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ABSTRACT

We propose Adversarial Inductive Transfer Learning (AITL), a method for ad-
dressing discrepancies in input and output spaces between source and target do-
mains. AITL utilizes adversarial domain adaptation and multi-task learning to
address these discrepancies. Our motivating application is pharmacogenomics
where the goal is to predict drug response in patients using their genomic informa-
tion. The challenge is that clinical data (i.e. patients) with drug response outcome
is very limited, creating a need for transfer learning to bridge the gap between
large pre-clinical pharmacogenomics datasets (e.g. cancer cell lines) and clinical
datasets. Discrepancies exist between 1) the genomic data of pre-clinical and clin-
ical datasets (the input space), and 2) the different measures of the drug response
(the output space). To the best of our knowledge, AITL is the first adversarial
inductive transfer learning method to address both input and output discrepancies.
Experimental results indicate that AITL outperforms state-of-the-art pharmacoge-
nomics and transfer learning baselines and may guide precision oncology more
accurately.

1 INTRODUCTION

Deep neural networks (Goodfellow et al., 2016) have demonstrated the state-of-the-art performance
in different problems, ranging from computer vision and natural language processing to genomics
(Eraslan et al., 2019) and medicine (Topol, 2019). However, these networks often require a large
number of samples for training, which is challenging and sometimes impossible to obtain in the real
world applications.
Transfer learning (Pan & Yang, 2009) attempts to solve this challenge by leveraging the knowledge
in a source domain, a large data-rich dataset, to improve the generalization performance on a small
target domain. Training a model on the source domain and testing it on the target domain violates
the i.i.d assumption that the train and test data are from the same distribution. The discrepancy in
the input space decreases the prediction accuracy on the test data, which leads to poor generalization
(Zhang et al., 2019). Many methods have been proposed to minimize the discrepancy between the
source and the target domains using different metrics such as Jensen Shannon Divergence (Ganin &
Lempitsky, 2014), Maximum Mean Discrepancy (Gretton et al., 2012), and Margin Disparity Dis-
crepancy (Zhang et al., 2019). While transductive transfer learning (e.g. domain adaptation) uses a
labeled source domain to improve generalization on an unlabeled target domain, inductive transfer
learning (e.g. few-shot learning) uses a labeled source domain to improve the generalization on a
labeled target domain where label spaces are different in the source and the target domains (Pan &
Yang, 2009).
Adversarial domain adaptation has shown great performance in addressing the discrepancy in the
input space for different applications (Schoenauer-Sebag et al., 2019; Hosseini-Asl et al., 2018; Pin-
heiro, 2018; Zou et al., 2018; Tsai et al., 2018; Long et al., 2018; Chen et al., 2017; Tzeng et al.,
2017), however, adversarial adaptation to address the discrepancies in both the input and output
spaces has not yet been explored. Our motivating application is pharmacogenomics (Smirnov et al.,
2017) where the goal is to predict response to a cancer drug given the genomic data (e.g. gene ex-
pression). Since clinical datasets in pharmacogenomics (patients) are small and hard to obtain, many
studies have focused on large pre-clinical pharmacogenomics datasets such as cancer cell lines as a
proxy to patients (Barretina et al., 2012; Iorio et al., 2016). A majority of the current methods are
trained on cell line datasets and then tested on other cell line or patient datasets (Sharifi-Noghabi
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et al., 2019b; Geeleher et al., 2014). However, cell lines and patients data, even with the same set
of genes, do not have identical distributions due to the lack of an immune system and the tumor mi-
croenvironment in cell lines (Mourragui et al., 2019). Moreover, in cell lines, the response is often
measured by the drug concentration that reduces viability by 50% (IC50), whereas in patients, it is
often based on changes in the size of the tumor and measured by metrics such as response evaluation
criteria in solid tumors (RECIST) (Schwartz et al., 2016). This means that drug response prediction
is a regression problem in cell lines but a classification problem in patients. Therefore, discrepan-
cies exist in both the input and output spaces in pharmacogenomics datasets. Table A1 provides the
definition of these biological terms.
In this paper, we propose Adversarial Inductive Transfer Learning (AITL), the first adversarial
method of inductive transfer learning. Different from existing methods for transfer learning, AITL
adapts not only the input space but also the output space. Our motivating application is transfer
learning for pharmacogenomics datasets. In our driving application, the source domain is the gene
expression data obtained from the cell lines and the target domain is the gene expression data ob-
tained from patients. Both domains have the same set of genes (i.e., raw feature representation).
Discrepancies exist between the gene expression data in the input space, and the measure of the
drug response in the output space. AITL learns features for the source and target samples and uses
these features as input for a multi-task subnetwork to predict drug response for both the source and
the target samples. The output space discrepancy is addressed by the multi-task subnetwork, which
has one shared layer and separate classification and regression towers, and assigns binary labels
(called cross-domain labels) to the source samples. The multi-task subnetwork also alleviates the
problem of small sample size in the target domain by sharing the first layer with the source domain.
To address the discrepancy in the input space, AITL performs adversarial domain adaptation. The
goal is that features learned for the source samples should be domain-invariant and similar enough
to the features learned for the target samples to fool a global discriminator that receives samples
from both domains. Moreover, with the cross-domain binary labels available for the source samples,
AITL further regularizes the learned features by class-wise discriminators. A class-wise discrimi-
nator receives source and target samples from the same class label and should not be able to predict
the domain accurately.
We evaluated the performance of AITL and state-of-the-art inductive and adversarial transductive
transfer learning baselines on pharmacogenimcs datasets in terms of the Area Under the Receiver
Operating Characteristic curve (AUROC) and the Area Under the Precision-Recall curve (AUPR).
In our experiments, AITL achieved a substantial improvement compared to the baselines, demon-
strating the potential of transfer learning for drug response prediction, a crucial task of precision
oncology.

