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Abstract

In many real-world reinforcement learning applications, access to the environ-
ment is limited to a fixed dataset, instead of direct (online) interaction with the
environment. When using this data for either evaluation or training of a new pol-
icy, accurate estimates of discounted stationary distribution ratios — correction
terms which quantify the likelihood that the new policy will experience a certain
state-action pair normalized by the probability with which the state-action pair
appears in the dataset — can improve accuracy and performance. In this work,
we propose an algorithm, DualDICE, for estimating these quantities. In contrast
to previous approaches, our algorithm is agnostic to knowledge of the behavior
policy (or policies) used to generate the dataset. Furthermore, it eschews any
direct use of importance weights, thus avoiding potential optimization instabilities
endemic of previous methods. In addition to providing theoretical guarantees, we
present an empirical study of our algorithm applied to off-policy policy evaluation
and find that our algorithm significantly improves accuracy compared to existing
techniques.1

1 Introduction
Reinforcement learning (RL) has recently demonstrated a number of successes in various domains,
such as games [25], robotics [1], and conversational systems [11, 18]. These successes have often
hinged on the use of simulators to provide large amounts of experience necessary for RL algorithms.
While this is reasonable in game environments, where the game is often a simulator itself, and some
simple real-world tasks can be simulated to an accurate enough degree, in general one does not have
such direct or easy access to the environment. Furthermore, in many real-world domains such as
medicine [26], recommendation [19], and education [24], the deployment of a new policy, even just
for the sake of performance evaluation, may be expensive and risky. In these applications, access
to the environment is usually in the form of off-policy data [39], logged experience collected by
potentially multiple and possibly unknown behavior policies.

State-of-the-art methods which consider this more realistic setting — either for policy evaluation
or policy improvement — often rely on estimating (discounted) stationary distribution ratios or
corrections. For each state and action in the environment, these quantities measure the likelihood
that one’s current target policy will experience the state-action pair normalized by the probability
with which the state-action pair appears in the off-policy data. Proper estimation of these ratios can
improve the accuracy of policy evaluation [21] and the stability of policy learning [12, 14, 22, 40]. In
general, these ratios are difficult to compute, let alone estimate, as they rely not only on the probability
that the target policy will take the desired action at the relevant state, but also on the probability that
the target policy’s interactions with the environment dynamics will lead it to the relevant state.

∗Equal contribution.
1Find code at https://github.com/google-research/google-research/tree/master/dual_dice.
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Several methods to estimate these ratios have been proposed recently [12, 14, 21], all based on the
steady-state property of stationary distributions of Markov processes [15]. This property may be
expressed locally with respect to state-action-next-state tuples, and is therefore amenable to stochastic
optimization algorithms. However, these methods possess several issues when applied in practice:
First, these methods require knowledge of the probability distribution used for each sampled action
appearing in the off-policy data. In practice, these probabilities are usually not known and difficult
to estimate, especially in the case of multiple, non-Markovian behavior policies. Second, the loss
functions of these algorithms involve per-step importance ratios (the ratio of action sample probability
with respect to the target policy versus the behavior policy). Depending on how far the behavior
policy is from the target policy, these quantities may have large variance, and thus have a detrimental
effect on stochastic optimization algorithms.

In this work, we propose Dual stationary DIstribution Correction Estimation (DualDICE), a new
method for estimating discounted stationary distribution ratios. It is agnostic to the number or type
of behavior policies used for collecting the off-policy data. Moreover, the objective function of
our algorithm does not involve any per-step importance ratios, and so our solution is less likely to
be affected by their high variance. We provide theoretical guarantees on the convergence of our
algorithm and evaluate it on a number of off-policy policy evaluation benchmarks. We find that
DualDICE can consistently, and often significantly, improve performance compared to previous
algorithms for estimating stationary distribution ratios.

