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ABSTRACT

We quantify a source of ineffectual computations when processing the multiplica-
tions of the convolutional layers in Deep Neural Networks (DNNs) and propose
Pragmatic (PRA), an architecture that exploits it improving performance and en-
ergy efficiency. The source of these ineffectual computations is best understood in
the context of conventional multipliers which generate internally multiple terms,
that is, products of the multiplicand and powers of two, which added together pro-
duce the final product (Wallace (1964)). At runtime, many of these terms are zero
as they are generated when the multiplicand is combined with the zero-bits of
the multiplicator. While conventional bit-parallel multipliers calculate all terms
in parallel to reduce individual product latency, PRA calculates only the non-
zero terms resulting in a design whose execution time for convolutional layers
is ideally proportional to the number of activation bits that are 1. Measurements
demonstrate that for the convolutional layers on Convolutional Neural Networks
and during inference, PRA improves performance by 4.3x over the DaDiaNao
(DaDN) accelerator (Chen et al. (2014)) and by 4.5x when DaDN uses an 8-bit
quantized representation (Warden (2016)). DaDN was reported to be 300x faster
than commodity graphics processors.

1 INTRODUCTION

In image classification using Convolutional Neural Networks (CNNs), convolutional layers account
for most of the execution time. Deep learning hardware typically uses either 16-bit fixed-point (Chen
et al. (2014)) or quantized 8-bit numbers (Warden (2016); Google (2016)) and bit-parallel compute
units which perform many ineffectual computations. Specifically, convolutional layers perform sev-
eral inner products where multiple pairs of weights and activations are multiplied and then reduced
into an output activation. Any time a zero bit of an activation or a weight participates in a multiplica-
tion it adds nothing to the output activations. This work shows how these ineffectual multiplications
can be avoided improving overall performance and energy by targeting, as a first step, the ineffectual
bits of activations only.

This work presents Pragmatic (PRA) a DNN accelerator whose goal is to process only the essential
(non-zero) bits of the input activations. Conceptually, the idea behind PRA would appear deceptively
simple: process the activations bit-serially compensating for the loss in computation bandwidth by
exploiting the abundant parallelism of convolutional layers. Processing activations bit-serially en-
ables PRA to skip the zero bits. However, a straightforward implementation of a bit-serial processing
engine proves impractical as it suffers from unacceptable energy and area overheads. To improve
performance and energy efficiency over a state-of-the-art bit-parallel accelerator and without a dis-
proportionate increase in area, PRA employs the following five key techniques: 1) on-the-fly conver-
sion of activations from a storage representation (e.g., conventional positional number or quantized)
into an explicit representation of the essential bits only, 2) bit-serial activation/bit-parallel weight
processing, an idea borrowed from Stripes of Judd et al. (2016b;a) (STR) but adapted for the afore-
mentioned representation, 3) judicious SIMD (single instruction multiple data) lane grouping to

∗This work was completed while Jorge Albericio was a Postdoctoral Fellow at the University of Toronto
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Alexnet NiN Google VGGM VGGS VGG19
16-bit Fixed-Point

All 7.8% 10.4% 6.4% 5.1% 5.7% 12.7%
NZ 18.1% 22.1% 19.0% 16.5% 16.7% 24.2%

8-bit Quantized
All 31.4% 27.1% 26.8% 38.4% 34.3% 16.5%
NZ 44.3% 37.4% 42.6% 47.4% 46.0% 29.1%

Table 1: Average fraction of non-zero bits per activation for two fixed-length representations: 16-bit
fixed-point, and 8-bit quantized. All: over all activations. NZ: over non-zero activation only.
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(c)(b) Pragmatic Unit

Figure 1: An Example Illustrating How Pragmatic Skips Ineffectual Activation Bits Yet Exceeding
the Performance of a Bit-Parallel Engine

maintain wide memory accesses and to avoid fragmenting and enlarging the on-chip weight memo-
ries, 4) computation re-arrangement to reduce datapath area, and 5) Booth encoding to further reduce
the number of essential bits per activation.

