
Under review as a conference paper at ICLR 2019

DISTILLED AGENT DQN
FOR PROVABLE ADVERSARIAL ROBUSTNESS

Anonymous authors
Paper under double-blind review

ABSTRACT

As deep neural networks have become the state of the art for solving complex
reinforcement learning tasks, susceptibility to perceptual adversarial examples
have become a concern. The transferability of adversarial examples is known
to enable attacks capable of tricking the agent into bad states. In this work we
demonstrate a simple poisoning attack able to keep deep RL from learning, and
into fooling it when trained with defense methods commonly used for classification
tasks. We then propose an algorithm called DadQN, based on deep Q-networks,
which enables the use of stronger defenses, including defenses enabling the first
ever on-line robustness certification of a deep RL agent.

1 INTRODUCTION

To ensure Reinforcement Learning (RL) behaves reliably in the real world, it is important to consider
settings where an adversary aims to actively hinder the learning process of the agent. While prior
work has explored robustness in the setting of discrete RL (Morimoto & Doya, 2005; Boyan & Moore,
1995), most recent progress in the field has focused on dealing with continuous states by using neural
networks (Sutton et al., 2000; Mnih et al., 2013; Peters & Schaal, 2008).

In this work we present a new approach for training RL systems to be more (provably) robust. The key
idea is to decouple the DQN network architecture into a policy (student) network S and a Q-network
in a way which allows us to robustly train the policy network and use it for exploration while at the
same time preserving the standard way in which the Q network is trained. We then show how to
naturally incorporate state of the art defenses, developed in the context of deep supervised, learning
to the reinforcement learning setting by training the student network in two ways: (i) via adversarial
training with methods such as FGSM where we generate adversarial states that decrease the chance
the optimal action is selected, and (ii) via provably robust training with symbolic methods which
guarantee the network will select the right action in a given state despite any possible perturbation
(within a range) of that state.

Contributions Our main contributions are:

• The first deep RL algorithm, DadQN, designed to be adversarially defended with state-of-
the-art adversarial training as well as provably robust training into our RL algorithm. To our
best knowledge, this is the first time, on-line robustness certification has been achieved with
a deep RL agent.
• An attack, illustrated in Figure 1, that hinders learning in modern deep RL algorithms.
• An evaluation demonstrating that DadQN can defend against adversarial attacks when

defenses against DQNs catastrophically fail, while being of comparable performance when
adversarial attacks are not present.

2 RELATED WORK

At roughly the same time as deep reinforcement learning methods were first being developed
Schulman et al. (2015); Mnih et al. (2013) it was noticed by Goodfellow et al. (2014) that in the

1
tag sale by PetalArt, money by DesignContest, crying face, microscope, shopping cart and graduation cap by Twitter, Inc., are licensed under CC BY 4.0.

1

http://www.iconarchive.com/artist/petalart.html
http://www.iconarchive.com/artist/designcontest.html
https://raw.githubusercontent.com/twitter/twemoji/gh-pages/svg/1f622.svg
https://raw.githubusercontent.com/twitter/twemoji/gh-pages/svg/1f52c.svg
https://raw.githubusercontent.com/twitter/twemoji/gh-pages/svg/1f6d2.svg
https://www.opensymbols.org/symbols/twemoji/graduation-cap-d423b3b1?id=47688
https://creativecommons.org/licenses/by/4.0/


Under review as a conference paper at ICLR 2019

Actual Stock Prices Agent Mode Attacked Perception Optimal Action Actual Action Outcome

Figure 1: An illustration of the UQP Poisoning Attack on a hypothetical stock trading agent.1

setting of supervised learning, classifiers were susceptible to adversarial attacks by introducing
imperceptible perturbations to the inputs. At the same time, it was determined that training using
these adversarially crafted images could serve as a way to defend against them. Later, Carlini &
Wagner (2016) determined that many defensive techniques were insufficient. A particularly successful
defense is that of Madry et al. (2018). This method uses adversarial examples generated by the PGD
attack as training examples (instead of the original examples). While it is experimentally effective, it
provides no guarantees about the resulting network’s robustness. Carlini & Wagner (2017) introduced
further method for evaluating the robustness of neural networks. Katz et al. (2017) provided the
first system which could (for very small networks) determine local-robustness, that is, at test time
the network is proven to be either ε-robust for an individual image. Gehr et al. (2018) used abstract
interpretation to scale the local robustness analysis by sacrificing completeness. Raghunathan et al.
(2018) introduced a technique to train networks to be certifiably robust (though again limited to
small networks). Multiple recent techniques have been developed since to train increasingly larger
networks to be certifiably robust including Wong & Kolter (2018); Mirman et al. (2018); Dvijotham
et al. (2018); Wong et al. (2018). These techniques represent different points in the spectrum of
classification accuracy, certifiable robustness, experimental robustness, and training speed.

While Pattanaik et al. (2017) used adversarial examples to train an agent and improve its experimental
robustness, Behzadan & Munir (2017b) noticed that often doing this prevents learning. Behzadan
& Munir (2017a) further demonstrated that this effect could be intentionally amplified to prevent
learning intentionally on the part of an adversary. Gu et al. (2018) demonstrated a technique for
training the A3C algorithm to be adversarially robust by training a parallel adversarial actor-critic pair
for each protagonist actor-critic pair. The analysis of their technique is limited to noisy environment
adversaries, and not intentional agent-aware adversaries such as FGSM. Similarly, Ferdowsi et al.
(2018) created an adaptive adversary to improve robustness.

Pinto et al. (2017) first used adversarial training to improve robustness of deep reinforcement learning
algorithms, specifically TRPO. Mandlekar et al. (2017) demonstrated techniques to construct physi-
cally plausible perturbations adversarially to improve deep RL. Gu et al. (2018) then demonstrated
how adversarial training could also be used to improve A3C.