2 Background
We consider a Markov Decision Process (MDP) setting [32], in which the environment is specified
by a tuple M = 〈S,A,R, T, β〉, consisting of a state space, an action space, a reward function,
a transition probability function, and an initial state distribution. A policy π interacts with the
environment iteratively, starting with an initial state s0 ∼ β. At step t = 0, 1, · · · , the policy produces
a distribution π(·|st) over the actions A, from which an action at is sampled and applied to the
environment. The environment stochastically produces a scalar reward rt ∼ R(st, at) and a next
state st+1 ∼ T (st, at). In this work, we consider infinite-horizon environments and the γ-discounted
reward criterion for γ ∈ [0, 1). It is clear that any finite-horizon environment may be interpreted
as infinite-horizon by considering an augmented state space with an extra terminal state which
continually loops onto itself with zero reward.

2.1 Off-Policy Policy Evaluation

Given a target policy π, we are interested in estimating its value, defined as the normalized expected
per-step reward obtained by following the policy:

ρ(π) := (1− γ) · E
[ ∑∞

t=0 γ
trt | s0 ∼ β,∀t, at ∼ π(st), rt ∼ R(st, at), st+1 ∼ T (st, at)

]
. (1)

The off-policy policy evaluation (OPE) problem studied here is to estimate ρ(π) using a fixed set
D of transitions (s, a, r, s′) sampled in a certain way. This is a very general scenario: D can be
collected by a single behavior policy (as in most previous work), multiple behavior policies, or an
oracle sampler, among others. In the special case where D contains entire trajectories collected by
a known behavior policy µ, one may use importance sampling (IS) to estimate ρ(π). Specifically,
given a finite-length trajectory τ = (s0, a0, r0, . . . , sH) collected by µ, the IS estimate of ρ based
on τ is estimated by [31]: (1− γ)

(∏H−1
t=0

π(at|st)
µ(at|st)

)(∑H−1
t=0 γtrt

)
. Although many improvements

exist [e.g., 9, 16, 31, 43], importance-weighting the entire trajectory can suffer from exponentially
high variance, which is known as “the curse of horizon” [20, 21].

To avoid exponential dependence on trajectory length, one may weight the states by their long-term
occupancy measure. First, observe that the policy value may be re-expressed as,

ρ(π) = E(s,a)∼dπ,r∼R(s,a)[r] ,

where

dπ(s, a) := (1− γ)
∑∞
t=0 γ

t Pr (st = s, at = a | s0 ∼ β,∀t, at ∼ π(st), st+1 ∼ T (st, at)) , (2)

is the normalized discounted stationary distribution over state-actions with respect to π. One may
define the discounted stationary distribution over states analogously, and we slightly abuse notation
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by denoting it as dπ(s); note that dπ(s, a) = dπ(s)π(a|s). If D consists of trajectories collected by a
behavior policy µ, then the policy value may be estimated as,

ρ(π) = E(s,a)∼dµ,r∼R(s,a)

[
wπ/µ(s, a) · r

]
,

where wπ/µ(s, a) =
dπ(s,a)
dµ(s,a) is the discounted stationary distribution correction. The key challenge

is in estimating these correction terms using data drawn from dµ.

2.2 Learning Stationary Distribution Corrections

We provide a brief summary of previous methods for estimating the stationary distribution corrections.
The ones that are most relevant to our work are a suite of recent techniques [12, 14, 21], which are all
essentially based on the following steady-state property of stationary Markov processes:

dπ(s′) = (1− γ)β(s′) + γ
∑
s∈S

∑
a∈A d

π(s)π(a|s)T (s′|s, a), ∀s′ ∈ S, (3)

where we have simplified the identity by restricting to discrete state and action spaces. This identity
simply reflects the conservation of flow of the stationary distribution: At each timestep, the flow out
of s′ (the LHS) must equal the flow into s′ (the RHS). Given a behavior policy µ, equation 3 can be
equivalently rewritten in terms of the stationary distribution corrections, i.e., for any given s′ ∈ S,