For a Machine Learning practitioner PRA introduces an additional dimension, that of controlling the
essential bit content of activations, upon which they can improve performance and energy efficiency.
This work explores such an alternative, where the software explicitly communicates how many
prefix and suffix bits to discard after each layer.

2 POTENTIAL

Table 1 shows that in recent image classification networks on average 93% and 69% of activation
bits are zero and thus ineffectual during multiplication when using respectively 16-bit fixed-point
and 8-bit quantized representations ( Warden (2016); Google (2016)). The table also shows that
the bias toward zero bits remains strong even when considering only the non-zero activations (NZ
rows).

3 Pragmatic: A SIMPLIFIED EXAMPLE

This section illustrates the idea behind Pragmatic via a simplified example. The bit-parallel unit
of Figure 1a multiplies two activations with their respective weights and via an adder reduces the
two products. This unit processes four ineffectual terms as two sources of inefficiency, excess of
precision (EoP) and lack of explicitness (LoE) manifest here: n0 and n1 are represented using 3 bits
instead of 2 respectively due to EoP and even in 2 bits, they each contain a zero bit due to LoE. In
general, this unit will take dN/2e cycles to process N activation and weight pairs, regardless of their
precision and the essential bit content of the activations.

In the simplified PRA engine of Figure 1b activations are represented as vectors of essential bit off-
sets, or oneffsets and are processed “bit-serially”. For example, activation n0 = 001(2) is represented
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Figure 2: a) DaDianNao Tile. b) Pragmatic Tile.

as on0 = (0), and an activation value of 111(2) would be represented as (2, 1, 0). An out-of-band
bit not shown indicates the activation’s end. A shifter per weight multiplies the weight with the cor-
responding activation oneffset prior to the adder tree. As a result, PRA processes only the non-zero
terms avoiding all ineffectual computations that were due to EoP or LoE. To match the throughput
of the bit-parallel engine of Figure 1a, PRA takes advantage of weight reuse and processes multiple
activations groups in parallel. For this example, PRA would process the six activation and weight
pairs in a single cycle, a speedup of 3× over the bit-parallel engine.

Terminology: For clarity, in what follows n(x, y, i) and o(x, y, i) refer to an input and an output
activation at coordinates (x, y, i) respectively. The weight of filter f at coordinates (x, y, i) is de-
noted as sf (x, y, i). The term brick refers to a set of 16 elements of a 3D activation or weight
array which are contiguous along the i dimension, e.g., n(x, y, i)...n(x, y, i + 15). Bricks will be
denoted by their origin element with a B subscript, e.g., nB(x, y, i). The term pallet refers to a set
of 16 bricks corresponding to adjacent, using a stride S, windows along the x or y dimensions, e.g.,
nB(x, y, i)...nB(x, y+15×S, i) and will be denoted as nP (x, y, i). The number of activations per
brick, and bricks per pallet are design parameters.

4 Pragmatic

Pragmatic is demonstrated as a modification of the DaDianNao accelerator (DaDN) proposed
by Chen et al. (2014) for ease of comparison, however, the architecture is configurable. Figure 2a
shows a DaDN tile processes 16 filters concurrently calculating 16 activation and weight products
per filter for a total of 256 products per cycle1. A DaDN chip contains 16 tiles and weights and
activations use a 16-bit fixed-point representation.

Input Activation Representation: PRA converts each activation into an an explicit list of oneffsets,
that is of the constituent powers of two. For example, an activation n = 5.5(10) = 0101.1(2)
would be represented as n = (2, 0,−1). In the implementation described herein, activations are
stored in 16-bit fixed-point in the 2MB Neuron Memory (NM), and converted on-the-fly in the PRA
representation as they are broadcast to the tiles.

Boosting Compute Bandwidth over DaDN: To match DaDN’s performance PRA needs to process
the same number of effectual terms per cycle. Each DaDN tile calculates 256 activation and weight
products per cycle, or 256 × 16 = 4K terms. To guarantee that PRA always performs as well
as DaDN it should process 4K terms per cycle. As in DaDN, each PRA tile processes 16 weight
bricks concurrently, one per filter. However, differently than DaDN where the 16 weight bricks are
combined with just one activation brick which is processed bit-parallel, PRA combines each weight
brick with 16 activation bricks each from a different window and which are processed bit-serially.