Papernot et al. (2015) first proposed that distilling a neural network by training the same architecture
with the probability vector outputs of the original network might act as a defense against adversarial
examples. While Carlini & Wagner (2016) found that defensive distillation is insufficient to protect
against adversarial examples for supervised learning, our algorithm uses distillation in combination
with more effective defenses to protect reinforcement learning. Chen et al. (2017) use a pre-defined
rule-based teacher policy to assist a deep RL system. They introduce a new DQN algorithm which
predicts when to consult the teacher and how to learn from the teacher’s experiences. In our setting
there is no known external teacher. Lin et al. (2017a) use distillation to improve reinforcement
learning itself by introducing the collaborative asynchronous advantage actor-critic algorithm (cA3C).
Their method allows for knowledge transfer between agents in cases where multiple agents are playing
simultaneously in different environments with potentially different tasks. To do this, they use a “deep
alignment network” which learns to transfer the outputs from a teacher network to a student network.
Unlike our system, their system only improves agents learning from different tasks, and does not
provide a method to defend the learned policy. Shashua & Mannor (2017) train a DQN, that avoids
the worst case outcome and performs well in the presence of a non-deterministic environments by
using an extended Kalman-Filter. However, their Kalman-update requires multiplication of matrices

2



Under review as a conference paper at ICLR 2019

of size quadratic in the total number of weights and thus does not scale to neural networks that
play Atari-Games with the screen input. On the other hand, we optimize a policy to generalize to
non-game effecting perturbations in a way which we show is scalable to very large neural networks.
We furthermore demonstrate how to do this in a way that increases provability.

3 BACKGROUND

The goal of reinforcement learning is to determine a behavior policy2 π(a | s) for a given
game G : State × Action → State × R, that maximizes the expected discounted sum of future
rewards Qπ(s) = E [

∑∞
t=1 γ

trt|s1 = s, a1 = a, π], where γ ∈ [0, 1] is a discount factor and
si+1, ri = G(si, ai). The objective of Q-Learning (Watkins & Dayan, 1992) is to learn the
function Q∗(s)a = maxπ Q

π(s)a and construct a policy by greedily picking its optimal action.

3.1 DEEP Q LEARNING

In Deep Q-Learning (Mnih et al., 2015; 2013) the goal is to progressively approximate Q∗ by weights
θi for a neural network Q(s; θi)a at iteration i. Samples are generated and stored in an experience
replay bufferDi = {e1, . . . , ei} where ei = (si, ai, ri, si+1) is generated using a sufficiently random
agent based on the approximation Q(s; θi).

Integral to the DQN algorithm is the use of a network with lagging weights θ−i = θkb i
k c

for some k.
The loss at iteration i is described by

Li = E(s,a,r,s′)∼U(Di)[(r + γmax
a′

Q(s′; θ−i )a′ −Q(s; θi)a)2]

A few iterations of stochastic gradient descent are used to minimize Li and produce θi+1, although
often multiple exploration steps are used first.

3.2 ADVERSARIAL ATTACK

Unlike traditional reinforcement learning, the presence of adversarial attacks introduces the compli-
cation that the game has some level of knowledge about the agent playing the game and can act in
specific ways knowing its behavior. The environment that our algorithm is designed to address is
given by our definition of an agent aware game.

Agent Aware Game In agent aware reinforcement learning, the game G not only has access to the
agent’s choices, but also has access to the learning system and the agent itself. Thus, an adversarial
agent’s aim is to play the game in such a way as to poison learning, but also potentially play differently
when it is aware if the RL system is training or testing.

We consider only manipulative agent aware games, defined to be games

G : State× Action× Agent→ State× R

which are composed of a core game H : State× Action→ State× R and a manipulative adversary
M : State×Agent→ State such that G(si, ai, π) = (M(s−i+1, π), ri) where (s−i+1, ri) = H(si, ai),
and such that for any π where si+1 = M(s−i+1, π) it is true that ∀a.H(si+1, a) = H(s−i+1, a). In
other words, manipulation does not effect how the core game works or is played.

The attacks we consider are L∞ ε-attacks (not to be confused with the ε used for greedy exploration).
Specifically M(s, π) ∈ Bε(s) = {s′ | ||s− s′||∞ ≤ ε}, that is, Bε(s) is an ε sized L∞ ball.

We consider both, test time attacks, and attacks that change their behavior when the agent is training.

3.3 TESTING ATTACKS

Huang et al. (2017) attack a network policy trained by reinforcement learning, at testing time and find
that traditional untargeted attacks such as FGSM are sufficient to significantly reduce the performance

2We write π(s) to mean vector of scores for each action in the deterministic greedy policy where
argmaxa π(s)a is the action taken. When written this way, it is assumed that π is a neural network.

3



Under review as a conference paper at ICLR 2019

of the policy produced by DQN, A3C and TRPO. Lin et al. (2017b) used targeted attacks to “enchant”
the agent into performing specific actions. We evaluate only with untargeted FGSM attacks.

3.4 TRAINING ATTACKS

Attacking the training procedure such that the model never learns is known as poisoning Yang et al.
(2017); Steinhardt et al. (2017); Biggio et al. (2012). Behzadan & Munir (2017a) introduce an attack
used to prevent the DQN from ever learning the correctQ function. In their attack, they do not assume
the attacker has direct access to θQ and instead train a version of it, θQ′ , in parallel. They learn
an “adversarial policy” which picks an action a′ far from the optimal one and then they perturb the
observed next-state s′ to cause Q(s′; θ−Q′) to be maximized (they use the non Double DQN variant)
for the action a′ in hopes the attack transfers to the intended DQN.