E(st,at,st+1)∼dµ
[

TD(st, at, st+1 | wπ/µ)
∣∣ st+1 = s′

]
= 0 , (4)

where

TD(s, a, s′ | wπ/µ) := −wπ/µ(s′) + (1− γ)β(s′) + γwπ/µ(s) ·
π(a|s)
µ(a|s)

,

provided that µ(a|s) > 0 whenever π(a|s) > 0. The quantity TD can be viewed as a temporal differ-
ence associated with wπ/µ. Accordingly, previous works optimize loss functions which minimize
this TD error using samples from dµ. We emphasize that although wπ/µ is associated with a temporal
difference, it does not satisfy a Bellman recurrence in the usual sense [2]. Indeed, note that equation 3
is written “backwards”: The occupancy measure of a state s′ is written as a (discounted) function of
previous states, as opposed to vice-versa. This will serve as a key differentiator between our algorithm
and these previous methods.

2.3 Off-Policy Estimation with Multiple Unknown Behavior Policies

While the previous algorithms are promising, they have several limitations when applied in practice:

• The off-policy experience distribution dµ is with respect to a single, Markovian behavior policy µ,
and this policy must be known during optimization.2 In practice, off-policy data often comes from
multiple, unknown behavior policies.

• Computing the TD error in equation 4 requires the use of per-step importance ratios
π(at|st)/µ(at|st) at every state-action sample (st, at). Depending on how far the behavior policy
is from the target policy, these quantities may have high variance, which can have a detrimental
effect on the convergence of any stochastic optimization algorithm that is used to estimate wπ/µ.

The method we derive below will be free of the aforementioned issues, avoiding unnecessary
requirements on the form of the off-policy data collection as well as explicit uses of importance
ratios. Rather, we consider the general setting whereD consists of transitions sampled in an unknown
fashion. Since D contains rewards and next states, we will often slightly abuse notation and write not
only (s, a) ∼ dD but also (s, a, r) ∼ dD and (s, a, s′) ∼ dD, where the notation dD emphasizes that,
unlike previously, D is not the result of a single, known behavior policy. The target policy’s value
can be equivalently written as,

ρ(π) = E(s,a,r)∼dD
[
wπ/D(s, a) · r

]
, (5)

where the correction terms are given by wπ/D(s, a) := dπ(s,a)
dD(s,a)

, and our algorithm will focus on
estimating these correction terms. Rather than relying on the assumption that D is the result of a
single, known behavior policy, we instead make the following regularity assumption:
Assumption 1 (Reference distribution property). For any (s, a), dπ(s, a) > 0 implies dD(s, a) > 0.
Furthermore, the correction terms are bounded by some finite constant C:

∥∥wπ/D∥∥∞ ≤ C.
2The Markovian requirement is necessary for TD methods. However, notably, IS methods do not depend on

this assumption.
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3 DualDICE
We now develop our algorithm, DualDICE, for estimating the discounted stationary distribution
corrections wπ/D(s, a) = dπ(s,a)

dD(s,a)
. In the OPE setting, one does not have explicit knowledge of

the distribution dD, but rather only access to samples D = {(s, a, r, s′)} ∼ dD. Similar to the TD
methods described above, we also assume access to samples from the initial state distribution β. We
begin by introducing a key result, which we will later derive and use as the crux for our algorithm.

3.1 The Key Idea
Consider optimizing a (bounded) function ν : S ×A→ R for the following objective:

min
ν:S×A→R

J(ν) :=
1

2
E(s,a)∼dD

[
(ν − Bπν) (s, a)2

]
− (1− γ) Es0∼β,a0∼π(s0) [ν(s0, a0)] , (6)

where we use Bπ to denote the expected Bellman operator with respect to policy π and zero reward:
Bπν(s, a) = γEs′∼T (s,a),a′∼π(s′)[ν(s

′, a′)]. The first term in equation 6 is the expected squared
Bellman error with zero reward. This term alone would lead to a trivial solution ν∗ ≡ 0, which can
be avoided by the second term that encourages ν∗ > 0. Together, these two terms result in an optimal
ν∗ that places some non-zero amount of Bellman residual at state-action pairs sampled from dD.