2 RELATED WORK

2.1 TRANSFER LEARNING

Following the notation of (Pan & Yang, 2009), a domain like DM is defined by a raw in-
put feature space1 X and a probability distribution p(X), where X = {x1, x2, ..., xn} and xi
is the i-th raw feature vector of X . A task T is associated with DM = {X, p(X)}, where
T = {Y, F (.)} is defined by a label space Y and a predictive function F (.) which is learned
from training data of the form (X,Y ), where X ∈ X and Y ∈ Y. A source domain is
defined as DMS = {(xs1 , ys1), (xs2 , ys2), ..., (xsnS

, ysnS
)} and a target domain is defined as

DMT = {(xt1 , yt1), (xt2 , yt2), ..., (xtnT
, ytnT

)}, where xs ∈ XS , xt ∈ XT , ys ∈ YS , and yt ∈ YT .
Since nT << nS and it is challenging to train a model only on the target domain, transfer learning
aims to improve the generalization on a target task TT using the knowledge in DMS and DMT and
their corresponding tasks TS and TT . Transfer learning can be categorized into three categories: 1)
unsupervised transfer learning, 2) transductive transfer learning, and 3) inductive transfer learning.
In unsupervised transfer learning, there is no label in the source and target domains. In transductive
transfer learning, source domain is labeled but target domain is unlabeled, domains can be either
the same or different (domain adaptation), but source and target tasks are the same. In inductive
transfer learning, target domain is labeled and source domain can be either labeled or unlabeled, and

1This is different from learned features by the network
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domains can be the same or different, but in this category tasks are always different (Pan & Yang,
2009).

2.2 INDUCTIVE TRANSFER LEARNING

There are three approaches to inductive transfer learning: 1) deep metric learning, 2) few-shot learn-
ing, and 3) weight transfer (Scott et al., 2018). Deep metric learning methods are independent of
the number of samples in each class of the target domain, denoted by k, meaning that they work for
small and large k values. Few-shot learning methods focus on small k (k ≤ 20). Finally, weight
transfer methods require a large k (k ≥ 100 or k ≥ 1000) (Scott et al., 2018). Figure A1 (in Ap-
pendix) presents this taxonomy.
In drug response prediction, the target domain is small, which means a limited number of samples
for each class is available, therefore, few-shot learning is more suitable for such a problem. Few-
shot learning involves training a classifier to recognize new classes, provided only a small number
of examples from each of these new classes in the training data (Snell et al., 2017). Various methods
have been proposed for few-shot learning (Chen et al., 2019; Scott et al., 2018; Snell et al., 2017;
Vinyals et al., 2016). For example, Prototypical Networks (ProtoNet) (Snell et al., 2017) constructs
prototypical representatives (class means) from source domain learned features and compares the
Euclidean distance between the target domain learned features and these class representatives to
assign labels to the target samples.

2.3 ADVERSARIAL TRANSFER LEARNING

Recent advances in adversarial learning leverage deep neural networks to learn transferable repre-
sentation that disentangles domain-invariant and class-invariant features from different domains and
matches them properly (Peng et al., 2019; Zhang et al., 2019; Long et al., 2018). In this section,
we first introduce the Generative Adversarial Networks (GANs) (Goodfellow et al., 2014), and then
introduce some of the existing works on adversarial transfer learning.

2.3.1 GENERATIVE ADVERSARIAL NETWORKS

GANs (Goodfellow et al., 2014) attempt to learn the distribution of the input data via a minimax
framework where two networks are competing: a discriminator D and a generator G. The generator
tries to create fake samples from a randomly sampled latent variable that fool the discriminator,
while the discriminator tries to catch these fake samples and discriminate them from the real ones.
Therefore, the generator wants to minimize its error, while the discriminator wants to maximize its
accuracy:

M
G
inM

D
axV (G,D) =

∑
x∼data

log[D(x)] +
∑

z∼noise

log[1−D(G(z))] (1)

A majority of literature on adversarial transfer learning are for transductive transfer learning where
the source domain is labeled while the target domain is unlabeled.

2.3.2 ADVERSARIAL TRANSDUCTIVE TRANSFER LEARNING

Transductive transfer learning, often referred to as domain adaptation, is the most common scenario
in transfer learning. Various methods have been proposed for adversarial transductive transfer learn-
ing in different applications such as image segmentation (Chen et al., 2017; Tsai et al., 2018), image
classification (Tzeng et al., 2017; Long et al., 2018), speech recognition (Hosseini-Asl et al., 2018),
domain adaptation under label-shift (Azizzadenesheli et al., 2019), partial domain adaptation (You
et al., 2019), and multiple domain adaptation (Schoenauer-Sebag et al., 2019). The idea of these
methods is that features extracted from source and target samples should be similar enough to fool
a global discriminator (Tzeng et al., 2017) and/or class-wise discriminators (Chen et al., 2017).

2.4 DRUG RESPONSE PREDICTION

The goal of precision oncology is to tailor a treatment for a cancer patient using genomic informa-
tion of that patient. However, currently, only about 5% of the patients can benefit from precision
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oncology because response to a drug is a highly complex phenotype and it depends on diverse ge-
netic and/or non-genetic factors (Marquart et al., 2018).
Pre-clinical pharmacogenomics datasets such as cancer cell lines (Iorio et al., 2016) and patient-
derived xenografts (PDX) (Gao et al., 2015) are reliable proxies to study the associations between
the genomic landscape and the response to a cancer treatment. The advantage of these resources is
that they can be screened with hundreds of drugs – chemotherapy agents and targeted therapeutics
– which is impossible for patients. For example, in the Genomics of Drug Sensitivity in Cancer
(GDSC) dataset (Iorio et al., 2016) over 1000 pan-cancer cell lines screened with 265 chemotherapy
and targeted drugs are available. Another advantage of the pre-clinical datasets is that they are often
significantly larger than patient datasets with known drug response (labels).
These advantages of pre-clinical datasets make them a suitable resource to develop computational
methods for drug response prediction (Smirnov et al., 2017). Various methods have been developed
to predict drug response from single or multiple types of genomic data. For example, Geeleher et al.
(2014) proposed a ridge-regression method to predict drug response based on gene expression data.
Sharifi-Noghabi et al. (2019b) showed that integrating multiple data types with deep neural networks
and transfer learning via sample transfer improves the accuracy of drug response prediction.

