.00 0 1.00
0.000 64.58 8-12-195-96-104-98-3-3 0.56 4 1.08
e [ 0.105 64.90 15-14-199-103-186-104-24-11 0.71 16 1.10
§ 0.211 64.93 21-19-210-110-293-125-88-21 0.96 36 1.14
T [0316 65.07 25-20-288-148-496-188-281-67 1.63 a8 121
= [0.421 64.93 30-38-492-253-1118-426-998-240 3.88 80 1.40
0.526 64.88 34-44-1181-663-2845-1359-3099-887 10.90 96 1.72
0.632 65.11 55-59-2725-2008-6531-4192-7703-3248 28.60 140 2.08
*In the order of first hidden layer to last hidden layer out of a total of 288-288-9216-9216-18432-18432-18432-18432 filters,
respectively.
(c) CNN model
" Accuracy (%) Filter (#)” Sparsity (%) | Training epochs (#) | Speedup
0 60.11 0-0-0-0-0 0.00 0 1.00
0.000 61.39 2-1-0-1-2 0.09 4 1.01
e | 0.105 61.88 3-3-3-4-2 0.10 16 1.01
‘g‘ 0.211 61.60 3-3-5-4-4 0.19 30 1.02
~ [ 0316 61.73 7-11-25-13-23 1.03 64 I.10
= 0421 61.97 7-274-848-801-23 3.74 80 1.28
0.526 61.43 10-2877-8929-7173-23 28.46 96 1.90
0.579 59.81 16-5390-17196-10748-23 49.27 117 2.11
0 60.11 0-0-0-0-0 0.00 0 1.00
0.000 61.89 2-3-2-2-3 0.14 4 1.01
e | 0.105 62.12 3-3-5-7-6 0.27 16 1.03
é 0.211 61.90 7-5-7-11-6 0.29 36 1.03
T | 0.316 62.01 14-15-33-22-27 1.23 56 I.11
= 0421 62.15 18-285-859-808-29 4.05 90 1.29
0.526 61.20 24-2890-8943-7181-32 2891 120 1.90
0.579 59.92 30-5404-17211-10756-35 49.84 104 2.11
“In the order of first hidden layer to last hidden layer out of a total of 288-12288-32768-16384-256 filters,
respectively.
(d) Low-rank CNN model
I Accuracy (%) Filter (#) Sparsity (%) | Training epochs (#) | Speedup
0 60.23 0-0-0-0-0-0-0-0-0 0.00 0 1.00
0.000 61.54 2-2-3-3-3-1-1-2-1 0.12 4 1.04
E 0.105 61.98 3-5-4-4-3-4-4-4-7 0.75 16 1.19
g 0.211 61.70 5-8-4-5-4-5-7-8-9 0.97 30 123
. [ 0316 61.74 9-8-8-7-11-10-11-12-26 2.75 48 1.47
= [0421 61.96 10-9-79-74-224-222-206-209-32 4.50 90 1.62
0.526 61.18 11-15-730-729-2244-2243-1801-1805-35 15.03 108 2.07
0.579 60.09 12-16-1360-1358-4310-4309-2697-2698-35 23.63 104 225
0 60.23 0-0-0-0-0-0-0-0-0 0.00 0 1.00
0.000 61.62 1-1-2-1-4-3-2-2-2 0.22 4 1.06
= [ 0.105 62.20 7-5-8-6-7-6-7-7-8 0.88 16 1.20
g [0211 61.91 8-8-8-9-10-10-10-8-12 1.31 36 1.28
T | 0316 61.94 15-13-13-11-16-19-19-18-32 3.42 56 1.52
= 0421 62.05 16-15-82-80-230-233-218-215-36 4.98 90 1.64
0.526 61.33 23-16-736-733-2250-2253-1812-1814-42 15.82 120 2.07
0.579 60.20 24-19-1365-1364-4316-4319-2706-2707-43 24.52 117 225

" In the order of first hidden layer to last hidden layer out of a total of 144-144-6144-6144-16384-16384-8192-8192-256 filters,
respectively.
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Table 5: Performance of the proposed ADMM-based sparse method on SVHN dataset.

