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ABSTRACT

We explore the use of Vector Quantized Variational AutoEncoder (VQ-VAE) mod-
els for large scale image generation. To this end, we scale and enhance the autore-
gressive priors used in VQ-VAE to generate synthetic samples of much higher
coherence and fidelity than possible before. We use simple feed-forward encoder
and decoder networks, thus our model is an attractive candidate for applications
where the encoding and decoding speed is critical. Additionally, this allows us to
only sample autoregressively in the compressed latent space, which is an order of
magnitude faster than sampling in the pixel space, especially for large images. We
demonstrate that a multi-scale hierarchical organization of VQ-VAE, augmented
with powerful priors over the latent codes, is able to generate samples with quality
that rivals that of state of the art Generative Adversarial Networks on multifaceted
datasets such as ImageNet, while not suffering from GAN’s known shortcomings
such as mode collapse and lack of diversity.

1 INTRODUCTION

Deep generative models have significantly improved in the past few years [1; 18; 17]. This is, in
part, thanks to architectural innovations as well as computation advances that allows training them
at larger scale in both amount of data and model size. The samples generated from these models
are hard to distinguish from real data without close inspection, and their applications range from
super resolution [15] to domain editing [32], artistic manipulation [24], or text-to-speech and music
generation [17].

We distinguish two main types of generative models: maximum likelihood based models, which
include VAEs [11; 21], flow based [5; 20; 6; 12] and autoregressive models [14; 27]; and implicit
generative models such as Generative Adversarial Networks (GANs) [8]. Each of these models offer
several trade-offs such as sample quality, diversity, speed, etc.

Figure 1: Class-conditional 256x256 image samples from a two-level model trained on ImageNet.

∗Equal contributions.
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GANs optimize a minimax objective with a generator neural network producing images by mapping
random noise onto an image, and a discriminator defining the generators’ loss function by classifying
its samples as real or fake. Larger scale GAN models can now generate high-quality and high-
resolution images [1; 10]. However, it is well known that samples from these models do not fully
capture the diversity of the true distribution. Furthermore, GANs are challenging to evaluate, and a
satisfactory generalization measure on a test set to assess overfitting does not yet exist. For model
comparison and selection, researchers have used image samples or proxy measures of image quality
such as Inception Score (IS) [23] and Fréchet Inception Distance (FID) [9].

In contrast, likelihood based methods optimize negative log-likelihood (NLL) of the training data.
This objective allows model-comparison and measuring generalization to unseen data. Additionally,
since the probability that the model assigns to all examples in the training set is maximized, likeli-
hood based models, in principle, cover all modes of the data, and do not suffer from the problems of
mode collapse and lack of diversity as seen in GANs. In spite of these advantages, directly maximiz-
ing likelihood in the pixel space can be challenging. First, NLL in pixel space is not always a good
measure of sample quality [25], and cannot reliably be used to make comparison between different
model classes. There is no intrinsic incentive for these models to focus on, for example, global
structure. Some of these issues are alleviated by introducing inductive biases such as multi-scale
[26; 27; 19; 16] or by modeling the dominant bit planes in an image [13; 12].

In this paper we use ideas from lossy compression to relieve the generative model from modeling
negligible information. Indeed, techniques such as JPEG [31] have shown that it is often possible to
remove more than 80% of the data without noticeably changing the perceived image quality.

As proposed by [29], we compress images into a discrete latent space by vector-quantizing interme-
diate representations of an autoencoder. These representations are over 30x smaller than the original
image, but still allow the decoder to reconstruct the images with little distortion. The prior over
these discrete representations can be modeled with a state of the art PixelCNN [27; 28] with self-
attention [30], called PixelSnail [3]. When sampling from this prior, the decoded images also exhibit
the same high quality and coherence of the reconstructions (see Fig. 1). Furthermore, the training
and sampling of this generative model over the discrete latent space is also 30x faster than when
directly applied to the pixels, allowing us to train on much higher resolution images. Finally, the en-
coder and decoder used in this work retains the simplicity and speed of the original VQ-VAE, which
means that the proposed method is an attractive solution for situations in which fast, low-overhead
encoding and decoding of large images are required.