1Chen et al. (2014) used the terms neuron and synapse to refer to activations and weights respectively and
named the various components accordingly. We maintain this terminology for the design’s components.
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For example, in a single cycle a PRA title processing filters 0 through 15 could combine combine
s0B(x, y, 0), ..., s

1
B5(x, y, 0) with nPRA

B (x, y, 0), nPRA
B (x + 2, y, 0), ...nPRA

B (x + 31, y, 0) assuming a
layer with a stride of 2. In this case, s4(x, y, 2) would be paired with nPRA(x, y, 2), nPRA(x+2, y, 2),
..., nPRA(x+31, y, 2) to produce the output weights on(x, y, 4) through on(x+15, y, 4). In total, 256
essential activation bits are processed per cycle and given that there are 256 weights and 16 windows,
PRA processes 256 × 16 = 4K activation bit and weight pairs, or terms per cycle producing 256
partial output activations, 16 per filter, or 16 partial output activation bricks per cycle.

Supplying the Inputs: Since the number of oneffsets will vary per activation, each neu-
ron/activation lane if left unrestricted will advance at a different rate. In the worst case, each neuron
lane may end up needing activations from a different activation brick, thus breaking PRA’s ability
to reuse the same weight brick. This is impractical as it would require partitioning and replicating
the weight memory (SB) so that 4K unrelated weights could be read per cycle, and it would also
increase activation memory (NM) complexity and bandwidth.

PRA avoids these complexities with pallet-level neuron lane synchronization where all neuron lanes
“wait” (a neuron lane that has detected the end of its activation forces zero terms while waiting)
for the one with the most essential bits to finish before proceeding with the next pallet. Under this
approach it does not matter which bits are essential per activation, only how many exist. Finer
synchronization schemes are possible taking advantage of the fact that the weights are not being
read every cycle. We found that column synchronization, where each group of 16 neuron lanes can
advance independently offers a good performance, area overhead, and complexity compromise.
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Figure 3: Pragmatic Inner Product Unit.

Pragmatic Tile: Figure 2b shows the Pragmatic tile architecture which comprises an array of 16×
16 = 256 pragmatic inner product units (PIPs). PIP(i,j) processes an activation oneffset from the
i-th window and its corresponding weight from the j-th filter.

Reducing Title Area with 2-Stage Shifting: Any shift can be performed in two stages as two
smaller shifts: a � K = a � (K ′ + C) = ((a � K ′) � C). Thus, to shift and add T weights
by different offsets K0, ...,KT , we can decompose the offsets into sums with a common term C,
e.g., Ki = K ′i + C. Accordingly, PIP processing can be rearranged using a two stage processing
where the first stage uses a per weight specific offset K ′i, and the second stage, the common across
all weights offset C. This arrangement can be used to reduce the width of the weight shifters and of
the adder tree by sharing one common shifter after the adder tree. A design parameter, L, defines the
number of bits controlling the weight shifters so that the design can process oneffsets which differ
by less than 2L in a single cycle. This reduces the size of the weight shifters and reduces the size of
the adder tree to support terms of 16 + 2L − 1 bits only. Figure 3 shows the resulting PIP.

Further Increasing Performance with Improved Oneffset Encoding: Since PIPs in Pragmatic
can negate any input term, it is possible to enhance the oneffset generator to generate fewer oneffsets
for neuron values containing runs of ones by allowing signed oneffsets (Booth (1951)). This im-
proved generator reduces runs of adjacent oneffsets a...b into pairs of the form a+1,−b. Pragmatic
uses a modified Booth encoding that will never produce more oneffsets compared to the baseline
encoding. However, because of the 2-stage shifting, it is possible that this encoding will increase the
number of cycles needed.

