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Abstract

In this work, we exploited different strategies to provide prior knowledge to com-1

monly used generative modeling approaches aiming to obtain speaker-dependent2

low dimensional representations from short-duration segments of speech data,3

making use of available information of speaker identities. Namely, convolutional4

variational autoencoders are employed, and statistics of its learned posterior distri-5

bution are used as low dimensional representations of fixed length short-duration6

utterances. In order to enforce speaker dependency in the latent layer, we intro-7

duced a variation of the commonly used prior within the variational autoencoders8

framework, i.e. the model is simultaneously trained for reconstruction of inputs9

along with a discriminative task performed on top of latent layers outputs. The10

effectiveness of both triplet loss minimization and speaker recognition are evaluated11

as implicit priors on the challenging cross-language NIST SRE 2016 setting and12

compared against fully supervised and unsupervised baselines.13

1 Introduction14

Variational autoencoders (VAEs) (1; 2) have been introduced as an effective framework within the15

context of generative models that support tractable approximate inference (3), leveraging neural16

networks both for generative modeling as well as for approximate inference, usually employing a17

non-informative prior. However, follow-up works have shown that too simplistic of a prior will in18

general lead to also simplistic posteriors which might not encode relevant information about the19

inputs.20

Attempts to overcome the above mentioned issue include adversarial autoencoders, proposed origi-21

nally in (4), which employ an adversarial game on top of latent variables. The discriminator tries22

to distinguish samples from the posterior and prior distributions, while the encoder tries to produce23

samples that are indistinguishable from the prior. Moreover, stochastic variational methods (5; 6)24

appeared as an alternative in which informative data-dependent priors can be used. Sampling methods25

are employed to estimate gradients of the variational gap, such that any prior from which one can26

sample can be used. In both of the described cases, the only requirement for a prior is the possibility27

of efficiently sampling from it.28

Even though aforementioned adversarial autoencoders and stochastic variational methods allow the29

use of non-trivial priors, designing prior distributions which yield desired properties on the finally30

learned posterior is a challenging task in itself. In this work, rather than explicitly matching posterior31

and prior distributions, we evaluate the effectiveness of enforcing relevant properties on the posterior32

distribution by introducing auxiliary discriminative tasks at train time, making use of available labels.33

By doing so, we argue prior knowledge is introduced implicitly, since desired properties are directly34

enforced into the posterior distribution.35
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The remainder of this paper is organized as follows: Section 2 includes a brief description of the VAE36

framework along with a brief definition of the speaker verification problem, which we employ as a37

test-bed for the proposed approach. Section 3 details the strategy we proposed in order to enforce38

desired properties within the VAE’s learned posterior. In Section 4 we evaluate our method, and39

finally draw conclusions along with future directions in Section 5.40

2 Background: Variational Autoencoders and Speaker Verification41

Consider p(X,Z), where X is the observed data and Z is the latent representation. The posterior42

distribution p(Z|X) can be approximated within the family of distributions q(Z|X,λ), parametrized43

by λ. The so-called variational gap has to be minimized in order to give the maximum likelihood44

estimate of λ. The variational gap is defined as the Kullback-Leibler divergence between the45

approximate q(Z|X,λ) and the true posterior over Z, p(Z|X), written as KL(q(Z|X,λ)||p(Z|X)).46

A common approach to minimize KL(qλ(Z|X)||p(Z|X)) with respect to λ is to define the Evidence47

Lower Bound (ELBO) given by:48

ELBO(λ) = log(p(X))− KL(q(Z|X,λ)||p(Z|X)), (1)

whose terms can be rearranged, and ELBO can be simplified to:49

ELBO(λ) = Eq[log p(X|Z)]− KL(log q(Z|X,λ)||p(Z)). (2)

Two main components present in above equation are the inference model q(Z|X,λ) and the generative50

model p(X|Z). VAEs parametrize both distributions using neural networks in an encoder/decoder51

setup. The encoder takes samples from X and outputs the parameters λ of the latent variable model52

qθ(Z|X). The decoder receives samples from Z as input and returns reconstructed data samples from53

pφ(X|Z). Parameters θ and φ are the weights and biases of the neural networks which are selected54

to minimize the negative ELBO using stochastic gradient descent. The negative of the ELBO yields55

the following loss function used for training the neural networks:56

l(θ, φ) = −Eqθ(z|x)[log pφ(X|Z)] + KL(log qθ(Z|X)||p(Z)). (3)

First term in above equation is equivalent to maximum likelihood estimation, thus it is in general57

substituted by a reconstruction loss, while the second term can be seen as a regularizer, which tries to58

ensure that the approximation follows the prior distribution as much as possible.59