2 BACKGROUND

2.1 VECTOR-QUANTIZED AUTO-ENCODERS

The VQ-VAE model [29] can be thought of as a communication system. It consists of an encoder
that maps observations onto a sequence of discrete latent variables, and a decoder that reconstructs
the observations from the discrete code. Both use a shared codebook. The encoder is a non-linear
mapping from the input space, x, to a vector in an embedding space, E(x). The resulting vector
is then quantized based on its distance to the prototype vectors in the codebook ck, k ∈ 1 . . .K
such that each vector E(x) is replaced by the index of the nearest prototype vector in the codebook
and is transmitted to the decoder (note that this process can be lossy). The decoder maps back the
received indices to their corresponding vectors in the codebook, from which it reconstructs the data
via a non-linear function. To learn these mappings, the gradient of the reconstruction error is then
back-propagated to the decoder, and to the encoder using the straight-through gradient estimator.
The VQ-VAE model incorporates two additional terms in its objective to align the vector space of
the codebook with the output of the encoder.

The codebook loss, which only applies to the codebook variables, brings the selected codebook c
close to the output of the encoder, E(x). The commitment loss, which only applies to the encoder
weights, encourages the output of the encoder to stay close to the chosen codebook vector to prevent
it from fluctuating too frequently from one code vector to another. The overall objective is described
in equation 1, where c is the quantized code for the training example x,E is the encoder function and
D is the decoder function. The operator sg refers to a stop-gradient operation that blocks gradients
from flowing into its argument, and β is a hyperparameter which controls the reluctance to change
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the code corresponding to the encoder output.

L = ||x−D(c)||22 + ||sg[E(x)]− c||22 + β||sg[c]− E(x)||22 (1)

As proposed in [29], for the codebook loss (the second term in equation 1) we use the exponential
moving average updates for the codebook, as a replacement for the second loss term in Equation 1:
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where n(t)i is the number of vectors in E(x) in the mini-batch that will be quantized to codebook
item ei and γ is a decay parameter with a value between 0 and 1. We used the default γ = 0.99 in
all our experiments. We use the released VQ-VAE implementation in the Sonnet library 1 2.

3 METHOD

The proposed method follows a two-stage approach: first, we train a hierarchical VQ-VAE (see
figure 2) to encode images onto a discrete latent space, and then we fit a powerful PixelCNN prior
over the discrete latent space induced by all the data.
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Figure 2: Overview of the architecture of our hierarchical VQ-VAE. The encoders and decoders
consist of deep neural networks. The input to the model is a 256× 256 image that is compressed to
quantized latent maps of size 64 × 64 and 32 × 32 for the bottom and top levels, respectively. The
decoder reconstructs the image from the two latent maps.

3.1 STAGE 1: LEARNING HIERARCHICAL LATENT CODES

As opposed to vanilla VQ-VAE, in this work we use a hierarchy of vector quantized codes to model
large images. The main motivation behind this is to model local information, such as texture, sep-
arately from structural global information such as shape and geometry of objects. The prior model
over each level can thus be tailored to capture the specific correlations that exist in that level. More
specifically, the prior over the latent map responsible for structural global information, which we

1
https://github.com/deepmind/sonnet/blob/master/sonnet/python/modules/nets/vqvae.py

2
https://github.com/deepmind/sonnet/blob/master/sonnet/examples/vqvae_example.ipynb
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Figure 3: Reconstructions from a hierarchical VQ-VAE with two latent maps (top and bottom). The
rightmost image is the original. Each latent map adds extra detail to the reconstruction. These latent
maps are approximately 192x and 48x smaller than the original image (respectively).

refer to as the top prior (see Fig. 2), can benefit from a larger receptive field of multi-headed self-
attention layers to capture correlations in spatial locations that are far apart in the image. In contrast,
the conditional prior model, referred to as the bottom prior, over latents that encode local information
must have much larger resolution. As such, using as many self-attention layers as in the top-level
prior is neither necessary nor practical due to memory constraints. For the prior over local informa-
tion, we thus find that using a larger conditioning stack (coming from the global information code)
yields more significant improvements. The hierarchical factorization also allows us to train larger
models: we train each prior separately, thereby leveraging all the available compute and memory on
hardware accelerators for each prior.

The structure of our multi-scale hierarchical encoder is illustrated in Fig. 2. We note that if depen-
dencies between latent maps are such that they are strictly a compressed version of the quantized
latent maps they depend on, then they would encode only redundant information that already exists
in the preceding latent maps. We therefore allow each level in the hierarchy to separately depend
on pixels, which encourages encoding complementary information in each latent map that can con-
tribute to reducing the reconstruction error in the decoder.

For 256×256 images, we use a two level latent hierarchy. As depicted in Fig. 2, the encoder network
first transforms and downsamples the image by a factor of 4 to a 64 × 64 representation which is
quantized to our bottom level latent map. Another stack of residual blocks then further scales down
the representations by a factor of two, yielding a top-level 32× 32 latent map after quantization.