3 ADVERSARIAL INDUCTIVE TRANSFER LEARNING

3.1 PROBLEM DEFINITION

Given a labeled source domain DMS with a learning task TS and a labeled target domain DMT

with a learning task TT , where TT 6= TS , and p(XT ) 6= p(XS), where XS , XT ∈ X, we assume
that the source and the target domains are not the same due to different probability distributions. The
goal of Adversarial Inductive Transfer Learning (AITL) is to utilize the source and target domains
and their tasks in order to improve the learning of FT (.) on DMT .
In the area of pharmacogenomics, the source domain is the gene expression data obtained from the
cell lines, and the source task is to predict the drug response in the form of IC50 values. The target
domain consists of gene expression data obtained from patients, and the target task is to predict drug
response in a different form – often change in the size of tumor after receiving the drug. In this
setting, p(XT ) 6= p(XS) because cell lines are different from patients even with the same set of
genes. Additionally, YT 6= YS because for the target task YT ∈ {0, 1}, drug response in patients
is a binary outcome, but for the source task YS ∈ R+, drug response in cell lines is a continuous
outcome. As a result, AITL needs to address these discrepancies in the input and output spaces.

3.2 THE AITL METHOD

Our proposed AITL method takes input data from the source and target domains, and achieves the
following three objectives: first, it makes predictions for the target domain using both of the input
domains and their corresponding tasks, second, it addresses the discrepancy in the output space
between the source and target tasks, and third, it addresses the discrepancy in the input space. AITL
is a neural network consisting of four components:

• The feature extractor receives the input data from the source and target domains and extracts
salient features, which are then sent to the multi-task subnetwork component.

• The multi-task subnetwork takes the extracted features of source and target samples and
maps them to their corresponding labels and makes predictions for them. This component
has a shared layer and two task-specific towers for regression (source task) and classifica-
tion (target task). Therefore, by training the multi-task subnetwork on the source and target
samples, it addresses the small sample size challenge in the target domain. In addition, it
also addresses the discrepancy in the output space by assigning cross-domain labels (binary
labels in this case) to the source samples (for which only continuous labels are available)
using its classification tower.

• The global discriminator receives extracted features of source and target samples and pre-
dicts if an input sample is from the source or the target domain. To address the discrepancy
in the input space, these features should be domain-invariant so that the global discrimi-
nator cannot predict their domain labels accurately. This goal is achieved by adversarial
learning.
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• The class-wise discriminators further reduce the discrepancy in the input space by adversar-
ial learning at the level of the different classes, i.e., extracted features of source and target
samples from the same class go to the discriminator for that class and this discriminator
should not be able to predict if an input sample from a given class is from the source or the
target domain.

The AITL cost function consists of a classification loss, a regression loss, and global and class-wise
discriminator adversarial losses and is optimized end-to-end. An overview of the proposed method
is presented in figure 1.

Figure 1: Overview of AITL: First, the feature extractor receives source and target samples and
learns feature for them. Then, the multi-task subnetwork uses these features to make predictions
for the source and target samples and also assigns cross-domain labels to the source samples. The
multi-task subnetwork addresses the discrepancy in the output space. Finally, to address the input
space discrepancy, global and class-wise discriminators receive the extracted features and regularize
the feature extractor to learn domain-invariant features.

3.2.1 FEATURE EXTRACTOR

To learn salient features in lower dimensions for the input data, we design a feature extractor compo-
nent. The feature extractor is a one-layer fully-connected subnetwork with batch normalization and
the ReLU activation function that receives both the source and target samples as input. We denote
the feature extractor as f(.):

Zi = f(Xi), i ∈ {S, T} (2)
where Z denotes the extracted features for input X which is from either the source (S) or the target
(T ) domain. In our driving application, the feature extractor learns features for the cell line and
patient data.

3.2.2 MULTI-TASK SUBNETWORK

After extracting features of the input samples, we want to use these learned features to 1) make
predictions for target samples, and 2) address the discrepancy between the source and the target
domains in the output space. To achieve these goals, a multi-task subnetwork with a shared layer
g(.) and two task-specific towers MS(.) and MT (.) is designed, where MS is for regression (the
source task) and MT is for classification (the target task):

Yi =Mi(g(Zi)), i ∈ {S, T} (3)
The performance of the multi-task subnetwork component is evaluated based on a binary-cross en-
tropy loss for the classification task on the target samples and a mean squared loss for the regression
task on the source samples:

LBCE(XT , YT , f, g,MT ) = −
∑

(xt,yt)∼(XT ,YT )

[yt log yt + (1− yt) log(1− yt)] (4)
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LMSE(XS , YS , f, g,MS) =
∑

(xs,ys)∼(XS ,YS)

(ys − ys)2 (5)

Where YS and YT are the true labels of the source and the target samples, respectively, and LBCE

and LMSE are the corresponding losses for the target and the source domains, respectively. The
multi-task subnetwork component outputs 1) the predicted labels for the target samples, and 2)
the assigned cross-domain labels for the source samples. The classification tower in the multi-
task subnetwork makes predictions for the source samples and assigns binary labels (responder or
non-responder) because such labels do not exist for the source samples. Therefore, the multi-task
subnetwork adapts the output space of the source and the target domains by assigning cross-domain
labels to the source domain. The multi-task subnetwork has a shared fully-connected layer with
batch normalization and the ReLU activation function. The regression tower has two layers with
batch normalization and the ReLU activation function. The classification tower also has two fully
connected layer with batch normalization and the ReLU activation function in the first layer and the
Sigmoid activation function in the second layer. In our driving application the multi-task subnetwork
predicts IC50 values for the cell lines and the binary response outcome for the patients. Moreover,
it also assigns binary labels to the cell lines which is similar to those of the patients.