(a) NIN model
I Accuracy (%) Filter (#) Sparsity (%) | Training epochs (#) | Speedup
0 96.20 0-0-0-0 0.00 0 1.00
0.000 96.90 34-483-970-0 1.23 4 1.09
e | 0.105 97.02 36-554-1031-3 1.37 16 1.10
g [ 0211 97.32 38-612-1148-34 1.56 30 1.11
i 0.316 97.36 45-752-1432-592 2.74 48 1.18
= 0421 97.06 61-1827-2304-5640 12.17 90 1.52
0.526 96.66 81-6815-4838-12461 30.77 96 1.84
0.632 96.96 T18-6816-11581-12461 34.12 126 1.88
0 96.20 0-0-0-0 0.00 0 1.00
0.000 96.89 35-485-969-1 1.24 4 1.09
e | 0.105 97.23 38-559-1031-5 1.39 16 1.10
g [ 0211 97.47 41-618-1149-40 1.59 36 1.12
i 0.316 97.49 52-764-1436-598 2.78 56 1.19
= 0421 97.56 67-1837-2314-5643 12.20 90 1.53
0.526 97.16 93-6827-4851-12464 30.81 120 1.84
0.632 97.07 130-6829-11586-12470 34.17 126 1.88
" In the order of first hidden layer to last hidden layer out of a total of 576-18432-36864-36864 filters, respec-
tively.
(b) Low-rank NIN model
I Accuracy (%) Filter (#) Sparsity (%) | Training epochs (#) | Speedup
0 96.70 0-0-0-0-0-0-0-0 0.00 0 1.00
0.000 97.72 10-11-193-98-102-98-0-3 0.56 4 1.11
e | 0.105 97.58 11-12-194-102-182-99-21-10 0.68 16 1.13
é 0.211 98.16 15-15-206-108-292-121-80-18 0.92 36 1.16
| 0316 97.90 17-16-280-139-490-182-276-65 1.58 64 1.25
= 0421 98.18 21-31-485-247-1112-416-993-232 381 100 1.46
0.526 97.98 27-37-1174-652-2840-1348-3093-882 10.84 120 1.80
0.632 98.11 41-46-2718-2002-6517-4189-7694-3243 28.52 126 2.18
0 96.70 0-0-0-0-0-0-0-0 0.00 0 1.00
0.000 97.51 8-9-195-96-103-99-3-5 0.56 4 LI1
e [ 0.105 97.88 16-13-196-104-185-103-26-11 0.71 16 1.13
§ 0.211 97.94 17-18-209-113-297-126-86-21 0.96 36 1.17
- | 0316 98.27 25-24-287-144-494-187-281-71 1.63 64 1.26
= [0.421 97.97 30-36-492-251-1119-423-997-239 3.87 100 1.46
0.526 98.45 39-42-1176-659-2849-1363-3102-891 10.91 96 1.81
0.632 97.99 53-57-2725-2004-6535-4201-7705-3257 28.62 112 2.18
*In the order of first hidden layer to last hidden layer out of a total of 288-288-9216-9216-18432-18432-18432-18432 filters,
respectively.
(c) CNN model
" Accuracy (%) Filter (#)” Sparsity (%) | Training epochs (#) | Speedup
0 85.10 0-0-0-0-0 0.00 0 1.00
0.000 86.81 2-1-0-2-0 0.01 4 1.00
e | 0.105 86.68 2-3-2-2-4 0.18 16 1.02
‘g‘ 0.211 86.69 5-5-6-3-4 0.19 36 1.02
~ [ 0316 86.35 6-10-28-14-19 0.87 64 I.10
= 0421 86.85 6-277-853-798-24 3.79 80 1.32
0.526 86.34 9-2880-8932-7167-24 28.50 96 1.97
0.579 83.30 13-5393-17199-10748-25 49.36 104 2.19
0 85.10 0-0-0-0-0 0.00 0 1.00
0.000 86.63 1-0-1-0-2 0.09 4 1.01
e | 0.105 86.70 4-4-5-7-6 0.28 16 1.03
é 0.211 86.80 11-8-9-8-7 0.34 30 1.04
T | 0.316 86.74 13-17-32-17-22 1.02 64 I.11
= 0421 86.97 13-285-855-809-29 4.04 90 1.34
0.526 86.49 19-2888-8934-7178-29 28.76 120 1.97
0.579 83.40 26-5401-17206-10758-29 49.58 117 2.19
“In the order of first hidden layer to last hidden layer out of a total of 288-12288-32768-16384-256 filters,
respectively.