We introduce an attack, Untargeted Q-Poisoning (UQP), which does not need to train additional
networks, and which has access to the agent’s network. We allow the attack the to switch its behavior
when the agent is being tested in order to simulate the inevitable asymmetry between production and
development environments and common subsequent dysfunction it is known to cause. In UQP during
training time, an attack state is chosen in the style of FGSM to reinforce the decision of the agent
policy, thus often creating an illusion of highly successful training. During test time, standard FGSM
is used where the “classification” is chosen by the policy. We define it as a manipulative adversary:

M(s, π) =

{
s− αsign(∇sH(g, π(s))) π(s) is learning and g = arg maxa π(s)a
s+ αsign(∇sH(g, π(s))) otherwise and g = arg maxa π(s)a

where H is the cross entropy between the probability distribution π(s), and the optimal action
(encoded as one hot vector) from that probability distribution. This attack is visualized in Figure 1.
Here the adversary is aware of whether the agent is training or being actively used, and is able to
change the agent’s perception of the stock histories. When it is training, it might show the agent stock
values with less noise than normal. When the agent is then being actively used to trade, it would use
the standard FGSM attack to convince it to buy when it should sell. Intuitively, by using the negative
of the gradient during training, the UQP attack increases the over-estimation of the value of an action,
which Van Hasselt et al. (2016) has determined to decrease learning performance. The negative of
the gradient has the added benefit of counteracting adversarial training. While UQP attack is aware
of whether the agent is testing or training, our results show that it is only necessary to use during
training to derail the performance of a DQN, and thus is functionally a poisoning attack.

4 DISTILLED AGENT DQN (DADQN)

In contrast to deep supervised learning, deep reinforcement learning is more resource intensive task,
and has less stable training dynamics, even for seemingly simple problems. As such, it is important
that any proposed defense mechanism is efficient and usable in an online setting and induce as little
perturbation as possible to standard network training algorithm.

Furthermore, while some progress has been made towards making deep RL experimentally robust, so
far there has been less work on certifiable robustness. Towards this, we propose a method to leverage
the base Q learning algorithm’s ability to learn the correct Q function given a sufficiently random
exploration agent (Even-Dar & Mansour, 2002; Bertsekas, 2008; Tsitsiklis, 1994; Watkins & Dayan,
1992).

Rusu et al. (2015) first described the method of improving the learned policy in Deep-Q Learning
using Policy Distillation (PD). In this technique a Q-approximation is first learned by the standard
DQN algorithm. New games are then played using Q as a greedy policy, and the states s are recorded.
A student network S is then trained on these states to mimic the behavior of Q. Much like PD, our
method involves distilling a policy network from Q. Standard PD only uses the distilled policy during
test time, and has so far only been tested in this way. Here we introduce DadQN which trains the
student policy S at the same time as it is learning the Q network and uses the student policy instead
for exploration. By decoupling the policy network from the Q network, we are able to train the policy
with additional defensive constraints and use it for the exploration agent in addition to testing with it.
Given a loss LD and learning rates αQ, αS ∈ (0, 1) our algorithm is as follows:

4



Under review as a conference paper at ICLR 2019

Algorithm 1 DadQN pseudocode

Initialize a state s, weights θQ, θS
for i = 0, . . . do

for j = 0, . . . , n do
Pick an an action a with a fair strategy (ex. ε-greedy) with πθS based on S(s; θS)
Play the game (s′, r) := G(s, a, θS)
Store (s, a, r, s′) in D
s := s′

if i mod k == 0 then
θ−Q := θQ

end if
Pick a batch D ∼ U(D)
Train the underlying Q:

θQ := θQ − αQ∇θQ
∑

(s,a,r,s′)∈D(r + γY −Q(s; θQ)a)2

Train the student S from Q:
θS := θS − αS∇θS

∑
(s,a,r,s′)∈D

[
LD(s, θQ, θS)

]
end for

end for

Here Y ≡ Q(s′; θ−Q)argmax′
aQ(s′;θQ)′a

is the Double DQN (Van Hasselt et al., 2016) next Q estimate.

The intuition behind this algorithm is that the loss for the Q function has not been changed and thus
after being trained on sufficiently many random paths, the Q function will approach Q∗ regardless
of what the student learns. Assuming the student will learn no matter what it is initialized with,
the student should be able to handle the concept-shift of Q learning and incorporate the provided
constraint. Presumably, the additional constraints allow the student to achieve a better score when
playing, so the student should explore higher reward paths.

While LD could potentially be any optimizable function, we evaluate with either one of the defensive
loss described in Section 4.1, or an undefended mean squared error (MSE) loss LMSE. While
Rusu et al. (2015) observed that KL divergence works better than MSE and negative-log-likelihood
experimentally, we found MSE to be sufficient, simple and common enough for our evaluation.

Wang et al. (2015) observed better learning performance by introducing a specific Q network
architecture, the Dueling DQN, which is split into two components: an advantage network A(s; θQ) :
Rm computing the relative advantage of the m actions, and a value network V (s; θQ) : R. These
are combined as Q(s; θQ) = V (s; θQ) + (A(s; θQ)− 1

|A|
∑
a∈AA(s; θQ)a), where A denotes the

action space. The advantage and value are defined to share early network layers. We note that the
output of A alone is sufficient to replicate a greedy policy based on Q. However, we observe that the
value network may be able to discriminate between states earlier on in the learning than the advantage
network. We thus train both the advantage network and value network of the student from the Q
independently with the same loss, defining LMSE, Dueling for use as LD in Algorithm 1 as follows:

LMSE, Dueling(s, θQ, θS) = ||AQ(s; θQ)−AS(s; θS)||22 + ||VQ(s; θQ)− VS(s; θS)||22. (1)

The Exploration Agent Originally, randomization in exploration was accomplished for the DQN
using ε-greedy search (Watkins, 1989). Here, the action arg maxa S(s; θS)a is used with probability
1− p and an action is picked uniformly with probability p at every time step (we use p instead of ε so
to not overload ε used in attacks). If p ≥ c for a constant c > 0, then standard Q learning is known to
converge. p is decreased linearly with the number of frames played until it reaches a fixed c.