3.2.3 GLOBAL DISCRIMINATOR

The goal of this component is to address the discrepancy in the input space by adversarial learning of
domain-invariant features. To achieve this goal, a discriminator receives source and target extracted
features from the feature extractor and classifies them into their corresponding domain. The feature
extractor should learn domain-invariant features to fool the global discriminator. In our driving
application the global discriminator should not be able to recognize if the extracted features of a
sample are from a cell line or a patient. This discriminator is a one-layer subnetwork with the
Sigmoid activation function denoted by DG(.). The adversarial loss for DG(.) is as follows:

LadvDG
(XS , XT , DG) = −

∑
xs∼XS

[logDG(f(xs))]−
∑

xt∼XT

[log(1−DG(f(xt)))] (6)

3.2.4 CLASS-WISE DISCRIMINATORS

With cross-domain binary labels available for the source domain, AITL further reduces the discrep-
ancy between the input domains via class-wise discriminators. The goal is to learn domain-invariant
features with respect to specific class labels such that they fool corresponding class-wise discrimi-
nators. Therefore, extracted features of the target samples in class i, and those of the source domain
which the multi-task subnetwork assigned to class i, will go to the discriminator for class i. We
denote such a class-wise discriminator as DCi. The adversarial loss for DCi is as follows:

LadvDCi
(XS , YS , XT , YT , DCi) = −

∑
(xs,ys)∼(XS ,YS)

[logDCi(f(xs))]−
∑

(xt,yt)∼(XT ,YT )

[log(1−DCi(f(xt)))]

(7)
In our driving application the class-wise discriminator for the responder samples should not be able
to recognize if the extracted features of a responder sample are from a cell line or a patient (similarly
for a non-responder sample). Similar to the global discriminator, class-wise discriminators are also
one-layer fully-connected subnetworks with the Sigmoid activation function.

3.2.5 COST FUNCTION

To optimize the entire network in an end-to-end fashion, we design the cost function as follows:

J = LBCE + LMSE + λGLadvDG
+ λDC

∑
i

LadvDCi
(8)

Where, λG and λDC are adversarial regularization coefficients for the global and class-wise dis-
criminators, respectively.
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4 EXPERIMENTAL RESULTS

4.1 DATASETS

In our experiments, we used the following datasets (See Table A2 in the Appendix for more detail):

• The Genomics of Drug Sensitivity in Cancer (GDSC) cell lines dataset, consisting of a
thousand cell lines from different cancer types, screened with 265 targeted and chemother-
apy drugs. (Iorio et al., 2016)

• The Patient-Derived Xenograft (PDX) Encyclopedia dataset, consisting of more than 300
PDX samples for different cancer types, screened with 34 targeted and chemotherapy drugs.
(Gao et al., 2015)

• The Cancer Genome Atlas (TCGA) (Weinstein et al., 2013) containing a total number of
117 patients with diverse cancer types, treated with Cisplatin, Docetaxel, or Paclitaxel.

• Patient datasets from nine clinical trial cohorts containing a total number of 491 patients
with diverse cancer types, treated with Bortezomib (Amin et al., 2014; Mulligan et al.,
2007), Cisplatin (Silver et al., 2016; Marchion et al., 2011), Docetaxel (Hatzis et al., 2011;
Lehmann et al., 2011; Chang et al., 2005), or Paclitaxel (Hatzis et al., 2011; Bauer et al.,
2010; Ahmed et al., 2007).

The GDSC dataset was used as the source domain, and all the other datasets were used as the tar-
get domain. For the GDSC dataset, raw gene expression data were downloaded from ArrayExpress
(E-MTAB-3610) and release 7.0 of the dataset was used to obtain the response outcome. Gene ex-
pression data of TCGA patients were downloaded from the Firehose Broad GDAC and the response
outcome was obtained from (Ding et al., 2016). Patient datasets from clinical trials were obtained
from the Gene Expression Omnibus (GEO), and the PDX dataset was obtained from the supplemen-
tary material of (Gao et al., 2015). For each drug, we selected those patient datasets that applied a
comparable measure of the drug response. For preprocessing, the same procedure was adopted as
described in the supplementary material of (Sharifi-Noghabi et al., 2019b) for the raw gene expres-
sion data (normalized and z-score transformed) and the drug response data. After the preprocessing,
source and target domains had the same number of genes.

4.2 EXPERIMENTAL DESIGN

We designed our experiments to answer the following three questions:

1. Does AITL outperform baselines that are trained only on cell lines and then evaluated on patients
(without transfer learning)? To answer this question, we compared AITL against (Geeleher et al.,
2014) and (Sharifi-Noghabi et al., 2019b) (MOLI) which are state-of-the-art methods of drug
response prediction that do not perform domain adaptation.

2. Does AITL outperform baselines that adopt adversarial transductive transfer learning (without
adaptation of the output space)? To answer this question, we compared AITL against (Tzeng
et al., 2017) (ADDA) and (Chen et al., 2017), state-of-the-art methods of adversarial transductive
transfer learning with global and class-wise discriminators, respectively.