(d) Low-rank CNN model
I Accuracy (%) Filter (#) Sparsity (%) | Training epochs (#) | Speedup
0 87.60 0-0-0-0-0-0-0-0-0 0.00 0 1.00
0.000 88.93 3-3-3-1-3-2-3-3-1 0.13 4 1.04
E 0.105 89.28 3-4-5-2-5-5-3-4-3 0.34 16 1.10
g 0.211 89.39 7-5-7-7-7-6-5-5-6 0.67 36 1.18
. [ 0316 89.18 10-7-9-10-12-11-10-9-25 2.65 48 1.49
= [0421 89.55 11-11-76-77-222-219-209-208-33 4.61 100 1.66
0.526 88.83 14-14-727-732-2242-2242-1803-1802-33 14.83 96 2.10
0.579 86.30 15-15-1357-1361-4308-4312-2696-2695-36 23.73 130 229
0 87.60 0-0-0-0-0-0-0-0-0 0.00 0 1.00
0.000 89.30 1-5-5-4-4-1-3-3-1 0.13 4 1.04
= [ 0.105 89.55 4-9-5-7-6-7-5-5-7 0.77 16 1.20
§ 0.211 89.65 6-11-9-9-12-12-6-11-11 1.21 30 1.28
T | 0316 89.39 10-15-11-14-17-18-17-18-29 3.10 56 1.52
= 0421 89.56 17-16-83-85-224-232-213-216-42 5.59 90 1.72
0.526 89.00 21-23-740-738-2247-2255-1813-1813-44 16.04 120 2.12
0.579 86.41 25-24-1369-1367-4316-4321-2706-2706-44 24.64 117 229

" In the order of first hidden layer to last hidden layer out of a total of 144-144-6144-6144-16384-16384-8192-8192-256 filters,
respectively.
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Table 6: Joint variations of accuracy and sparsity on the evaluated datasets for increasing v values.
LR-NIN stands for low-rank NIN while LR-CNN is for low-rank CNN.

(a) CIFAR-10

Sparsity (%) 0.00 1.23 1.36 1.55 272 | 12.14 | 30.73 | 34.07
= Accuracy (%) 90.71 | 91.14 | 91.42 | 91.47 [ 91.56 | 91.47 [ 91.13 [ 91.21
Training epochs (#) 0 4 16 30 48 90 120 140
4 Speedup 1.00 1.08 1.09 .10 .16 1.47 1.77 1.81
z Sparsity (%) 0.00 1.23 1.37 1.57 275 | 12.18 [ 30.78 | 34.12
o) Accuracy (7o) 90.71 | 91.24 [ 91.52 [ 91.57 | 91.66 | 91.57 | 91.23 | 91.31
Training epochs (#) 0 4 16 36 64 80 96 112
Speedup 1.00 1.08 1.09 1.10 I.16 1.47 L.77 1.8T
Sparsity (%) 0.00 | 054 | 0.66 | 0.88 | 1.53 | 3.75 | 10.76 | 28.43
- Accuracy (%) 90.07 | 90.65 | 90.92 | 91.12 | 91.25 | 91.22 | 91.21 | 91.20
2 |~ [Training epochs GH |0 7 16 30 56 | 100 | 120 | 140
Z Speedup 1.00 1.09 111 1.14 1.22 1.42 1.76 2.13
o~ Sparsity (%) 0.00 [ 055 0.68 0.91 1.58 3.82 | 10.84 | 2851
— ) Accuracy (7o) 90.07 ] 90.75 [ 91.02 [ 91.22 [ 91.35 [ 91.32 | 91.31 | 91.30
Training epochs (#) 0 4 16 36 48 80 108 126
Speedup 1.00 1.09 LIT .15 1.23 1.43 1.76 2.13
Sparsity (%) 0.00 | 0.00 | 0.00 | 0.00 | 2.40 | 5.11 [29.82 | 50.63
