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Abstract

We propose a novel multilinear dynamical system (MLDS) in a transform do-
main, named L-MLDS, to model tensor time series. With transformations ap-
plied to a tensor data, the latent multidimensional correlations among the frontal
slices are built, and thus resulting in the computational independence in the trans-
form domain. This allows the exact separability of the multidimensional problem
into multiple smaller LDS problems. To estimate the system parameters, we uti-
lize the expectation-maximization (EM) algorithm to determine the parameters of
each LDS. Further, L-MLDS significantly reduces the model parameters and al-
lows parallel processing. Our general L-MLDS model is implemented based on
discrete Fourier transform, discrete cosine transform and discrete wavelet trans-
form, respectively. Due to the nonlinearity of these transformations, L-MLDS
is able to capture the nonlinear correlations within the data while the MLDS [1]
assumes multi-way linear correlations. On four real datasets, the proposed L-
MLDS achieves much higher prediction accuracy than the state-of-the-art MLDS
and LDS with an equal number of parameters under different noise models. In par-
ticular, the relative errors are reduced by 50% ∼ 99%. Simultaneously, L-MLDS
achieves an exponential improvement in the model’s training time than MLDS.

1 Introduction

Predicting the evolving trends of data sequences is an essential problem arising in various fields
such as signal processing, environmental protection and economics. A traditional model to describe
a dynamically evolving data sequence is the linear dynamical system (LDS), where the observations
and latent states are expressed as vectors. In the era of big data, data in various applications is
frequently represented as a time series of multidimensional arrays, called tensors, to preserve the
inherent multidimensional correlations. Of interest is the prediction of future terms of the time
tensor series. The obvious solution is to unfold each tensor to a vector, and then the LDS applies as
in [2, 3]. However, LDS can not preserve the data structure, and it does not allow to determine the
dimension of each mode of the latent tensor.

A multilinear dynamical system (MLDS) for modeling time tensor series is proposed in [1] to gen-
eralize the LDS by vectorizing the input tensors. Expressing the latent states and observations as
tensors and replacing the transition and projection matrices with multilinear operators, MLDS pre-
serves the tensorial structure of the data and achieves a higher prediction accuracy than LDS. The
multilinear operators are assumed to be factorizable so that the number of model parameters is sig-
nificantly reduced (compared to LDS). However, MLDS still takes a high computational cost to
estimate the large number of covariance parameters. Moreover, the method for estimating the mul-
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tilinear operators of MLDS in [1] may fall into local optimum, thus compromising the prediction
accuracy.

We propose a novel multilinear dynamical system based on transform-based tensor model, named
L-MLDS. Working in the transform domain, the multilinear operators and covariances of the L-
MLDS model are sparse block diagonal matrices. This allows exact separability of an L-MLDS into
multiple smaller LDSs and provides the opportunity for parallel processing. To estimate the model
parameters, we utilize the standard EM algorithm to determine the parameters of each LDS in the
transform domain. Therefore, the model involves fewer parameters, simple estimation procedures,
and efficient computation, leading to improvements in the model training. In addition, L-MLDS
allows arbitrary noise relationships among the tensorial elements without the restrictive assumption
of isotropic noise used in [4, 5]. For the details of this work, please see [6].

2 Transform-Based Tensor Model

Let C denote complex numbers. Vectors are denoted by boldface lowercase letters, e.g., a; matrices
are denoted by boldface capital letters, e.g., A; and tensors are denoted by calligraphic letters, e.g.,
A. We use A(k) to denote the k-th frontal slice of A and [n] to denote the index set {1, 2, · · · , n}.
In this paper, we just consider the third-order tensor for ease of exposition.

Basic operators [7]: The operator MatView(·) takes a tensor A ∈ CI×J×K and returns an IK×JK
block diagonal matrix, with each block being an I × J matrix, defined as

MatView(A) = diag(A(1), · · · ,A(k), · · · ,A(K)). (1)
The operator Vec(·) takes a tensor B ∈ CI×1×K and returns a vector of length IK, defined as

Vec(B) = [B(1); · · · ;B(k); · · · ;B(K)]. (2)
Conversely, the operator TenView(·) folds MatView(A) and Vec(B) back to tensors A and B, respec-
tively, i.e., TenView(MatView(A)) = A and TenView(Vec(B)) = B.

Given an invertible discrete transform L : CK → CK , the elementwise multiplication is denoted by
◦, and with α,β ∈ CK , the tube multiplication • is defined [7] as α •β = L−1(L(α) ◦ L(β)), and
L−1 is the inverse of L.

Transformation along the 

third dimension

Figure 1: The transform-
domain presentation of a ten-
sor.

We use Ã = L(A) ∈ CI×J×K to denote the tensor obtained by
taking the transform L of all the tubes along the third dimension of
A ∈ CI×J×K . The transformation L builds the correlations among
the frontal slices in the transform domain just like threading the
wires through them. Therefore, while the frontal slices of a tensor
in time domain are dependent, they are in fact independent in the
transform domain.
Definition 1. The L-product C = A • B of A ∈ CI×K×L and B ∈
CK×J×L is a tensor in CI×J×L, with C(i, j, :) =

∑K
k=1 A(i, k, :

) • B(k, j, :), for i ∈ [I] and j ∈ [J ].
Lemma 1. [7] The L-product C = A • B can be converted to the matrix multiplication in the
transform domain, similar to the convolution theorem, MatView(C̃) = MatView(Ã) · MatView(B̃).

In particular, given A ∈ CI×J×K and B ∈ CJ×1×K , the L-product C = A • B can be calculated as
Vec(C̃) = MatView(Ã) · Vec(B̃). In this case, we call A a multilinear operator of B [7–9].