3. Does AITL outperform a baseline for inductive transfer learning? To answer this last question,
we compared AITL against (Snell et al., 2017) (ProtoNet) which is the state-of-the-art inductive
transfer learning method for small numbers of examples per class.

Based on the availability of patient/PDX datasets for a drug, we experimented with four different
drugs: Bortezomib, Cisplatin, Docetaxel, and Paclitaxel. It is important to note that these drugs
have different mechanisms and are being prescribed for different cancers. For example, Docetaxel
is a chemotherapy drug mostly known for treating breast cancer patients (Chang et al., 2005), while
Bortezomib is a targeted drug mostly used for multiple myeloma patients (Amin et al., 2014). There-
fore, the datasets we have selected cover different types of anti-cancer drugs.
In addition to the experimental comparison against published methods, we also performed an ab-
lation study to investigate the impact of the different AITL components separately. AITL−AD
denotes a version of AITL without the adversarial adaptation components, which means the net-
work only contains the multi-task subnetwork. AITL−DG denotes a version of AITL without the
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Table 1: Performance of AITL and the baselines in terms of prediction AUROC

Method/Drug Bortezomib Cisplatin Docetaxel Paclitaxel
(Geeleher et al., 2014) 0.48 0.58 0.55 0.53
MOLI (Sharifi-Noghabi et al., 2019b) 0.57 0.54 0.54 0.53
(Chen et al., 2017) 0.54±0.07 0.60±0.14 0.52±0.02 0.58±0.04
ADDA (Tzeng et al., 2017) 0.51±0.06 0.56±0.06 0.48±0.06 did not converge
ProtoNet (Snell et al., 2017) 0.49±0.01 0.40±0.003 0.40±0.01 did not converge
AITL−AD 0.69±0.03 0.57±0.03 0.57±0.05 0.58±0.01
AITL−DG 0.69±0.04 0.62±0.1 0.48±0.03 0.62±0.02
AITL−DC 0.69±0.03 0.54±0.1 0.59±0.07 0.59±0.03
AITL 0.74±0.02 0.66±0.02 0.64±0.04 0.61±0.04

global discriminator, which means the network only employs the multi-task subnetwork and class-
wise discriminators. AITL−DC denotes a version of AITL without the class-wise discriminators,
which means the network only contains the multi-task subnetwork and the global discriminator.
All of the baselines were trained on the same data, tested on patients/PDX for these drugs, and
eventually compared to AITL in terms of prediction AUROC and AUPR. Since the majority of the
studied baselines cannot use the continuous IC50 values in the source domain, binarized IC50 labels
provided by (Iorio et al., 2016) using the Waterfall approach (Barretina et al., 2012) were used to
train them. Finally, for the minimax optimization, a gradient reversal layer was employed by AITL
and the adversarial baselines (Ganin et al., 2016).
We performed 3-fold cross validation in the experiments to tune the hyper-parameters of AITL
and the baselines based on the AUROC. Two folds of the source samples were used for train-
ing and the third fold for validation, similarly, two folds of the target samples were used for
training and validation, and the third one for the test. The hyper-parameters tuned for AITL
were the number of nodes in the hidden layers, learning rates, mini-batch size, weight decay
coefficient, the dropout rate, number of epochs, and the regularization coefficients. We con-
sidered different ranges for each hyper-parameter and the final selected hyper-parameter settings
for each drug and each method are provided in Section A.2 in the Appendix. Finally, each
network was re-trained on the selected settings using the train and validation data together for
each drug. We used Adagrad for optimizing the parameters of AITL and the baselines (Duchi
et al., 2011) implemented in the PyTorch framework, except for the method of (Geeleher et al.,
2014) which was implemented in R. We used the author’s implementations for the method of
(Geeleher et al., 2014), MOLI, and ProtoNet. For ADDA, we used an existing implementation
from https://github.com/jvanvugt/pytorch-domain-adaptation, and we im-
plemented the method of (Chen et al., 2017) from scratch.

4.3 RESULTS

Tables 1 and A3 (Appendix) and Figure 2 report the performance of AITL and the baselines in terms
of AUROC and AUPR, respectively. To answer the first experimental question, AITL was compared
to the baselines which do not use any adaptation (neither the input nor the output space), i.e. the
method of (Geeleher et al., 2014) and MOLI (Sharifi-Noghabi et al., 2019b), and AITL demonstrated
a better performance in both AUROC and AUPR for all of the studied drugs. This indicates that
addressing the discrepancies in the input and output spaces leads to better performance compared
to training a model on the source domain and testing it on the target domain. To answer the second
experimental question, AITL was compared to state-of-the-art methods of adversarial transductive
transfer learning, i.e. ADDA (Tzeng et al., 2017) and the method of (Chen et al., 2017), which
address the discrepancy only in the input space. AITL achieved significantly better performance in
AUROC for all of the drugs and for three out of four drugs in AUPR (the results of (Chen et al., 2017)
for Cisplatin were very competitive with AITL). This indicates that addressing the discrepancies in
the both spaces outperforms addressing only the input space discrepancy. Finally, to answer the last
experimental question, AITL was compared to ProtoNet (Snell et al., 2017) – a representative of
inductive transfer learning with input space adaptation via few-shot learning. AITL outperformed
this method in all of the metrics for all of the drugs.
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Figure 2: Performance of AITL and the baselines in terms of prediction AUPR

We note that the methods of drug response prediction without adaptation, namely the method of
(Geeleher et al., 2014) and MOLI, outperformed the method of inductive transfer learning based
on few-shot learning (ProtoNet). Moreover, these two methods also showed a very competitive
performance compared to the methods of adversarial transductive transfer learning (ADDA and the
method of (Chen et al., 2017)). For Paclitaxel, ADDA did not converge in the first step (training a
classifier on the source domain), which was also observed in another study (Sharifi-Noghabi et al.,
2019b). ProtoNet also did not converge for this drug.
We observed that AITL, using all of its components together, outperforms all the additional baselines
omitting some of the components. This indicates the importance of both input and output space
adaptation. The only exception was for the drug Paclitaxel, where AITL−DG outperforms AITL.
We believe the reason for this is that this drug has the most heterogeneous target domain (see Table
A1 in the appendix), and therefore the global discriminator component of AITL causes a minor
decrease in the performance.
All these results indicate that addressing the discrepancies in the input and output spaces between
the source and target domains, via the AITL method, leads to a better prediction performance.