- Accuracy (%) 80.00 | 81.24 | 81.44 | 81.46 | 81.24 | 81.48 | 80.92 | 79.80
- Training epochs (#) 0 4 16 30 64 80 120 130
% Speedup 1.00 1.00 1.00 1.00 1.21 1.37 1.94 2.15
o Sparsity (o) 0.00 | 0.05 0.14 | 0.23 0.95 375 12848 ] 49.29
< Accuracy (o) 80.00 | 81.34 | 81.54 | 81.56 | 81.34 | 81.58 | 81.02 | 79.90
Training epochs (#) 0 4 16 36 56 80 96 117
Speedup 1.00 1.01 1.02 1.03 1.10 1.30 1.93 2.15
Sparsity (%) 0.00 | 0.22 0.64 | 0.87 254 | 409 | 1483 ] 2353
= Accuracy (7o) 80.20 [ 81.76 | 81.79 | 81.75 [ 81.70 [ 81.77 | 81.36 | 80.14
4 Training epochs (#) 0 4 16 36 56 90 108 104
6 Speedup 1.00 1.08 1.21 1.26 1.53 1.69 2.18 2.37
4 Sparsity (o) 0.00 | 033 0.88 1.43 341 5.28 | 1551 | 2422
2l - Accuracy (%) 80.20 | 82.01 | 82.01 | 8I.91 | 82.10 | 82.00 | 81.38 | 80.25
Training epochs (#) 0 4 16 30 56 90 96 104
Speedup 1.00 LLIT 1.26 1.37 1.62 .77 2.19 2.37
(b) CIFAR-100
Sparsity (%) 0.00 1.24 1.37 1.57 274 ] 12.17 ] 30.76 | 34.12
- Accuracy (7o) 63.30 | 63.97 [ 64.33 | 64.46 | 64.34 | 64.18 | 64.01 | 64.30
Training epochs (#) 0 4 16 30 64 90 96 112
z Speedup 1.00 1.07 1.07 1.08 1.14 1.42 1.71 1.75
z Sparsity (%) 0.00 | 124 | 1.39 | 1.59 | 277 | 12.21 | 30.81 | 34.17
5 Accuracy (%) 63.30 | 64.32 | 64.23 | 64.44 | 64.76 | 64.59 | 64.10 | 63.93
~ [ Training epochs ) |0 7 16 30 73 100 | 120 | 140
Speedup 1.00 1.07 1.07 1.08 .14 1.42 .71 1.75
Sparsity (%) 0.00 | 055 0.68 0.92 1.58 3.82 | 10.84 | 28.52
= Accuracy (7o) 63.60 | 64.62 | 64.51 | 64.83 | 6522 | 65.18 | 65.12 | 64.85
z Training epochs (#) 0 4 16 36 48 90 120 112
g Speedup 100 | 1.08 | L.I0 | 113 | 1.21 | 139 | 1.72 | 2.08
o Sparsity (%) 0.00 | 0.56 0.71 0.96 1.63 3.88 [ 10.90 | 28.60
= o) Accuracy (%) 63.60 | 64.58 | 64.90 | 64.93 | 65.07 | 64.93 | 64.88 | 65.11
Training epochs (#) 0 4 16 36 48 80 96 140
Speedup 1.00 1.08 1.10 1.14 1.21 1.40 .72 2.08
Sparsity (%) 0.00 | 009 | 0.10 | 0.19 | 1.03 | 374 | 28.46 | 49.27
= Accuracy (%) 60.1T | 61.39 | 61.88 | 61.60 | 61.73 | 61.97 | 61.43 | 59.81
Training epochs (#) 0 4 16 30 64 80 96 117
% Speedup 1.00 1.01 1.01 1.02 .10 1.28 1.90 2.11
o Sparsity (%) 0.00 | 0.14 0.27 0.29 1.23 4.05 [ 2891 | 49.84
) Accuracy (7o) 60.11 | 61.89 [ 62.12 [ 61.90 | 62.01 | 62.15 | 61.20 | 59.92
Training epochs (#) 0 4 16 36 56 90 120 104
Speedup 1.00 1.01 1.03 1.03 LIT 1.29 1.90 2.11