Perhaps surprisingly, as we will show, the Bellman residuals of ν∗ are exactly the desired distribution
corrections:

(ν∗ − Bπν∗) (s, a) = wπ/D(s, a). (7)
This key result provides the foundation for our algorithm, since it provides us with a simple objective
(relying only on samples from dD, β, π) which we may optimize in order to obtain estimates of the
distribution corrections. In the text below, we will show how we arrive at this result. We provide one
additional step which allows us to efficiently learn a parameterized ν with respect to equation 6. We
then generalize our results to a family of similar algorithms and lastly present theoretical guarantees.

3.2 Derivation
A Technical Observation We begin our derivation of the algorithm for estimating wπ/D by pre-
senting the following simple technical observation: For arbitrary scalars m ∈ R>0, n ∈ R≥0, the
optimizer of the convex problem minx J(x) :=

1
2mx

2 − nx is unique and given by x∗ = n
m . Using

this observation, and letting C be some bounded subset of R which contains [0, C], one immediately
sees that the optimizer of the following problem,

min
x:S×A→C

J1(x) :=
1

2
E(s,a)∼dD

[
x(s, a)2

]
− E(s,a)∼dπ [x(s, a)] , (8)

is given by x∗(s, a) = wπ/D(s, a) for any (s, a) ∈ S ×A. This result provides us with an objective
that shares the same basic form as equation 6. The main distinction is that the second term relies on
an expectation over dπ , which we do not have access to.

Change of Variables In order to transform the second expectation in equation 8 to be over the
initial state distribution β, we perform the following change of variables: Let ν : S ×A→ R be an
arbitrary state-action value function that satisfies,

ν(s, a) := x(s, a) + γEs′∼T (s,a),a′∼π(s′)[ν(s
′, a′)], ∀(s, a) ∈ S ×A. (9)

Since x(s, a) ∈ C is bounded and γ < 1, the variable ν(s, a) is well-defined and bounded. By
applying this change of variables, the objective function in 8 can be re-written in terms of ν, and this
yields our previously presented objective from equation 6. Indeed, define,

βt(s) := Pr (s = st | s0 ∼ β, ak ∼ π(sk), sk+1 ∼ T (sk, ak) for 0 ≤ k < t) ,

to be the state visitation probability at step t when following π. Clearly, β0 = β. Then,
E(s,a)∼dπ [x(s, a)] = E(s,a)∼dπ

[
ν(s, a)− γEs′∼T (s,a),a′∼π(s′)[ν(s

′, a′)]
]

= (1− γ)
∞∑
t=0

γtEs∼βt,a∼π(s)
[
ν(s, a)− γEs′∼T (s,a),a′∼π(s′)[ν(s

′, a′)]
]

= (1− γ)
∞∑
t=0

γtEs∼βt,a∼π(s) [ν(s, a)]− (1− γ)
∞∑
t=0

γt+1Es∼βt+1,a∼π(s) [ν(s, a)]

= (1− γ)Es∼β,a∼π(s) [ν(s, a)] .
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The Bellman residuals of the optimum of this objective give the desired off-policy corrections:
(ν∗ − Bπν∗)(s, a) = x∗(s, a) = wπ/D(s, a). (10)

Equation 6 provides a promising approach for estimating the stationary distribution corrections, since
the first expectation is over state-action pairs sampled from dD, while the second expectation is over
β and actions sampled from π, both of which we have access to. Therefore, in principle we may
solve this problem with respect to a parameterized value function ν, and then use the optimized ν∗ to
deduce the corrections. In practice, however, the objective in its current form presents two difficulties:

• The quantity (ν − Bπν)(s, a)2 involves a conditional expectation inside a square. In general,
when environment dynamics are stochastic and the action space may be large or continuous, this
quantity may not be readily optimized using standard stochastic techniques. (For example, when
the environment is stochastic, its Monte-Carlo sample gradient is generally biased.)