The posterior qθ(Z|X) is in general assumed to be an uncorrelated Gaussian. In order to train the VAE60

using stochastic gradient descent, the reparametrization trick (7; 8) is employed allowing gradients61

computation through the sampling process between encoder and decoder. Hence, the outputs of the62

encoder network are the statistics of qθ(Z|X) and Z - input for the decoder - is ultimately obtained63

by Z = µ(X) + σ(X) · ε, where µ(X) and σ(X) are the encoder’s outputs given X , while ε is64

sampled from N (0, I).65

Speaker verification consists of accepting or rejecting a claimed identity by comparing two spoken66

utterances, the first of these utterances being used for enrollment (produced by the speaker with the67

target identity) and the second utterance is obtained from the verified speaker (9).68

Under the text-independent setting, speaker verification is performed on top of unconstrained spoken69

phrases of arbitrary length. The added phonetic variability in this scenario represents an extra adverse70

factor when compared to the session and speaker variabilities, present in the text-dependent case71

(10). Classical approaches for Automatic Speaker Verification split the problem into two distinct72

phases: (i) compute low dimensional speaker representations; (ii) perform binary classification on73

top of pre-computed representation of enrollment and test utterances.74
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3 Proposed Model75

Unlike the ELBO-based loss definition in Equation 3, we evaluate the use of an auxiliary task on76

top of the posterior statistics µ(X), with the aim at enforcing a multi-modal posterior with modes77

depending on given class labels. Our training loss is thus defined by:78

l(θ, φ) = (1− β)||X −X ′||22 + βD(µ(X), y), (4)

where the first term, the mean squared error between the input X and its reconstructed pair X ′, is79

the same as in the standard VAE setting, while the second term, D(µ(X), y), is some discriminative80

loss which plays the role of the KL term in Equation 3, considering given class labels y. β ∈ [0, 1]81

is a tunable hyperparameter. µ(X) is employed as a low-dimensional embedding of inputs for the82

discriminative auxiliary task. Two distinct choices of D(µ(X), y) are evaluated here:83

1. A soft triplet loss defined by softplus(||d+ − d−||2), where d+ and d− correspond to84

a distance measure between pairs of embeddings. d is chosen as d(µ(X1), µ(X2)) =85

1 − µ(X1)·µ(X2)
||µ(X1)||2||µ(X2)||2 , and the second term is the cosine of the smallest angle between86

µ(X1) and µ(X2).87

2. The sum of triplet loss with a multi-class classification loss, i.e. µ(X) is linearly projected88

into an output layer and cross-entropy loss is measured using available labels.89

We evaluate the described setting on the speaker verification task. RMSProp is employed for90

optimization with α set to 0.99. The global learning rate starts at 0.001 and is halved once triplet91

loss, measured on a validation set held out of training, plateaus for 30 epochs. Training is carried92

out in a single Titan X NVIDIA GPU, with minibatches of size 64. Minibatches are contructed such93

that two random segments of different utterances belonging to the same speaker are sampled to form94

same class pairs (positive), and a random sample from a different speaker is selected to compose the95

different classes pair (negative). β was at 0.8 for all experiments.96

4 Experimental Setup and Results97

Evaluation is performed on top of the cross-language NIST SRE 2016 setting (11). Test data in98

Tagalog and Cantonese are available, while train data is in English. Embeddings obtained with a99

standard VAE, along with our two proposed strategies using two distinct D(µ(X), y) previously100

described choices are compared with x-vectors, a fully-supervised approach shown to outperform101

i-vectors (12) in the full-recording setting (13). Train data is composed of: Switchboard-2, phases102

1, 2, and 3, along with NIST SREs from 2004 to 2010 combined with Mixer 6, which sums up to103

approximately 7000 speakers, out of which we remove all the recordings of 50 speakers to be used as104

validation set. Training is performed on top of 40-dimensional log-mel filter banks. Only the SRE105

portion is used for training probabilistic linear discriminant analysis (PLDA) (14), which was used as106

a backend at evaluation phase. Since our model requires fixed size inputs, speech segments of 256107

frames were randomly selected from each recording at train time. We augment the described train108

dataset following the approach in (13), i.e. with additive background noise from the MUSAN corpus109

and reverberation by convolving room impulse responses (RIR) with original audio data (MUSAN110

and RIR are available at www.openslr.org). We removed silence frames from data using a simple111

energy-based voice activity detector.112

For enrollment, test, and unlabelled (used for PLDA adaptation) data, embeddings of each recording113

are obtained from 256 frames windows without overlap, and then averaged, such that each test114

utterance is represented by a single fixed dimensional representation, even though models only have115

access to short-duration segments.116

PLDA was employed as backend after dimensionality reduction of embeddings from 256 to 128,117

using linear discriminant analysis. PLDA is trained on embeddings from the SRE partition of training118

data, which are computed following the same approach as described for test data for the case of119

our proposed models, while using the full-recordings in the case of x-vectors. Results in terms of120