While this method has good theoretical guarantees, Fortunato et al. (2017) noticed improvements
by letting the Q-network learn a mean and variance on noise for the weights in its dense layers. We
experiment with the same idea here, however only the student network S learns with noise. We notice
that because the student network lags behind the Q network, it might require more diverse samples
even when Q has sufficiently learned the correct behavior. We thus introduce an exploration noise
constant η ≥ 1, which we multiply with the learned weight variances at exploration time.

5



Under review as a conference paper at ICLR 2019

4.1 DEFENDING DADQN

The primary motivation for decoupling the DQN network into a policy-student network S and a
Q-network is to allow one to leverage additional constraints on the student network without affecting
the learning of the correct Q function (provided that exploration is sufficiently noisy). We address the
problem of adversarial robustness in reinforcement learning by improving S’s robustness. Specifically,
we split LD into a defense α and a defense loss LO. The defense α uses θS and the sample s to
produce a defense goal sd (which could be a concrete or symbolic) which is then passed to LO.

LD(s, θQ, θS) = LO(s, sd, Q(s, θQ), θS).

Adversarial Training A variety of techniques have been developed for increasing the robustness
of neural networks, typically by training with adversarial examples (Tramèr et al., 2017; Shaham
et al., 2015; Madry et al., 2018). Rather than providing the Q network with adversarial examples as
in Mandlekar et al. (2017), we provide them (in this case, as concrete defense goals) sd to the student:

αε,FGSM(θS , s) = FGSMε(s, arg max
a

S(s; θS)a, θS)

Here, FGSMε produces a concrete adversarial example sd in the ε sized L∞ ball around s that makes
the best action in s as least likely to be selected in sd as possible (that is, it is an untargeted attack).

Finally, we use the traditional MSE loss function:

LO,MSE(s, sd, q̄, θS) = ||q̄ − S(sd; θS)||22.
In practice, we use this loss with probability p, the rest of the time using the non-attacked point s
instead of sd. For Dueling DQNs we calculate the advantage and value separately as in Equation 1.

Provable Robustness Training In addition to adversarial training, we train and certify the robust-
ness of our networks with the DiffAI framework introduced by Mirman et al. (2018) using its Interval
domain. This framework has been shown capable of training networks on the scale of DQNs used
in Atari with minimal speed and memory overheads over undefended SGD. Additionally, it has
been shown to decrease the accuracy of networks very little, which is essential to reinforcement
learning where unstable dynamics can be an issue. Formally, we first create the abstract (symbolic)
defense goal sd = Bε(s). We then use DiffAI to soundly propagate the defense goal sd through the
network S (via symbolic computation), obtaining a symbolic element gf as a result. Finally, DiffAI
defines a differentiable loss LI : Interval × N → R which takes as input the final element gf and
a target (action in our case). The loss has the property that for some target t if LI(gf , t) ≤ 1 then
∀s′ ∈ Bε(s). arg maxa S(s′; θS)a = t. That is, in this case, we have proved that any element inside
the ε sized L∞ ball around s will be classified to the action t by the student network. We define our
defensive loss as a combination of this loss and the adversarial loss described earlier for a concrete α:

LO,Interval(s, sd, q̄, θS) = LO,MSE(s, α(θS , s), θS) + λLI(gf , arg max
a

q̄a)

where λ ≥ 0 is the constant with which we want to prioritize the DiffAI loss.

5 EXPERIMENTAL EVALUATION

We now present our experimental results comparing DadQN to existing methods. We note that while
it may be beneficial to intentionally train one’s own DQN by simulating an adversarially attacking
manipulator (in an attempt to defend it), there are learning time attacks which prevent this from being
effective. Thus, central to our analysis is the notion that the agent does not know whether it will be
attacked during training and with what attack, or whether it will be attacked during testing and with
what attack. We show that in each situation, DadQN is capable of providing a stronger or equally
strong a defense as existing work, and virtually always avoids the worst case failures. We also show
the first improvement in provable robustness in DQNs by using DiffAI as a training defense.

5.1 EXPERIMENTAL SETUP

We tested with 3 Atari games (Bellemare et al., 2013) from the OpenAI Gym (Brockman et al., 2016):
RoadRunner (RR), Pong and Boxing. Every 10 episodes we play a validation game. In a these games

6



Under review as a conference paper at ICLR 2019

Table 1: Validation game reward comparison for UQP poisoning attack.

Untargeted Quality Poisoning Training Attack

Game Test Attack DQN DQN DadQN DadQN + FGSM Def DadQN + DiffAI

RR none 46821.66 17940.54 25227.04 30513.18 18903.09
FGSMp=0.4 15517.12 15487.56 26516.17 30766.76 20954.75

Pong none 20.62 12.23 19.19 18.99 11.14
FGSMp=0.4 -14.43 18.61 18.10 19.10 10.55

Boxing none 87.07 41.07 82.15 93.30 46.82
FGSMp=0.4 67.11 40.45 78.14 93.52 51.52

Breakout none 263.66 26.69 30.77 130.98 -
FGSMp=0.4 7.91 14.53 54.22 125.29 -

Table 2: Comparing defended DQN to defended DadQN by validation game score.

DQN trained with... DadQN trained with...

Game Test Attack none TrAtk Def TrAtk+Def nothing TrAtk Def TrAtk+Def

RR none 20244 15903 242 820 13315 22726 19781 18480
FGSMp=1 780 19478 981 1101 647 15234 18538 17566

Pong none 19.85 17.83 -21.00 -20.86 20.55 19.73 20.31 18.29
FGSMp=1 -21.00 17.42 -21.00 -20.94 -19.04 13.50 19.12 17.03

Boxing none 77.71 41.12 -26.67 -23.40 95.49 80.60 79.88 73.11
FGSMp=1 8.60 41.05 -9.20 -52.77 5.07 55.29 56.30 66.75

we verify the decision made by the network using the Box domain. We binary-search for the largest ε
such that the decision is safe. Validation games alternate between never attacking, or attacking with
some probability every timestep. Each experiment was run for 4 million frames.