Different from the tensor normal distribution in [10] which is restricted to symmetric second-order
tensors, we define an L-normal distribution in a transform domain for arbitrary second-order tensors.
The corresponding random tensors, called L-random tensors, are used to construct L-MLDS.

Definition 2. (L-Normal Distribution) Given a tensor X ∈ CJ×1×K , let X̃ = L(X ), and then we
say X has the L-normal distribution with expectation U ∈ CJ×1×K and covariance Q ∈ CJ×J×K ,
denoted by

X ∼ CNL(U ,Q), (3)
if and only if

Vec(X̃ ) ∼ CN (Vec(Ũ),MatView(Q̃)), (4)
where CN is the traditional complex normal distribution.
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3 Transform-Based Multilinear Dynamical System

The L-MLDS model consists of a sequence X1, · · · ,XN of latent tensors, where Xn ∈ CJ×1×K

for all n. Each latent tensor Xn associates with an observation Yn ∈ CI×1×K . The L-MLDS is
initialized by a latent tensor X1 distributed as

X1 ∼ CNL(U0,Q0). (5)

Given Xn, 1 ≤ n ≤ N − 1, we generate Xn+1 according to the conditional distribution

Xn+1 | Xn ∼ CNL(A • Xn,Q), (6)

where Q is the conditional covariance tensor shared by all Xn, 2 ≤ n ≤ N , and A ∈ CJ×J×K is
the transition tensor which describes the dynamics of the evolving sequence X1, · · · ,XN . For each
Xn, the corresponding observation Yn is generated by the conditional distribution

Yn | Xn ∼ CNL(C • Xn,R), (7)

where R is the conditional covariance tensor shared by all Yn, and C ∈ CI×J×K is the projection
tensor which transforms latent Xn to the corresponding observation Yn.

Suppose I = J = K = n. Then, the parameter complexities of LDS and MLDS are O(n4) and
that of L-MLDS is O(n3). Thus L-MLDS significantly reduces the number of parameters as the
dimensions of the tensors increase. Conversely, with equal number of parameters, L-MLDS tends
to have a greater dimensionality (J × K) of the latent state. Generally, the longer the vectorized
latent tensor is, the more information of the corresponding observation it has.

The problem of L-MLDS identification is to estimate the parameters Θ = {U0,Q0,A,Q, C,R}
from the given time series of observations Y1, · · · ,YN . For the existence of unknown latent states
Xn in the L-MLDS, we cannot directly maximize the likelihood of the data with respect to Θ.
According to Definition 2, the L-MLDS specified by (5), (6), and (7) can be exactly divided into K
indenpendent LDSs in the transform domain with each LDS being defined as

X̃ (k)
1 ∼ CN (Ũ (k)

0 , Q̃(k)
0 ),

X̃ (k)
n+1|X̃

(k)
n ∼ CN (Ã(k) · X̃ (k)

n , Q̃(k)),

Ỹ(k)
n |X̃ (k)

n ∼ CN (C̃(k) · X̃ (k)
n , R̃(k)).

(8)

Hence, the problem of estimating Θ is exactly separated into K independent subproblems of esti-
mating θ(k) = {Ũ (k)

0 , Q̃(k)
0 , Ã(k), Q̃(k), C̃(k), R̃(k)} with incomplete data [11]. Then, we use the

EM algorithm to estimate each θ(k), k ∈ [K], and finally convert all those subsystem components
to time domain. For the specific process, see Figure 2.
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Figure 2: The process of L-MLDS training.

4 Performance Evaluation on Real Data

We conduct experiments with the noise covariances in the models being diagonal and non-diagonal,
respectively. In all the experiments, the LDS latent dimensionality is always set to the smallest value
such that the number of parameters of the LDS is greater than or equal to that of the MLDS. Also,
the latent dimensionality J of each LDS in the transform domain of L-MLDS is set to the largest
value such that the number of parameters of the L-MLDS is less than or equal to that of MLDS.

We use the following datasets in evaluations, and the codes are available online [12].
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SST [1]: A 5-by-6 grid of sea-surface temperatures. Each model was trained on the first 1800 epochs
and tested on the last 200 epochs.
Video [1]: A 10 × 10 patch for each frame. Each model was trained on the first 1000 frames and
tested on the last 171 frames.
Tesla [13]: A 14 × 5 patch for each epoch. Each model was trained on the first 1100 epochs and
tested on the last 160 epochs.
NASDAQ-100 [14]: Opening, closing, high, and low for 50 randomly-chosen NASDAQ-100 com-
panies. Each model was trained on the first 2000 epochs and tested on the last 186 epochs.
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Figure 3: Performance results for LDS, MLDS, dct-MLDS, dft-MLDS and dwt-MLDS using real
data with the covariances of the noises being diagonal.
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Figure 4: Performance results for LDS, MLDS, dct-MLDS, dft-MLDS and dwt-MLDS using real
data with the covariances of noises being non-diagonal.
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Figure 5: The running time for LDS, MLDS, dct-MLDS, dft-MLDS and dwt-MLDS ( the runtime
of transformation is considered in each L-MLDS). (a) corresponds to Figure 3 and (b) to Figure 4.

The comparisons ( shown in Figure 3 and 4) demonstrate that our L-MLDS is able to achieve a high
prediction accuracy for arbitrary noise relationships among the tensorial elements, and reduces the
relative errors by 50% ∼ 99%. In addition to the higher prediction accuracy, L-MLDS reduces the
training time by orders of magnitude compared to MLDS, see Figure 5. Simultaneously, the longer
the vectorized inputs are, the more obvious the improvement will be.
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