• Even if one has computed the optimal value ν∗, the corrections (ν∗−Bπν∗)(s, a), due to the same
argument as above, may not be easily computed, especially when the environment is stochastic or
the action space continuous.

Exploiting Fenchel Duality We solve both difficulties listed above in one step by exploiting
Fenchel duality [35]: Any convex function f(x) may be written as f(x) = maxζ x · ζ − f∗(ζ),
where f∗ is the Fenchel conjugate of f . In the case of f(x) = 1

2x
2, the Fenchel conjugate is given

by f∗(ζ) = 1
2ζ

2. Thus, we may express our objective as,

min
ν:S×A→R

J(ν) := E(s,a)∼dD
[
max
ζ

(ν − Bπν) (s, a) ·ζ− 1

2
ζ2
]
−(1−γ) Es0∼β,a0∼π(s0) [ν(s0, a0)] .

By the interchangeability principle [6, 34, 36], we may replace the inner max over scalar ζ to a max
over functions ζ : S ×A→ R and obtain a min-max saddle-point optimization:

min
ν:S×A→R

max
ζ:S×A→R

J(ν, ζ) := E(s,a,s′)∼dD,a′∼π(s′)
[
(ν(s, a)− γν(s′, a′))ζ(s, a)− ζ(s, a)2/2

]
− (1− γ) Es0∼β,a0∼π(s0) [ν(s0, a0)] . (11)

Using the KKT condition of the inner optimization problem (which is convex and quadratic in ζ),
for any ν the optimal value ζ∗ν is equal to the Bellman residual, ν − Bπν. Therefore, the desired
stationary distribution correction can then be found from the saddle-point solution (ν∗, ζ∗) of the
minimax problem in equation 11 as follows:

ζ∗(s, a) = (ν∗ − Bπν∗)(s, a) = wπ/D(s, a). (12)
Now we finally have an objective which is well-suited for practical computation. First, unbiased
estimates of both the objective and its gradients are easy to compute using stochastic samples from
dD, β, and π, all of which we have access to. Secondly, notice that the min-max objective function
in equation 11 is linear in ν and concave in ζ . Therefore in certain settings, one can provide guarantees
on the convergence of optimization algorithms applied to this objective (see Section 3.4). Thirdly,
the optimizer of the objective in equation 11 immediately gives us the desired stationary distribution
corrections through the values of ζ∗(s, a), with no additional computation.

3.3 Extension to General Convex Functions
Besides a quadratic penalty function, one may extend the above derivations to a more general class of
convex penalty functions. Consider a generic convex penalty function f : R→ R. Recall that C is a
bounded subset of R which contains the interval [0, C] of stationary distribution corrections. If C is
contained in the range of f ′, then the optimizer of the convex problem, minx J(x) := m · f(x)− n
for n

m ∈ C, satisfies the following KKT condition: f ′(x∗) = n
m . Analogously, the optimizer x∗ of,

min
x:S×A→C

J1(x) := E(s,a)∼dD [f(x(s, a))]− E(s,a)∼dπ [x(s, a)] , (13)

satisfies the equality f ′(x∗(s, a)) = wπ/D(s, a).

With change of variables ν := x+ Bπν, the above problem becomes,
min

ν:S×A→R
J(ν) := E(s,a)∼dD [f((ν − Bπν) (s, a))]− (1− γ) Es0∼β,a0∼π(s0) [ν(s0, a0)] . (14)

Applying Fenchel duality to f in this objective further leads to the following saddle-point problem:

min
ν:S×A→R

max
ζ:S×A→R

J(ν, ζ) := E(s,a,s′)∼dD,a′∼π(s′) [(ν(s, a)− γν(s′, a′))ζ(s, a)− f∗(ζ(s, a))]