To compare DadQN with DQNs, we implemented a variety of extensions known to increase training
performance when enabled in concert as in RainbowDQN (Hessel et al., 2017): Priority Replay
(Schaul et al., 2015), DoubleDQN (Van Hasselt et al., 2016), DuelingDQN (Wang et al., 2015), and
NoisyNet (Fortunato et al., 2017) using noise constant η = 2 as described in Section 4. During
validation episodes we disable noise due to NoisyNet and use ε-greedy exploration with ε = 0.005.
Due to limited resources, we choose parameters for the three games that yielded faster training than
those reported by RainbowDQN 3. All parameters can be found in Tables S1 and S2 in the Appendix.

We implemented both DadQN and DQN in PyTorch (Paszke et al., 2017) asynchronously (Mnih
et al., 2016). Depending on the parameters and the hardware one run took between 4 to 30 hours,
and the majority took about 20 hours. We evaluated using Nvidia 1080Tis and Nvidia k80s, with
otherwise modern hardware. On our fastest machine, using a Nvidia 1080Ti, our implementation of
DQN plays 266.9 frames per second and the DadQN algorithm 266.0 frames.

Attacks & Defenses We consider both untargeted FGSM, as well as our UQP attack. For all uses
of FGSM we use ε = 0.004. During validation games we either do not use any attacks whatsoever as
in rows preceeded by “none”, or we use FGSM with probability 0.4 or 1.0, written as FGSMp=0.4

or FGSMp=1. When the UQP attack is used during validation games, it is functionally equivalent
to the FGSM attack, and thus for simplicity we only write FGSM for testing attacks. For standard
Q-Networks the semantics of attacking and defending with FGSM are similar but not quite the same:
when attacked (TrAtk), the environment produces adversarial examples which are then stored in the
replay buffer and are seen many times in training. When used as a defense (Def), the perturbation
is applied to a training example when it is sampled from the replay buffer, thus each perturbation
will only be seen once. We apply our attacks and defenses to the 4-stacks of consecutive frames
used for training DQNs on Atari. While single frame attacks conceptually fit the setting, we are
primarily evaluating the effectivity of defenses and thus choose pick the most efficient attck – which
is attacking 4-stacks (as used in Behzadan & Munir (2017b)).

5.2 POISONING AS AN ATTACK

Table 1 shows the average final episode score (weighted by number of frames) from the 15 consecutive
best (by sum score) validation episodes during training. See Appedix B for the details of this weighting.

3Hessel et al. (2017) report parameters which are a compromise between many games.

7



Under review as a conference paper at ICLR 2019

0 1M 2M 3M 4M

0

50

100

Training Score

DQN
DadQN

Figure 2: UQP poisoning attacks with number
of frames played on x axis.

Table 3: Avg. max provable ε with DiffAI Box.4

DQN trained with... DadQN trained with...

Game none TrAtk Def DiffAI

RR 2.66e-08 1.76e-06 8.42e-05 7.82e-04
Pong 3.71e-08 1.98e-06 2.19e-05 4.11e-04
Boxing 2.86e-07 3.67e-07 9.20e-07 5.12e-05

The leftmost DQN column first shows these scores without any attack on DQNs for reference. When
attacking DQN during training we observe significant drop in score for unattacked validation games.
We can see from this table that UQP is a strong attack against DQN’s as the presence of the attack
(i) impacts undefended training performance and (ii) significantly impacts the performance of the
agent in unattacked and attacked games during testing. To exemplify (i), Figure 2 shows the training
reward for Boxing in the presence of an attack.

5.3 UTILITY OF DEFENDING WITH DADQN

Table 2 shows the average final episode score (weighted by number of frames) using the network
weights from the best validation game during training over 15 validation episodes. We can see that
attacking a DQN which has never encountered adversarial examples before (none column under
DQN) drastically lowers its score. When attacked by the environment (TrAtk), whether intentionally
or not, the agent learns to play the game, although not as well as without an attack or the DadQN
agent that has been defended, or DadQN being defended and attacked. We also see that a DQN using
the previously defined FGSM training defense (Def) - perturbations happen after sampling from the
replay buffer) does not learn how to play the game whatsoever. We hypothesize that the attack variant
places the adversarial examples in the replay buffer making it easier for the agent to learn since it
then encounters the same perturbations more frequently. DadQN trained with the FGSM defense
performs nearly as well as baseline DQN without attacks, and much better than baseline with attacks.

In addition to increasing test time attack robustness, we can see in Table 1 that DadQN trained without
an explicit defense is robust to poisoning. Rewards for DadQN were nearly always greater than DQN
whether playing finally in an attacked or unattacked game. Using the FGSM Defense amplified the
effect to recover nearly the full performance of an unattacked DQN.

5.4 TOWARDS PRACTICAL PROVABLE ROBUSTNESS OF DQNS WITH DADQN

For DiffAI we explored a slightly different domain for each game. For Roadrunner we use λ = 0.001
with a non-defensive α(s, θS) = s and LO,MSE. Pong and Boxing instead use λ = 0.01 and
ε = 0.0001 with α0.004. For boxing, we use an attack probability of 0.4. Knowing that DiffAI
can decrease classification accuracy, some loss in score was expected. However, the last column of
Table 1 demonstrates that DiffAI used in this was still a powerful defense against test the test time
FGSM attack the UQP attack compared to otherwise undefended DQNs.