4.4 DISCUSSION

To our surprise, ProtoNet and ADDA could not outperform the method of (Geeleher et al., 2014)
and MOLI baselines. For ProtoNet, this may be due to the depth of the backbone network. A re-
cent study has shown that a deeper backbone improves ProtoNet performance drastically in image
classification Chen et al. (2019). However, in pharmacogenomics, employing a deep backbone is
not realistic because of the much smaller sample size compared to an image classification applica-
tion. Another limitation for ProtoNet is the imbalanced number of training examples in different
classes in pharmacogenomics datasets. Specifically, the number of examples per class in the train-
ing episodes is limited to the number of samples of the minority class as ProtoNet requires the same
number of examples from each class. For ADDA, this lower performance may be due to the lack of
end-to-end training of the classifier along with the global discriminator of this method. The reason
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is that end-to-end training of the classifier along with the discriminators improved the performance
of the second adversarial baseline (Chen et al., 2017) in AUROC and AUPR compared to ADDA.
Moreover, the method of (Chen et al., 2017) also showed a relatively better performance in AUPR
compared to the method of (Geeleher et al., 2014) and MOLI.
In pharmacogenomics, patient datasets are small or not publicly available due to privacy and/or data
sharing issues. We believe including more patient samples and more drugs will increase general-
ization capability. In addition, recent studies in pharmacogenomics have shown that using multiple
genomic data types (known as multi-omics in genomics) works better than using only gene expres-
sion (Sharifi-Noghabi et al., 2019b). In this work, we did not consider such data due to the lack of
patient samples with multi-omics and drug response data publicly available; however, in principle,
AITL also works with such data. Last but not least, we used pharmacogenomics as our motivating
application for this new problem of transfer learning, but we believe that AITL can also be employed
in other applications. For example, in slow progressing cancers such as prostate cancer, large patient
datasets with gene expression and short-term clinical data (source domain) are available, however,
patient datasets with long-term clinical data (target domain) are small. AITL may be beneficial to
learn a model to predict these long-term clinical labels using the source domain and its short-term
clinical labels (Sharifi-Noghabi et al., 2019a). Moreover, AITL can also be applied to the diagnosis
of rare cancers with a small sample size. Gene expression data of prevalent cancers with a large
sample size, such as breast cancer, may be beneficial to learn a model to diagnose these rare cancers.

5 CONCLUSION

In this paper, we introduced a new problem in transfer learning motivated by applications in phar-
macogenomics. Unlike domain adaptation that only requires adaptation in the input space, this
new problem requires adaptation in both the input and output spaces. To address this problem,
we proposed AITL, an Adversarial Inductive Transfer Learning method which, to the best of our
knowledge, is the first method that addresses the discrepancies in both the input and output spaces.
AITL uses a feature extractor to learn features for target and source samples. Then, to address the
discrepancy in the output space, AITL utilizes these features as input of a multi-task subnetwork
that makes predictions for the target samples and assign cross-domain labels to the source samples.
Finally, to address the input space discrepancy, AITL employs global and class-wise discriminators
for learning domain-invariant features. In our motivating application, pharmacogenomics, AITL
adapts the gene expression data obtained from cell lines and patients in the input space, and also
adapts different measures of the drug response between cell lines and patients in the output space.
In addition, AITL can also be applied to other applications such as rare cancer diagnosis or pre-
dicting long-term clinical labels for slow progressing cancers. We evaluated AITL on four different
drugs and compared it against state-of-the-art baselines from three categories in terms of AUROC
and AUPR. The empirical results indicated that AITL achieved a significantly better performance
compared to the baselines showing the benefits of addressing the discrepancies in both the input and
output spaces. We conclude that AITL may be beneficial in pharmacogenomics, a crucial task in
precision oncology.
For future research directions, we believe that the TCGA dataset consisting of gene expression data
of more than 12,000 patients (without drug response outcome) can be incorporated in an unsuper-
vised transfer learning setting to learn better domain-invariant features between cell lines and cancer
patients. In addition, we did not explore the impact of the chemical structures of the studied drugs
in the prediction performance. We believe incorporating this input with transfer learning in the ge-
nomic level can lead to a better performance. Currently, AITL borrows information between the
input domains indirectly via its multi-task subnetwork and assignment of cross-domain labels. An
interesting future direction can be to exchange this information between domains in a more explicit
way. Moreover, we also did not perform theoretical analysis on this new problem of transfer learn-
ing and we leave it for future work. Finally, we did not distinguish between different losses in the
multi-task subnetwork, however, in reality patients are more important than cell lines, and consid-
ering a higher weight for the corresponding loss in the cost function can improve the prediction
performance.
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Hui Gao, Joshua M Korn, Stéphane Ferretti, John E Monahan, Youzhen Wang, Mallika Singh,
Chao Zhang, Christian Schnell, Guizhi Yang, Yun Zhang, et al. High-throughput screening using
patient-derived tumor xenografts to predict clinical trial drug response. Nature medicine, 21(11):
1318, 2015.