− (1− γ) Es0∼β,a0∼π(s0) [ν(s0, a0)] . (15)
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By the KKT condition of the inner optimization problem, for any ν the optimizer ζ∗ν satisfies,
f∗′(ζ∗ν (s, a)) = (ν − Bπν)(s, a). (16)

Therefore, using the fact that the derivative of a convex function f ′ is the inverse function of the
derivative of its Fenchel conjugate f∗′, our desired stationary distribution corrections are found by
computing the saddle-point (ζ∗, ν∗) of the above problem:

ζ∗(s, a) = f ′((ν∗ − Bπν∗)(s, a)) = f ′(x∗(s, a)) = wπ/D(s, a). (17)

Amazingly, despite the generalization beyond the quadratic penalty function f(x) = 1
2x

2, the
optimization problem in equation 15 retains all the computational benefits that make this method very
practical for learning wπ/D(s, a): All quantities and their gradients may be unbiasedly estimated
from stochastic samples; the objective is linear in ν and concave in ζ, thus is well-behaved; and
the optimizer of this problem immediately provides the desired stationary distribution corrections
through the values of ζ∗(s, a), without any additional computation.

This generalized derivation also provides insight into the initial technical result: It is now clear
that the objective in equation 13 is the negative Fenchel dual (variational) form of the Ali-Silvey
or f -divergence, which has been used in previous work to estimate divergence and data likelihood
ratios [27]. In the case of f(x) = 1

2x
2 (equation 8), this corresponds to a variant of the Pearson

χ2 divergence. Despite the similar formulations of our work and previous works using the same
divergences to estimate data likelihood ratios [27], we emphasize that the aforementioned dual form
of the f -divergence is not immediately applicable to estimation of off-policy corrections in the context
of RL, due to the fact that samples from distribution dπ are unobserved. Indeed, our derivations
hinged on two additional key steps: (1) the change of variables from x to ν := x + Bπν; and (2)
the second application of duality to introduce ζ. Due to these repeated applications of duality in our
derivations, we term our method Dual stationary DIstribution Correction Estimation (DualDICE).

3.4 Theoretical Guarantees
In this section, we consider the theoretical properties of DualDICE in the setting where we have
a dataset formed by empirical samples {si, ai, ri, s′i}

N
i=1 ∼ dD,

{
si0
}N
i=1
∼ β, and target actions

a′i ∼ π(s′i), a
i
0 ∼ π(si0) for i = 1, . . . , N .3 We will use the shorthand notation ÊdD to denote an

average over these empirical samples. Although the proposed estimator can adopt general f , for
simplicity of exposition we restrict to f(x) = 1

2x
2. We consider using an algorithm OPT (e.g.,

stochastic gradient descent/ascent) to find optimal ν, ζ of equation 15 within some parameterization
families F ,H, respectively. We denote by ν̂, ζ̂ the outputs of OPT . We have the following guarantee
on the quality of ν̂, ζ̂ with respect to the off-policy policy estimation (OPE) problem.
Theorem 2. (Informal) Under some mild assumptions, the mean squared error (MSE) associated
with using ν̂, ζ̂ for OPE can be bounded as,

E
[(

ÊdD
[
ζ̂ (s, a) · r

]
− ρ(π)

)2]
= Õ

(
εapprox (F ,H) + εopt +

1√
N

)
, (18)

where the outer expectation is with respect to the randomness of the empirical samples and OPT ,
εopt denotes the optimization error, and εapprox (F ,H) denotes the approximation error due to F ,H.

The sources of estimation error are explicit in Theorem 2. As the number of samples N increases, the
statistical error N−1/2 approaches zero. Meanwhile, there is an implicit trade-off in εapprox (F ,H)
and εopt. With flexible function spaces F and H (such as the space of neural networks), the
approximation error can be further decreased; however, optimization will be complicated and it is
difficult to characterize εopt. On the other hand, with linear parameterization of (ν, ζ), under some
mild conditions, after T iterations we achieve provably fast rate, O (exp (−T )) for OPT = SVRG
and O

(
1
T

)
for OPT = SGD, at the cost of potentially increased approximation error. See the

Appendix for the precise theoretical results, proofs, and further discussions.