Finally, booth encoding is conventionally used to reduce the number of cycles needed to perform
multiplication in single shift-and-add multipliers typically reserved for low cost low performance de-
signs, or to reduce the depth of bit-parallel multipliers. Pragmatic with its 2-stage shifting and judi-
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Per Layer
Network Activation Precision in Bits
AlexNet 9-8-5-5-7
NiN 8-8-8-9-7-8-8-9-9-8-8-8
GoogLeNet 10-8-10-9-8-10-9-8-9-10-7
VGG M 7-7-7-8-7
VGG S 7-8-9-7-9
VGG 19 12-12-12-11-12-10-11-11-13-12-

13-13-13-13-13-13

Table 2: Per convolutional layer activation precision profiles.

cious lane synchronization enables its practical use in a massively data-parallel accelerator boosting
performance beyond what is possible with bit-parallel units.

The Role of Software: PRA enables an additional dimension upon which hardware and software
can attempt to further boost performance and energy efficiency, that of controlling the essential
activation value content. For example, using the profiling method of Judd et al., Judd et al. (2015),
software can communicate the precisions needed by each layer as meta-data. The hardware trims
the output activation precision on-the-fly.

5 EVALUATION SUMMARY

The performance, area and energy efficiency of Pragmatic is compared against DaDN Chen et al.
(2014) the fastest bit-parallel accelerator proposed to date that processes all activations regardless of
their values.

Methodology: The same methodology is consistently used for all systems. A custom cycle-
accurate simulator models execution time. For all systems, computation was scheduled to minimize
energy, which led to the same schedule for all. To estimate power and area, the designs were syn-
thesized and their layout was produced with the Synopsis Design Compiler Synopsys for a TSMC
65nm library. The NBin and NBout SRAM buffers were modeled using CACTI (Muralimanohar
& Balasubramonian). The eDRAM area and energy were modeled with Destiny (Poremba et al.
(2015)). The per layer numerical representation requirements reported in Table 2 were found using
the methodology of Judd et al. (2016b) and are used to trim activations prior to oneffset genera-
tion in PRA. All PRA configurations studied exploit software provided precisions. All performance
measurements are for the convolutional layers only which account for more than 92% of the overall
execution time in DaDN Chen et al. (2014). PRA does not affect the execution time of the remaining
layers.

Performance: Due to space limitations we omit the design exploration and limit our attention to a
PRA configuration that uses 2-stage shifting with 4-way first-level shifters, column-synchronization
and one extra register to reduce weight memory accesses. Figure 4 reports the performance im-
provement with PRA over an equivalent DaDN configuration for the conventional 16-bit fixed-point
representation (16b) and for a Tensorflow-like ( Warden (2016); Google (2016)) 8-bit quantized rep-
resentation (8bQ). On average, PRA is 3.0x and 3.4x faster than DaDN for the two representations
respectively. When the improved oneffset encoding is used, on average PRA is 4.3x (IE-16b) and
4.5x (IE-8bQ) faster than DaDN for the two representations respectively.

Area, Power, Energy: Table 3 reports the area and power of DaDN and PRA for the 16-bit fixed-
point configuration only. PRA units are 2.31x larger, but overall the area overhead is only 1.36x for
the whole chip. Similarly, the power dissipated by the units with PRA is 2.41x compared to DaDN
and 2.06x for the whole chip. However, as the next section shows, as Pragmatic is considerably
faster, it is more energy efficient even when operating at the same frequency and voltage as DaDN.
If further efficiency is required, frequency and voltage scaling can be used while maintaining a
performance advantage over DaDN.

Energy Efficiency:

Figure 4 reports the relative energy efficiency of PRA over that of DaDN for the 16-bit fixed-point
representation (EE-16b) with zero-skipping. On average PRA is 1.44x more energy efficient when
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Figure 4: Performance and Energy Efficiency improvement with PRA over DaDN.

DDN PRA
Area Unit 1.55 3.58

∆ Area Unit 1.00 2.31
Area Chip 90 122

∆ Area Chip 1.00 1.36
Power Chip 18.8 38.8

∆ Power Chip 1.00 2.06

Table 3: Area [mm2] and power [W ] for the unit and the whole chip.

operating at the same voltage and frequency. As PRA is faster, voltage and frequency scaling can be
used to improve energy efficiency further while maintaining a performance advantage over DaDN.
Modeling the energy efficiency of the improved oneffset generators and the improved encoding
configuration is left for future work.