3.2 STAGE 2: LEARNING PRIORS OVER LATENT CODES

In order to further compress the image, and to be able to sample from the model learned during
stage 1, we learn a prior over the latent codes. Fitting prior distributions using neural networks from
training data has become common practice, as it can significantly improve the performance of latent
variable models [2]. This procedure also reduces the gap between the marginal posterior and the
prior. Thus, latent variables sampled from the learned prior at test time are close to what the decoder
network has observed during training which results in more coherent outputs. From an information
theoretic point of view, the process of fitting a prior to the learned posterior can be considered as
lossless compression of the latent space by re-encoding the latent variables with a distribution that
is a better approximation of their true distribution, and thus results in bit rates closer to Shannon’s
entropy. Therefore the lower the gap between the true entropy and the negative log-likelihood of the
learned prior, the more realistic image samples one can expect from decoding the latent samples.

In the VQ-VAE framework, this auxiliary prior is modeled with a powerful, autoregressive neural
network such as PixelCNN in a post-hoc second stage. More specifically, we use self-attention lay-
ers, interspersed with masked convolution blocks as proposed by [3], to model each level of the
latent hierarchy as shown in Fig. 4. The top-level uses an unconditional network, and the down-
stream latent layers are modeled using a conditional stack that transforms the latent dependencies
into spatial conditioning representations.
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Figure 4: Multi-stage image generation: the first level of codes capture the global attributes of the
image such as shape and structure, whereas the second level introduces local features such as texture
and lighting refinements. Both codes are modeled with a PixelCNN, the first is conditioned on the
class label, the second stage PixelCNN is conditioned on the class label and the generated codes of
the first. The decoder is feed-forward, so producing the image given the two latent codes is very
fast. (The example image with a parrot is generated with this model).

Our top-level prior network models 32 × 32 latent variables. The residual gated convolution layers
of PixelCNN are interspersed with causal multi-headed attention every five layers. To regularize the
model, we incorporate dropout after each residual block as well as dropout on the logits of each
attention matrix. We found that adding deep residual networks consisting of 1 × 1 convolutions on
top of the PixelSnail stack further improves likelihood without slowing down training or increasing
memory footprint too much. Our bottom-level conditional prior operates on latents with 64×64 spa-
tial dimension. This is significantly more expensive in terms of required memory and computation
cost. Fortunately, as described in Sect. 3.1, the information encoded in this level of the hierarchy
mostly corresponds to local features, which do not require large receptive fields as they are condi-
tioned on the top-level prior. Therefore, we use a less powerful network with no attention layers.
We also found that using a deep residual conditioning stack significantly helps at this level.

4 RELATED WORKS

The foundation of our work is the VQ-VAE framework of [29]. Our prior network is based on Gated
PixelCNN [28] augmented with self-attention [30], as proposed in [3]. BigGAN [1] is currently
state-of-the-art in FID and Inception scores, and produces high quality high-resolution images. The
improvements in BigGAN were due to incorporating architectural advances such as self-attention,
better stabilization methods, scaling up the model on TPUs and a mechanism to trade-off sample
diversity with sample quality. In our work we also investigated how the addition of some of these
elements, in particular self-attention and compute scale, improve the quality of samples of VQ-VAE
models.

Recent attempts to generate high resolution images with likelihood based models include Subscale
Pixel Networks of [16]. Similar to the parallel multi-scale model introduced in [19], SPN imposes
a partitioning on the spatial dimensions, but unlike [19] SPN does not make the corresponding
independence assumptions, whereby it trades sampling speed with density estimation performance
and sample quality.
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Hierarchical latent variables have been proposed in e.g. [21]. Specifically for VQ-VAE, [4] uses a
hierarchy of latent codes for modeling and generating music using a WaveNet decoder. The specifics
of the encoding is however different from ours: in our work the higher levels of hierarchy do not
exclusively refine the information encoded in the lower levels, but they extract complementary infor-
mation at each level, as discussed in Sect. 3.1. Because we are using simple, feed-forward decoders
and optimizing mean squared error in the pixels, our model does not suffer from, and thus needs
no mitigation for, the hierarchy collapse problems detailed in [4]. Concurrent to our work, [7] ex-
tends [4] for generating high-resolution images. The primary difference to our work is the use of
autoregressive decoders in the pixel space. In contrast, for reasons detailed in Sect. 3, we use au-
toregressive models exclusively as priors in the compressed latent space. Additionally, the same
differences with [4] outlined above also exists between our method and [7].