Paul Geeleher, Nancy J Cox, and R Stephanie Huang. Clinical drug response can be predicted using
baseline gene expression levels and in vitro drug sensitivity in cell lines. Genome biology, 15(3):
R47, 2014.

11



Under review as a conference paper at ICLR 2020

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural infor-
mation processing systems, pp. 2672–2680, 2014.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1.
MIT Press, 2016.

Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander Smola.
A kernel two-sample test. Journal of Machine Learning Research, 13(Mar):723–773, 2012.

Christos Hatzis, Lajos Pusztai, Vicente Valero, Daniel J Booser, Laura Esserman, Ana Lluch, Tatiana
Vidaurre, Frankie Holmes, Eduardo Souchon, Hongkun Wang, et al. A genomic predictor of
response and survival following taxane-anthracycline chemotherapy for invasive breast cancer.
Jama, 305(18):1873–1881, 2011.

Ehsan Hosseini-Asl, Yingbo Zhou, Caiming Xiong, and Richard Socher. Augmented cyclic adver-
sarial learning for low resource domain adaptation. 2018.

Francesco Iorio, Theo A Knijnenburg, Daniel J Vis, Graham R Bignell, Michael P Menden, Michael
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A APPENDIX

A.1 SUPPLEMENTARY TABLES

Table A1: Definition of biological terminologies
Term Definition

Cell lines Human cells that have been immortalized to grow continu-
ously in the laboratory.

Patient-Derived Xenografts (PDX) Tumor tissue taken from a patient and implanted into mice
to mimic the microenvironment around the tumor.

Chemotherapy drugs A type of treatment that stops cancer cells’ growth by
killing them or stopping them from dividing.

Targeted drugs A type of treatment that is designed for a specific type(s)
of cancer cells with minor effect on the other cell types.

Table A2: Characteristics of the datasets

Dataset Resource Drug Usage Sample Size

GSE55145 (Amin et al., 2014) clinical trial Bortezomib target 67
GSE9782-GPL96 (Mulligan et al., 2007) clinical trial Bortezomib target 169
GDSC (Iorio et al., 2016) cell line Bortezomib source 391
GSE18864 (Silver et al., 2016) clinical trial Cisplatin target 24
GSE23554 (Marchion et al., 2011) clinical trial Cisplatin target 28
TCGA (Ding et al., 2016) patient Cisplatin target 66
GDSC (Iorio et al., 2016) cell line Cisplatin source 829
GSE25065 (Hatzis et al., 2011) clinical trial Docetaxel target 49
GSE28796 (Lehmann et al., 2011) clinical trial Docetaxel target 12
GSE6434 (Chang et al., 2005) clinical trial Docetaxel target 24
TCGA (Ding et al., 2016) patient Docetaxel target 16
GDSC (Iorio et al., 2016) cell line Docetaxel source 829
GSE15622 (Ahmed et al., 2007) clinical trial Paclitaxel target 20
GSE22513 (Bauer et al., 2010) clinical trial Paclitaxel target 14
GSE25065 (Hatzis et al., 2011) clinical trial Paclitaxel target 84
PDX (Gao et al., 2015) animal (mouse) Paclitaxel target 43
TCGA (Ding et al., 2016) patient Paclitaxel target 35
GDSC (Iorio et al., 2016) cell line Paclitaxel source 389

Table A3: Performance of AITL and its variants in terms of prediction AUPR

Method/Drug Bortezomib Cisplatin Docetaxel Paclitaxel
AITL−AD 0.72±0.04 0.85±0.06 0.74±0.02 0.63±0.02
AITL−DG 0.70±0.07 0.83±0.06 0.76±0.009 0.65±0.03
AITL−DC 0.70±0.05 0.81±0.08 0.74±0.04 0.63±0.02
AITL 0.76±0.02 0.89±0.03 0.78±0.007 0.63±0.04
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A.2 SELECTED HYPER-PARAMETERS

Selected hyper-parameters for MOLI (Sharifi-Noghabi et al., 2019b):

Drug Selected hyper-parameters

Bortezomib 64 (number of nodes in the hidden layer), 1.5 (margin for the triplet loss), 0.0001
(encoder subnetwork learning rate), 40 (epochs), 0.7 and 0.3 (encoder and classi-
fier dropout rates), 0.01 (weight decay), 0.5 (classifier learning rate), 0.2 (regular-
ization coefficient), 36 (batch size).

Cisplatin 64 (number of nodes in the hidden layer), 0.5 (margin for the triplet loss), 0.005
(encoder subnetwork learning rate), 40 (epochs), 0.5 and 0.5 (encoder and clas-
sifier dropout rates), 0.001 (weight decay), 0.001 (classifier learning rate), 0.2
(regularization coefficient), 64 (batch size).

Docetaxel 128 (number of nodes in the hidden layer), 1 (margin for the triplet loss), 0.05 (en-
coder subnetwork learning rate), 25 (epochs), 0.6 and 0.5 (encoder and classifier
dropout rates), 0.001 (weight decay), 0.001 (classifier learning rate), 0.1 (regular-
ization coefficient), 36 (batch size).

Paclitaxel 64 (number of nodes in the hidden layer), 1 (margin for the triplet loss), 0.0001
(encoder subnetwork learning rate), 15 (epochs), 0.5 and 0.5 (encoder and clas-
sifier dropout rates), 0.0001 (weight decay), 0.001 (classifier learning rate), 0.3
(regularization coefficient), 14 (batch size).