Table 3 demonstrates the average maximum ε which could be proven robust using DiffAI over the
best (by aggregate score) 15 consecutive validation games. From this table, we can see that the best ε
that DiffAI was able to prove without using any provability training was a tenth the size of the largest
which could be found in DiffAI defended networks. Without any defense, the baseline DQN is not
robust, and thus has a provability ε of less than a ten-thousandth the minimally normally expressible
perturbation in 8-bit images (this would be ε ∼ 0.004). DiffAI on the other hand comes significantly
closer than any system we are aware of, at nearly 25% this value.

4Found with binary search between 0 and 1 with a maximum of 20 iterations or maximum accuracy of 1e− 6
using a running average starting point.

8



Under review as a conference paper at ICLR 2019

REFERENCES

Vahid Behzadan and Arslan Munir. Vulnerability of deep reinforcement learning to policy induction
attacks. In International Conference on Machine Learning and Data Mining in Pattern Recognition,
pp. 262–275. Springer, 2017a.

Vahid Behzadan and Arslan Munir. Whatever does not kill deep reinforcement learning, makes it
stronger. CoRR, abs/1712.09344, 2017b. URL http://arxiv.org/abs/1712.09344.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013.

Dimitri P Bertsekas. Neuro-dynamic programming. In Encyclopedia of optimization, pp. 2555–2560.
Springer, 2008.

Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning attacks against support vector machines.
arXiv preprint arXiv:1206.6389, 2012.

Justin A Boyan and Andrew W Moore. Generalization in reinforcement learning: Safely approxi-
mating the value function. In Advances in neural information processing systems, pp. 369–376,
1995.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Nicholas Carlini and David Wagner. Defensive distillation is not robust to adversarial examples.
arXiv preprint arXiv:1607.04311, 2016.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In 2017
IEEE Symposium on Security and Privacy (SP), pp. 39–57. IEEE, 2017.

Lu Chen, Xiang Zhou, Cheng Chang, Runzhe Yang, and Kai Yu. Agent-Aware Dropout DQN for
Safe and Efficient On-line Dialogue Policy Learning. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Processing, pp. 2454–2464, Copenhagen, Denmark,
September 2017. Association for Computational Linguistics.

Krishnamurthy Dvijotham, Sven Gowal, Robert Stanforth, Relja Arandjelovic, Brendan O’Donoghue,
Jonathan Uesato, and Pushmeet Kohli. Training verified learners with learned verifiers. arXiv
preprint arXiv:1805.10265, 2018.

Eyal Even-Dar and Yishay Mansour. Convergence of optimistic and incremental q-learning. In
Advances in neural information processing systems, pp. 1499–1506, 2002.

Aidin Ferdowsi, Ursula Challita, Walid Saad, and Narayan B. Mandayam. Robust deep reinforcement
learning for security and safety in autonomous vehicle systems. CoRR, abs/1805.00983, 2018.
URL http://arxiv.org/abs/1805.00983.

Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian Osband, Alex Graves,
Vlad Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin, Charles Blundell, and Shane Legg.
Noisy Networks for Exploration. June 2017.

Timon Gehr, Matthew Mirman, Petar Tsankov, Dana Drachsler Cohen, Martin Vechev, and Swarat
Chaudhuri. Ai2: Safety and robustness certification of neural networks with abstract interpretation.
In Symposium on Security and Privacy (SP), 2018.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Zhaoyuan Gu, Zhenzhong Jia, and Howie Choset. Adversary a3c for robust reinforcement learning,
2018. URL https://openreview.net/forum?id=SJvrXqvaZ.

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in
deep reinforcement learning. arXiv preprint arXiv:1710.02298, 2017.

9

http://arxiv.org/abs/1712.09344
http://arxiv.org/abs/1805.00983
https://openreview.net/forum?id=SJvrXqvaZ


Under review as a conference paper at ICLR 2019

Sandy H. Huang, Nicolas Papernot, Ian J. Goodfellow, Yan Duan, and Pieter Abbeel. Adversarial
attacks on neural network policies. CoRR, abs/1702.02284, 2017. URL http://arxiv.org/
abs/1702.02284.

Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. Reluplex: An efficient
smt solver for verifying deep neural networks. In International Conference on Computer Aided
Verification, 2017.

Ilya Kostrikov. Pytorch implementations of reinforcement learning algorithms. https://github.
com/ikostrikov/pytorch-a2c-ppo-acktr, 2018.

Kaixiang Lin, Shu Wang, and Jiayu Zhou. Collaborative Deep Reinforcement Learning.
arXiv:1702.05796 [cs], February 2017a.

Yen-Chen Lin, Zhang-Wei Hong, Yuan-Hong Liao, Meng-Li Shih, Ming-Yu Liu, and Min Sun.
Tactics of adversarial attack on deep reinforcement learning agents. CoRR, abs/1703.06748, 2017b.
URL http://arxiv.org/abs/1703.06748.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. 2018.

Ajay Mandlekar, Yuke Zhu, Animesh Garg, Li Fei-Fei, and Silvio Savarese. Adversarially robust
policy learning through active construction of physically-plausible perturbations. In IEEE Intl
Conf. on Intelligent Robots and Systems (IROS), volume 16, 2017.

Matthew Mirman, Timon Gehr, and Martin Vechev. Differentiable abstract interpretation for provably
robust neural networks. In International Conference on Machine Learning (ICML), 2018. URL
https://www.icml.cc/Conferences/2018/Schedule?showEvent=2477.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin A. Riedmiller. Playing atari with deep reinforcement learning. CoRR,
abs/1312.5602, 2013. URL http://arxiv.org/abs/1312.5602.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra,
Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533, February 2015. ISSN 1476-4687. doi: 10.1038/nature14236.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928–1937, 2016.

Jun Morimoto and Kenji Doya. Robust reinforcement learning. Neural computation, 17(2):335–359,
2005.