4 Related Work
Density Ratio Estimation Density ratio estimation is an important tool for many machine learning
and statistics problems. Other than the naive approach, (i.e., the density ratio is calculated via esti-
mating the densities in the numerator and denominator separately, which may magnify the estimation

3For the sake of simplicity, we consider the batch learning setting with i.i.d. samples as in [41]. The results
can be easily generalized to single sample path with dependent samples (see Appendix).
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error), various direct ratio estimators have been proposed [37], including the moment matching ap-
proach [13], probabilistic classification approach [3, 5, 33], and ratio matching approach [17, 27, 38]

The proposed DualDICE algorithm, as a direct approach for density ratio estimation, bears some
similarities to ratio matching [27], which is also derived by exploiting the Fenchel dual representation
of the f -divergences. However, compared to the existing direct estimators, the major difference lies
in the requirement of the samples from the stationary distribution. Specifically, the existing estimators
require access to samples from both dD and dπ , which is impractical in the off-policy learning setting.
Therefore, DualDICE is uniquely applicable to the more difficult RL setting.

Off-policy Policy Evaluation The problem of off-policy policy evaluation has been heavily studied
in contextual bandits [8, 42, 45] and in the more general RL setting [10, 16, 20, 23, 28, 29, 30, 43, 44].
Several representative approaches can be identified in the literature. The Direct Method (DM) learns
a model of the system and then uses it to estimate the performance of the evaluation policy. This
approach often has low variance but its bias depends on how well the selected function class can
express the environment dynamics. Importance sampling (IS) [31] uses importance weights to correct
the mismatch between the distributions of the system trajectory induced by the target and behavior
policies. Its variance can be unbounded when there is a big difference between the distributions of
the evaluation and behavior policies, and grows exponentially with the horizon of the RL problem.
Doubly Robust (DR) is a combination of DM and IS, and can achieve the low variance of DM and no
(or low) bias of IS. Other than DM, all the methods described above require knowledge of the policy
density ratio, and thus the behavior policy. Our proposed algorithm avoids this necessity.

5 Experiments
We evaluate our method applied to off-policy policy evaluation (OPE). We focus on this setting
because it is a direct application of stationary distribution correction estimation, without many
additional tunable parameters, and it has been previously used as a test-bed for similar techniques [21].
In each experiment, we use a behavior policy µ to collect some number of trajectories, each for some
number of steps. This data is used to estimate the stationary distribution corrections, which are then
used to estimate the average step reward, with respect to a target policy π. We focus our comparisons
here to a TD-based approach (based on [12]) and weighted step-wise IS (as described in [21]), which
we and others have generally found to work best relative to common IS variants [24, 31]. See the
Appendix for additional results and implementation details.

We begin in a controlled setting with an evaluation agnostic to optimization issues, where we find
that, absent these issues, our method is competitive with TD-based approaches (Figure 1). However,
as we move to more difficult settings with complex environment dynamics, the performance of TD
methods degrades dramatically, while our method is still able to provide accurate estimates (Figure 2).
Finally, we provide an analysis of the optimization behavior of our method on a simple control task
across different choices of function f (Figure 3). Interestingly, although the choice of f(x) = 1

2x
2 is

most natural, we find the empirically best performing choice to be f(x) = 2
3 |x|

3/2. All results are
summarized for 20 random seeds, with median plotted and error bars at 25th and 75th percentiles.4

5.1 Estimation Without Function Approximation
We begin with a tabular task, the Taxi domain [7]. In this task, we evaluate our method in a manner
agnostic to optimization difficulties: The objective 6 is a quadratic equation in ν, and thus may
be solved by matrix operations. The Bellman residuals (equation 7) may then be estimated via an
empirical average of the transitions appearing in the off-policy data. In a similar manner, TD methods
for estimating the correction terms may also be solved using matrix operations [21]. In this controlled
setting, we find that, as expected, TD methods can perform well (Figure 1), and our method achieves
competitive performance. As we will see in the following results, the good performance of TD
methods quickly deteriorates as one moves to more complex settings, while our method is able to
maintain good performance, even when using function approximation and stochastic optimization.