Sparsity (%) 0.00 | 012 | 075 | 0.97 | 275 | 450 | 15.03 | 23.63
- Accuracy (%) 60.23 | 61.54 | 61.98 | 61.70 [ 61.74 | 61.96 | 61.18 | 60.09
Z | ™ [Training epochs G |0 7 16 30 a3 90 | 108 | 104
5 Speedup 1.00 1.04 1.19 1.23 .47 1.62 2.07 2.25
I~ Sparsity (7)) 0.00 | 0.22 0.88 1.31 342 | 498 [ 15822452
~ < Accuracy (7o) 60.23 | 61.62 [ 62.20 | 61.91 | 61.94 | 62.05 | 61.33 | 60.20
Training epochs (#) 0 4 16 36 56 90 120 117
Speedup 1.00 1.06 1.20 1.28 1.52 1.64 [ 207 [ 225
(c) SVHN
Sparsity (%) 0.00 1.23 1.37 1.56 274 ] 12.17 | 30.77 | 34.12
= Accuracy (7o) 96.20 | 96.90 [ 97.02 [ 97.32 | 97.36 | 97.06 | 96.66 | 96.96
Training epochs (#) 0 4 16 30 48 90 96 126
z Speedup 1.00 1.09 .10 1T I8 1.52 1.84 1.88
2 Sparsity (o) 0.00 1.24 1.39 1.59 278 | 12.20 [ 30.81 | 34.17
o Accuracy (%) 96.20 | 96.89 | 97.23 | 97.47 | 97.49 | 97.56 | 97.16 | 97.07
Training epochs (#) 0 4 16 36 56 90 120 126
Speedup 1.00 1.09 1.10 .12 .19 1.53 1.84 1.88
Sparsity (%) 0.00 | 0.56 0.68 0.92 1.58 3.81 10.84 | 28.52
= Accuracy (7o) 96.70 | 97.72 [ 97.58 [ 98.16 | 97.90 | 98.18 | 97.98 | 98.11
z Training epochs (#) 0 4 16 36 64 100 120 126
Z Speedup 1.00 LI .13 1.16 1.25 1.46 1.80 2.18
& Sparsity (%) 0.00 | 056 | 071 | 096 | 1.63 | 3.87 | 10.91 | 28.62
=< Accuracy (%) 96.70 | 97.51 | 97.88 | 97.94 | 98.27 | 97.97 | 98.45 | 97.99
~ [Training epochs () |0 T 16 36 64 100 | 96 12
Speedup 1.00 ILI1 1.13 .17 1.26 1.46 1.81 2.18
Sparsity (%) 0.00 | 0.01 0.18 0.19 0.87 3.79 ] 2850 | 49.36
- Accuracy (o) 85.10 | 86.81 | 86.68 | 86.69 | 86.35 | 86.85 | 86.34 | 83.30
Training epochs (#) 0 4 16 36 64 80 96 104
Z Speedup 100 | 1.00 | 1.02 | 1.02 | 110 | 132 | 197 | 2.19
o Sparsity (%) 0.00 [ 0.09 0.28 0.34 1.02 | 404 [ 28.76 | 49.58
) Accuracy (%) 85.10 [ 86.63 | 86.70 | 86.80 | 86.74 | 86.97 | 86.49 | 83.40
- Training epochs (#) 0 4 16 30 64 90 120 117
Speedup 1.00 1.01 1.03 1.04 LIT 1.34 1.97 2.19
Sparsity (%) 0.00 | 0.13 0.34 | 0.67 2.65 4.61
= Accuracy (%) 87.60 | 88.93 | 89.28 | 89.39 | 89.18 | 89.55
z Training epochs (#) 0 4 16 36 48 100
& Speedup T00 | 104 | 110 | 1.I8 | 149 | 166
o Sparsity (%) 0.00 | 0.13 0.77 1.21 3.10 5.59
— o) Accuracy (7o) 87.60 [ 89.30 | 89.55 | 89.65 [ 89.39 [ 89.56 | 89.00 | 86.41
Training epochs (#) 0 4 16 30 56 90 120 117
Speedup 1.00 1.04 1.20 1.28 1.52 .72 2.12 2.29
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