Nicolas Papernot, Patrick D. McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami. Distillation as a
defense to adversarial perturbations against deep neural networks. CoRR, abs/1511.04508, 2015.
URL http://arxiv.org/abs/1511.04508.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Anay Pattanaik, Zhenyi Tang, Shuijing Liu, Gautham Bommannan, and Girish Chowdhary. Robust
deep reinforcement learning with adversarial attacks. CoRR, abs/1712.03632, 2017. URL http:
//arxiv.org/abs/1712.03632.

Jan Peters and Stefan Schaal. Natural actor-critic. Neurocomputing, 71(7-9):1180–1190, 2008.

Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. Robust adversarial reinforce-
ment learning. arXiv preprint arXiv:1703.02702, 2017.

10

http://arxiv.org/abs/1702.02284
http://arxiv.org/abs/1702.02284
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr
http://arxiv.org/abs/1703.06748
https://www.icml.cc/Conferences/2018/Schedule?showEvent=2477
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1511.04508
http://arxiv.org/abs/1712.03632
http://arxiv.org/abs/1712.03632


Under review as a conference paper at ICLR 2019

Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Certified defenses against adversarial
examples. arXiv preprint arXiv:1801.09344, 2018.

Andrei A. Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre, Guillaume Desjardins, James Kirk-
patrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, and Raia Hadsell. Policy
Distillation. arXiv:1511.06295 [cs], November 2015.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. arXiv
preprint arXiv:1511.05952, 2015.

John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter Abbeel. Trust region
policy optimization. CoRR, abs/1502.05477, 2015. URL http://arxiv.org/abs/1502.
05477.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal Policy
Optimization Algorithms. arXiv:1707.06347 [cs], July 2017.

Uri Shaham, Yutaro Yamada, and Sahand Negahban. Understanding adversarial training: Increasing
local stability of neural nets through robust optimization. arXiv preprint arXiv:1511.05432, 2015.

Shirli Di-Castro Shashua and Shie Mannor. Deep robust kalman filter. arXiv preprint
arXiv:1703.02310, 2017.

Jacob Steinhardt, Pang Wei Koh, and Percy Liang. Certified defenses for data poisoning attacks.
CoRR, abs/1706.03691, 2017. URL http://arxiv.org/abs/1706.03691.

Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradient meth-
ods for reinforcement learning with function approximation. In Advances in neural information
processing systems, pp. 1057–1063, 2000.

Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and Patrick Mc-
Daniel. Ensemble adversarial training: Attacks and defenses. arXiv preprint arXiv:1705.07204,
2017.

John N Tsitsiklis. Asynchronous stochastic approximation and q-learning. Machine learning, 16(3):
185–202, 1994.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In AAAI, volume 2, pp. 5. Phoenix, AZ, 2016.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Van Hasselt, Marc Lanctot, and Nando De Freitas.
Dueling network architectures for deep reinforcement learning. arXiv preprint arXiv:1511.06581,
2015.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–292, 1992.

Christopher John Cornish Hellaby Watkins. Learning from delayed rewards. PhD thesis, King’s
College, Cambridge, 1989.

Eric Wong and Zico Kolter. Provable defenses against adversarial examples via the convex outer
adversarial polytope. 2018.

Eric Wong, Frank Schmidt, Jan Hendrik Metzen, and J Zico Kolter. Scaling provable adversarial
defenses. arXiv preprint arXiv:1805.12514, 2018.

Chaofei Yang, Qing Wu, Hai Li, and Yiran Chen. Generative poisoning attack method against neural
networks. arXiv preprint arXiv:1703.01340, 2017.

11

http://arxiv.org/abs/1502.05477
http://arxiv.org/abs/1502.05477
http://arxiv.org/abs/1706.03691


Under review as a conference paper at ICLR 2019

A HYPER-PARAMETERS

Table S1: Hyper-parameters used in the experiments. → indicates linear annealing.

RoadRunner Pong Boxing/Breakout
Optimizer Adam
Adam-ε 0.00015
Learning rate 6.25E-05
Batch-size 32
Clip reward to sign True
Frame-Stack 4
γ 0.99
Priority Replay α 0.5
Priority Replay β 0.4→ 1.0 over 100000 frames
Target net Sync every 2000 frames
Q-Net L2-Weight regularization 0.0001 0 0
NoisyNet Explore Constraint η 1 4 4
Frames before learning 10000 80000 80000
Size of replay buffer 100000 120000 200000
ε-greedy 0 1.0→ 0.0 over 20000 frames 1.0→ 0.0 over 20000 frames

Table S2: Hyper-parameters for the student algorithm used in the experiments.

RoadRunner Pong Boxing Breakout
Student Learning Rate 0.001 2.00E-05 2.00E-05 6.25E-05
Discard V True False False False
Q-Network is NoisyNet False
Student-Net L2-Weight regularization 0.001 0 0 0

B WEIGHING OF SCORES & ADDITIONAL EXPERIMENTAL DATA

Some games, such as roadrunner, have multiple levels which is a non trivial problem for DQNs. As
such, when the agents achieved a certain score, it then proceeded to play episodes it wasnt as adept at.
These episodes achieved a low score and thus decrease the aggregates (such as mean or sum) over
multiple episodes. It would be unfair to compare directly against an agent which had in fact never
reached the second level. Thus we introduce a weighing scheme to combat this.

The values in Table 1 are calculated by

max
e∈{1,...,E−15}

∑e+15
i=e episode score[i] · episode frames[i] ·A[i]∑e+15

i=e episode frames[i] ·A[i]

where E is the number of validation episodes played, episode score[i] is the score earned in
validation episode i, episode frames[i] is the number of frames played in validation episode i
and A[i] is an indicator whether the validation game was played with or without attacks. Table 2 uses
the same weighing but over 15 new games, played from the best set of network weights.