5.2 Control Tasks
We now move on to difficult control tasks: A discrete-control task Cartpole and a continuous-control
task Reacher [4]. In these tasks, observations are continuous, and thus we use neural network function

4The choice of plotting percentiles is somewhat arbitrary. Plotting mean and standard errors yields similar
plots.
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Figure 1: We perform OPE on the Taxi domain [7]. The plots show log RMSE of the estimator
across different numbers of trajectories and different trajectory lengths (x-axis). For this domain,
we avoid any potential issues in optimization by solving for the optimum of the objectives exactly
using standard matrix operations. Thus, we are able to see that our method and the TD method are
competitive with each other.
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Figure 2: We perform OPE on control tasks. Each plot shows the estimated average step reward over
training (x-axis is training step) and different behavior policies (higher α corresponds to a behavior
policy closer to the target policy). We find that in all cases, our method is able to approximate these
desired values well, with accuracy improving with a larger α. On the other hand, the TD method
performs poorly, even more so when the behavior policy µ is unknown and must be estimated. While
on Cartpole it can start to approach the desired value for large α, on the more complicated Reacher
task (which involves continuous actions) its learning is too unstable to learn anything at all.

approximators with stochastic optimization. Figure 2 shows the results of our method compared to
the TD method. We find that in this setting, DualDICE is able to provide good, stable performance,
while the TD approach suffers from high variance, and this issue is exacerbated when we attempt to
estimate µ rather than assume it as given. See the Appendix for additional baseline results.

5.3 Choice of Convex Function f
We analyze the choice of the convex function f . We consider a simple continuous grid task where an
agent may move left, right, up, or down and is rewarded for reaching the bottom right corner of a
square room. We plot the estimation errors of using DualDICE for off-policy policy evaluation on this
task, comparing against different choices of convex functions of the form f(x) = 1

p |x|
p. Interestingly,

although the choice of f(x) = 1
2x

2 is most natural, we find the empirically best performing choice to
be f(x) = 2

3 |x|
3/2. Thus, this is the form of f we used in our experiments for Figure 2.

6 Conclusions
We have presented DualDICE, a method for estimating off-policy stationary distribution corrections.
Compared to previous work, our method is agnostic to knowledge of the behavior policy used to
collect the off-policy data and avoids the use of importance weights in its losses. These advantages
have a profound empirical effect: our method provides significantly better estimates compared to TD
methods, especially in settings which require function approximation and stochastic optimization.

8



traj length = 50 traj length = 100 traj length = 200 traj length = 400

lo
g

R
M

SE
−4

−3

−2

−1

0

1

−4

−3

−2

−1

0

1

−4

−3

−2

−1

0

1

−4

−3

−2

−1

0

1

p = 1.25 p = 1.5 p = 2 p = 3 p = 4 TD IS

Figure 3: We compare the OPE error when using different forms of f to estimate stationary distri-
bution ratios with function approximation, which are then applied to OPE on a simple continuous
grid task. In this setting, optimization stability is crucial, and this heavily depends on the form of
the convex function f . We plot the results of using f(x) = 1

p |x|
p for p ∈ [1.25, 1.5, 2, 3, 4]. We also

show the results of TD and IS methods on this task for comparison. We find that p = 1.5 consistently
performs the best, often providing significantly better results.

Future work includes (1) incorporating the DualDICE algorithm into off-policy training, (2) further
understanding the effects of f on the performance of DualDICE (in terms of approximation error of
the distribution corrections), and (3) evaluating DualDICE on real-world off-policy evaluation tasks.
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