Equal Error Rate (EER) are shown in Table 1 for embeddings obtained from VAEs trained both in a121

standard fashion, and our proposed approaches.122
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Table 1: EER obtained for embeddings averaged over short short-duration segments.
PLDA Adapted PLDA

Cantonese Tagalog Pooled Cantonese Tagalog Pooled
X-vector 30.91 31.32 31.04 14.41 20.98 17.62

VAE 31.55 32.13 31.83 31.10 32.24 31.66
VAE+Triplet loss 21.81 27.80 24.79 19.89 25.50 22.76

VAE+Cross-entropy 21.46 27.05 24.28 16.50 23.00 20.02

As expected, including speaker identities relevantly increases the discriminability of learned repre-123

sentations when compared to a fully-unsupervised VAE, in both Tagalog and Cantonese evaluations.124

We further notice that performing speaker recognition on top of statistics of the posterior is more125

effective than the metric learning approach of triplet loss minimization alone.126

In order to overcome the relevant domain shift between train and test data due to different spoken127

languages, the model adaptation scheme introduced in (15) is utilized for PLDA. To do so, embeddings128

of unlabelled data in Cantonese and Tagalog are clustered, and clusters are used as speaker identities,129

which are then employed for training a second PLDA model. The final model is obtained by simply130

averaging the second order statistics of the two trained models.131

Results, as reported in the right section of Table 1, correspond to the evaluation using the adapted132

PLDA model. Interestingly, one can notice that the higher the level of supervision employed on133

embeddings model training, the higher is the performance gain when adaptation is used. By level of134

supervision we mean how relevant class labels (speaker identities in the studied case) are at train time.135

Standard VAE makes no use of class labels, while triplet loss employs such information for triplets136

construction only. Even in the case in which our VAE is trained with cross-entropy minimization,137

semi-supervised settings can be used, leveraging available unlabelled data, which is not the case for138

x-vectors, for instance, whose training is performed in a fully-supervised fashion. We thus argue that139

an increasing level of supervision induces domain-dependent representations, and this is the reason140

adaptation yields a huge improvement in such cases.141

We further evaluate the discriminability of the representations corresponding to the statistics of142

posterior distributions approximated by VAEs trained in a standard fashion and making use of143

available speaker identities by plotting 2-dimensional t-SNE embeddings of µ(X), computed for 10144

speakers held out of training. Figures 1, 2, 3 are ordered in increasing level of supervision, which145

once more supports the claim that making use of class labels to perform discriminative tasks on top146

of statistics of the posterior is an effective strategy to enforce desired properties.147

Figure 1: Embeddings ob-
tained from a standard VAE
posterior.

Figure 2: Embeddings ob-
tained from a VAE trained
with triplet loss minimization.

Figure 3: Embeddings from
a VAE trained with cross-
entropy minimization

148

5 Conclusion149

In this work, we proposed to exchange the divergence term within the variational autoencoders150

training loss by some discriminative cost, leveraging available class labels. We thus argue such an151

approach is equivalent to implicitly defining prior distributions, directly inducing desired properties152

in the learned posterior distribution. Evaluation is performed on the challenging cross-language NIST153

SRE 2016 evaluation setting, for which we show embeddings obtained by such an approach are154

speaker-dependent, as enforced by discriminative tasks performed at train time. Future directions155

include the evaluation of this framework on the semi-supervised setting, employing unlabelled data156

for training of the generative model, along with labelled data.157
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Appendix A - Model architecture193

Architectures employed for encoder and decoder are detailed in Tables 2 and 3. Batch normalization194

is used after all convolution layers. Inputs present dimensionality [40, 256], corresponding to 40 filter195

banks and 256 frames.196

Table 2: Encoder architecture
Layer Outputs Kernel size Stride Dilation Activation

Convolution 19, 84, 128 5, 5 2, 3 1, 2 ELU
Convolution 9, 40, 256 5, 5 2, 2 1, 2 ELU
Convolution 4, 40, 512 5, 5 2, 1 1, 1 ELU
Convolution 1, 40, 1024 5, 5 2, 1 1, 1 ELU

Average Pooling 1, 1, 1024 1, 40 1, 1 - -
Dense 1024 - - - ELU
Dense 256, 256 - - - ELU, -

Table 3: Decoder architecture
Layer Outputs Kernel size Stride Dilation Activation
Dense 800 - - - ELU

Transpose
Convolution 7, 14, 128 3, 4 1, 2 1, 3 ELU

Transpose
Convolution 11, 29, 128 3, 4 2, 2 1, 2 ELU

Transpose
Convolution 19, 59, 256 3, 4 2, 2 1, 2 ELU

Transpose
Convolution 18, 118, 128 4, 6 1, 2 1, 1 ELU

Transpose
Convolution 38, 246, 32 4, 12 2, 2 1, 1 ELU

Transpose
Convolution 40, 256, 1 5, 13 1, 1 1, 1 -
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