6 RELATED WORK

The acceleration of Deep Learning is an active area of research and has yielded numerous proposals
for hardware acceleration. PRA is closely related to Stripes which uses a bit-serial/bit-parallel ap-
proach to convert reduced precision requirements to performance (Judd et al. (2016a)). PRA would
appear to be a straightforward extension of STR that simply skips zero activation bits. However, a
straightforward modification of STR is impractical as it yields unacceptable area and energy over-
heads: 1) Since each cycle each weight is multiplied by a different power of two, twice as wide
reduction adders would be needed to accommodate the case where one weight is multiplied by 20

and another with 2max (circuit-level synthesis shows that the execution unit area would increase to
3.7x compared to the bit-parallel DaDN). 2) Since the essential bit content will vary per activation,
the activation accesses would no longer be synchronized. Instead of one wide access for all activa-
tions, the activation memory would have to somehow to support multiple single activation requests.
3) For the same reason as in 2), memory accesses for weights will increase as different activations
will need to be accessing a different set of weights. Instead of a single wide access once for each
set of activations, the weight memory will have to support one wide access per individual activation.
For the configuration studied, the weight memory would have to provide up to 256 different sets of
256 weights on average every 4 cycles.

Appendix 7 reviews additional relevant work.

7 CONCLUSION

To the best of our knowledge Pragmatic is the first CNN accelerator that exploits not only the per
layer precision requirements of CNNs but also the essential bit information content of the activation
values. While this work targeted high-performance implementations, Pragmatic’s core approach
should be applicable to other hardware accelerators. We have investigated Pragmatic only for in-
ference and with image classification CNNs. While desirable, applying the same concept to other

6
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network types, layers other than the convolutional one, is left for future work. It would also be in-
teresting to study how the Pragmatic concepts can be applied to more general purpose accelerators
or even graphics processors.
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APPENDIX

This section reviews additional work related to PRA. In the interest of space, this section restricts
attention to methods that follow a value-based approach to DNN acceleration, as Pragmatic falls
under this category of accelerators. Value-based accelerators exploit the properties of the values
being processed to further improve performance or energy beyond what is possible by exploiting
computation structure alone.

Cnvlutin Albericio et al. (2016) is a wide-SIMD accelerator that skips computations involving in-
effectual activations (either having the value zero or being close to zero). PRA has a similar effect
as it would only process the essential bit content. Minerva is a highly automated software and
hardware co-design approach targeting ultra low-voltage, highly-efficient DNN accelerators Reagen
et al. (2016). Eyeriss is a low power, real-time DNN accelerator that exploits zero valued activations
for memory compression and energy reduction Chen, Yu-Hsin and Krishna, Tushar and Emer, Joel
and Sze, Vivienne (2016). The Efficient Inference Engine (EIE) exploits efficient activation and
weight representations and pruning to greatly reduce communication costs, to improve energy effi-
ciency and to boost performance by avoiding certain ineffectual computations Han et al. (2016)Han
et al. (2015). EIE targets fully-connected (FC) layers and was shown to be 12× more efficient than
DaDN on FC layers, and 2× less efficient for convolutional layers. All aforementioned accelerators
use bit-parallel units. While this work has demonstrated Pragmatic as a modification of DaDN, its
computation units and potentially, its general approach could be compatible with all aforementioned
accelerator designs. This investigation is interesting future work.

Kim et al. (2014) used profiling has been used to determine the precision requirements of a neural
network for a hardwired implementation. EoP has been exploited in general purpose hardware
and other application domains. For example, Brooks & Martonosi (1999) exploit the prefix bits
due to EoP to turn off parts of the datapath improving energy. Park et al. Park et al. (2010), use a
similar approach to trade off image quality for improved energy efficiency. Neither approach directly
improves performance.
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