To illustrate the importance of this weighing and show that it does not impact the qualitative inter-
pretation of the results we provide unweighted scores for Table 1 in Tables S3 and S4. Table S3
shows

∑e′+15
i=e′ episode score[i] ·A[i]∑e′+15

i=e′ A[i]

where e′ is the validation episode that maximized Equation B for the corresponding value. Table S4
on the other hand shows

12



Under review as a conference paper at ICLR 2019

Table S3: Validation game reward comparison for UQP poisoning attack, unweighted over same
episodes as Table 1.

Untargeted Quality Poisoning Training Attack

Game Test Attack DQN DQN DadQN DadQN + FGSM Def DadQN + DiffAI

RR none 12242.86 8085.71 5971.43 15185.71 9100.00
FGSMp=0.4 5300.00 6900.00 9000.00 10257.14 7371.43

Pong none 20.63 13.86 19.29 19.13 11.43
FGSMp=0.4 -14.57 18.71 18.29 19.14 11.25

Boxing none 87.43 43.75 84.14 93.29 48.71
FGSMp=0.4 67.57 42.25 78.57 94.13 54.43

Breakout none 187.29 12.43 16.14 46.71 -
FGSMp=0.4 3.43 9.29 23.57 41.00 -

Table S4: Validation game reward comparison for UQP poisoning attack, unweighted maximum.

Untargeted Quality Poisoning Training Attack

Game Test Attack DQN DQN DadQN DadQN + FGSM Def DadQN + DiffAI

RR none 18900.00 8414.29 12085.71 15185.71 10642.86
FGSMp=0.4 6671.43 10000.00 12612.50 15257.14 12328.57

Pong none 20.63 13.86 19.29 19.13 11.43
FGSMp=0.4 -14.57 18.71 18.29 19.14 11.25

Boxing none 87.43 43.75 84.14 93.29 48.71
FGSMp=0.4 68.00 42.25 80.14 94.13 54.43

Breakout none 214.00 15.14 18.86 53.57 -
FGSMp=0.4 4.71 10.86 26.75 54.57 -

max
e∈{1,...,E−15}

∑e+15
i=e episode score[i] ·A[i]∑e+15

i=e A[i]
.

For Table S4 observe the same trends as for Table 1. However in Table S3 we see that the scores for
RoadRunner especially are a lot lower for DadQN. The reason for this is that the agent reaches the
second level, in which it does poorly; thus decreasing the score.

C UQP AGAINST ACTOR-CRITIC

Here we demonstrate that UQP is an affective attack against two actor-critic reinforcement learning
algorithms for neural networks, A3C introduced by Mnih et al. (2016) (implemented synchronously)
and PPO introduced by Schulman et al. (2017). We implement our attack on top of the framework
provided by Kostrikov (2018), using the learning parameters as suggested for each algorithm. In
order to demonstrate the weakness of these algorithms to this attack, we only test with the attack
applied to the last image in the stack rather than all four images in the stack. In these attacks, unless
otherwise specified we use an attack ε of 3 out of the possible range of [0, 255].

For training, we either use no attack (shown in red), or the UQP attack with 4 iterations with step
size 2 projecting back into the L∞ ball after every iteration as in PGD (shown in blue the figures).
Figures S1, S3, S5 and S3 show the training scores sampled frequently, with the number of training
steps in the x-axis and the score on the y-axis. The solid lines correspond to the average score from
the last 10 episodes (unweighted), whereas the same-colored regions surrounding them show the max
and min score of a game from the last 10 episodes.

For testing, we either use no attack, or the PGD attack with 16 iterations with step size 2 projecting
back into the L∞ ball after every iteration as in PGD. In Figures S2, S4, S6, and S4 show the testing
scores sampled significantly less frequently, at the number of training steps in the x-axis and the score
on the y-axis. Each point correspond to the average score from 10 testing episodes (unweighted) at
that time-step.

13



Under review as a conference paper at ICLR 2019

From these results it can clearly be seen that UQP is able to both prevent both actor-critic methods
from learning to play the training set, and is able to keep the agent from being as robust when it is
tested against a training set.

0 1M 2M 3M 4M
0

10k

20k

30k

40k

50k

Frames Played

Training Score

No Attack
Training UQP

Figure S1: RoadRunner A3C Training

0 1M 2M 3M 4M
0

10k

20k

30k

40k

50k

Frames Played

Training Score

No Train Attack
Training UQP

Figure S2: RoadRunner A3C Training

0 1M 2M 3M 4M
0

10k

20k

30k

40k

50k

Frames Played

Training Score

No Attack
Training UQP

Figure S3: RoadRunner PPO Training

0 1M 2M 3M 4M
0

10k

20k

30k

40k

50k

Frames Played

Training Score

No Train Attack
Training UQP

Figure S4: RoadRunner PPO Testing

0 1M 2M 3M 4M

-20

10

0

10

20

Frames Played

Training Score

No Attack
Training UQP

Figure S5: Pong A3C Training (ε = 9/255)

0 1M 2M 3M 4M

-20

10

0

10

20

Frames Played

Training Score

No Train Attack
Training UQP

Figure S6: Pong A3C Testing (ε = 9/255)

14



Under review as a conference paper at ICLR 2019

0 1M 2M 3M 4M

-20

10

0

10

20

Frames Played

Training Score

No Attack
Training UQP

Figure S7: Pong PPO Training

0 1M 2M 3M 4M

-20

10

0

10

20

Frames Played

Training Score

No Train Attack
Training UQP

Figure S8: Pong PPO Testing

15


	Introduction
	Related Work
	Background
	Deep Q Learning
	Adversarial Attack
	Testing Attacks
	Training Attacks

	Distilled Agent DQN (DadQN)
	Defending DadQN

	Experimental Evaluation
	Experimental Setup
	Poisoning as an Attack
	Utility of defending with DadQN
	Towards Practical Provable Robustness of DQNs with DadQN

	Hyper-Parameters
	Weighing of Scores & Additional Experimental Data
	UQP against Actor-Critic