5 EXPERIMENTS

Objective evaluation and comparison of generative models, specially across model families, remains
a challenge [25]. Current image generation models trade-off sample quality and diversity (or preci-
sion vs recall [22]). In this section, we present qualitative results of our model trained on ImageNet
256×256. The samples look sharp and diverse across several representative classes as can be seen in
the class conditional samples provided in Fig. 6. For comparing diversity, we provide samples from
our model juxtaposed with those of BigGAN-deep [1], the state of the art GAN model 3 in Fig. 5. As
can be seen in these side-by-side comparisons, VQ-VAE is able to provide samples of comparable
fidelity yet with much higher diversity. As mentioned previously, an important advantage of likeli-
hood based models is that it allows assessing overfitting by comparing NLL values between training
and validation sets. The NLL values reported in Table 1 for our top and bottom priors indicate that
neither of these networks overfit. We note that these NLLs values are only comparable between
prior models that use the same pretrained VQ-VAE encoder and decoder.

Train NLL Validation NLL
Top prior 3.40 3.41
Bottom prior 3.45 3.45

Table 1: Train and Validation negative log-likelihood (NLL) for top and bottom prior networks. The
small difference between train and validation NLL suggests that the prior networks do not overfit.

6 CONCLUSION

We propose a simple method for generating diverse high resolution images using VQ-VAE, combin-
ing a vector quantized neural representation learning technique inspired by ideas from lossy com-
pression with powerful autoregressive models as priors. Our encoder and decoder architectures are
kept simple and light-weight as in the original VQ-VAE, with the only difference that we propose
using hierarchical multi-scale latent maps for larger images. The improvements seen in the quality
of the samples are largely due to the architectural advances in the PixelCNN style priors that more
accurately estimate the distribution over the latent space. In particular, using self-attention seems
to be a crucial component for accurately capturing the structure and geometry of objects encoded
in the top-level latent map. We also observe that the quality of our samples is correlated with the
improvements in the negative log-likelihood of the model in the latent space, where small gains in
likelihood often translate to dramatic improvements in sample quality. The fidelity of our best class
conditional samples are competitive with the state of the art Generative Adversarial Networks, while
we see dramatically broader diversity in several classes, contrasting our method against the known
limitations of GANs. We believe our experiments vindicate maximum likelihood in the latent space
as a simple and effective objective for learning large scale generative models that do not suffer from
the shortcomings of adversarial training.

3Samples are taken from BigGAN’s colab notebook in Tensorflow hub:
https://tfhub.dev/deepmind/biggan-deep-256/1
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VQ-VAE (Proposed) BigGAN deep

Figure 5: Sample diversity comparison for the proposed method and BigGan Deep. Samples were
taken for three representative classes in ImageNet: Tinca Tinca (class 0), Goldfish (class 1) and
Ostrich (class 9). BigGAN samples were taken with the truncation level 1.0, to yield its maximum
diversity. For Tinca, there are several kinds of samples such as top view of the fish or different kinds
of poses that are absent from BigGAN’s samples. Goldfish samples from VQ-VAE feature more
diverse shades of orange. For Ostrich, in spite of trying many different random seeds, we were not
able to get a close-up sample from BigGAN.
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Figure 6: Class conditional random samples. Classes from the top row are: 108 sea anemone, 109
brain coral, 114 slug, 11 goldfinch, 130 flamingo, 141 redshank, 154 Pekinese, 157 papillon, 97
drake, and 28 spotted salamander.
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[29] Aäron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation
learning. CoRR, abs/1711.00937, 2017.

[30] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention Is All You Need. (Nips), 2017. ISSN 0140-
525X. doi: 10.1017/S0140525X16001837.

[31] Gregory K Wallace. The jpeg still picture compression standard. IEEE transactions on con-
sumer electronics, 38(1):xviii–xxxiv, 1992.

[32] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image
translation using cycle-consistent adversarial networks. In Computer Vision (ICCV), 2017
IEEE International Conference on, 2017.

10



Published as a workshop paper at ICLR 2019

A ADDITIONAL SAMPLES

We here present additional samples from our model trained on ImageNet. All these samples are
taken without any cherry-picking.

Figure 7: Samples from class 22 Bald Eagle in ImageNet
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Figure 8: Samples from class 11 Gold Finch in ImageNet

12



Published as a workshop paper at ICLR 2019

Figure 9: Samples from class 24 Grey Owl in ImageNet
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Figure 10: BigGan deep samples with truncation level 0.02 which trades diversity for sample quality.
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