Selected hyper-parameters for ADDA (Tzeng et al., 2017):

Drug Selected hyper-parameters

Bortezomib 256 (number of nodes in the hidden layer of the feature extractor trained on the
source samples, feature extractor of the target samples, and also the input layer of
the classifier trained on the source samples), 64 (number of nodes in the hidden
layer of the discriminator), 0.01 (learning rate), 20 (epochs), 0.3 and 0.7 (dropout
rates for target samples feature extractor and the discriminator, respectively), no
weight decay, 16 and 16 (batch size for source and target domains, respectively).

Cisplatin 256 (number of nodes in the hidden layer of the feature extractor trained on the
source samples, feature extractor of the target samples, and also the input layer of
the classifier trained on the source samples), 64 (number of nodes in the hidden
layer of the discriminator), 0.005 (learning rate), 20 (epochs), 0.3 and 0.6 (dropout
rates for target samples feature extractor and the discriminator, respectively), no
weight decay, 8 and 16 (batch size for source and target domains, respectively).

Docetaxel 1024 (number of nodes in the hidden layer of the feature extractor trained on the
source samples, feature extractor of the target samples, and also the input layer of
the classifier trained on the source samples), 512 (number of nodes in the hidden
layer of the discriminator), 5e-5 (learning rate), 15 (epochs), 0.3 and 0.5 (dropout
rates for target samples feature extractor and the discriminator, respectively), 0.005
(weight decay), 16 and 32 (batch size for source and target domains, respectively).

Paclitaxel NA.
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Selected hyper-parameters for ProtoNet (Snell et al., 2017):

Drug Selected hyper-parameters

Bortezomib 16 (number of nodes in the hidden layer), 5e-5 and 0.5 (learning rates for training
on source and target domains), 15 (number of epochs for the source and target
domains), 0.7 (dropout rate for the source and target domains), 2 and 8 (number
of support and query), 100 (number of episodes).

Cisplatin 256 (number of nodes in the hidden layer), 0.0005 and 0.5 (learning rates for
training on source and target domains), 15 and 10 (number of epochs for the source
and target domains), 0.3 and 0.4 (dropout rate for the source and target domains),
2 and 4 (number of support and query), 100 (number of episodes).

Docetaxel 16 (number of nodes in the hidden layer), 0.0005 and 0.1 (learning rates for train-
ing on source and target domains), 10 and 30 (number of epochs for the source
and target domains), 0.3 and 0.6 (dropout rate for the source and target domains),
4 and 8 (number of support and query), 100 (number of episodes).

Paclitaxel NA.

Selected hyper-parameters for AITL:

Drug Selected hyper-parameters

Bortezomib 1024 and 1024 (number of nodes in the hidden layers of the feature extractor),
0.0005 (learning rate), 0.2 and 0.4 (regularization for global and class-wise dis-
criminators), 16 and 16 (mini-batch size for the source and target domains), 0.4
(dropout rate), 10 (epoch).

Cisplatin 512 and 16 (number of nodes in the hidden layers of the feature extractor), 0.05
(learning rate), 0.3 and 0.3 (regularization for global and class-wise discrimina-
tors), 32 and 8 (mini-batch size for the source and target domains), 0.15 (dropout
rate), 25 (epoch).

Docetaxel 512 and 256 (number of nodes in the hidden layers of the feature extractor), 5e-5
(learning rate), 0.1 and 0.8 (regularization for global and class-wise discrimina-
tors), 16 and 32 (mini-batch size for the source and target domains), 0.4 (dropout
rate), 20 (epoch).

Paclitaxel 1024 and 1024 (number of nodes in the hidden layers of the feature extractor),
0.0001 (learning rate), 0.9 and 0.3 (regularization for global and class-wise dis-
criminators), 32 and 32 (mini-batch size for the source and target domains), 0.5
(dropout rate), 20 (epoch).
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Selected hyper-parameters for (Chen et al., 2017):

Drug Selected hyper-parameters

Bortezomib 128 (number of nodes in the hidden layer of the feature extractor), 32 (num-
ber of nodes in the hidden layer of discriminators), 0.0001 (learning rate), 20
(epochs), 0.0001 (weight decay), 0.8, 0.3, 0.2, 0.6, 0.2 (dropout rates in featuer
extractor, global discriminator, responder class discriminator, non-responder class
discriminator, and classifier, respectively), 0.9 and 0.6 (regularization coefficients
for class-wise and global discriminators, respectively), 16 and 64 (batch size for
source and target domains, respectively).

Cisplatin 512 (number of nodes in the hidden layer of the feature extractor), 128 (num-
ber of nodes in the hidden layer of discriminators), 0.0001 (learning rate), 15
(epochs), 0.0001 (weight decay), 0.3, 0.3, 0.5, 0.8, 0.5 (dropout rates in featuer
extractor, global discriminator, responder class discriminator, non-responder class
discriminator, and classifier, respectively), 0.4 and 0.7 (regularization coefficients
for class-wise and global discriminators, respectively), 8 and 32 (batch size for
source and target domains, respectively).

Docetaxel 128 (number of nodes in the hidden layer of the feature extractor), 64 (number of
nodes in the hidden layer of discriminators), 0.0005 (learning rate), 5 (epochs),
0.0001 (weight decay), 0.6, 0.4, 0.3, 0.7, 0.4 (dropout rates in featuer extractor,
global discriminator, responder class discriminator, non-responder class discrimi-
nator, and classifier, respectively), 1 and 0.4 (regularization coefficients for class-
wise and global discriminators, respectively), 8 and 32 (batch size for source and
target domains, respectively).

Paclitaxel 512 (number of nodes in the hidden layer of the feature extractor), 16 (number of
nodes in the hidden layer of discriminators), 0.0005 (learning rate), 10 (epochs),
0.1 (weight decay), 0.6, 0.8, 0.8, 0.7, 0.3 (dropout rates in featuer extractor, global
discriminator, responder class discriminator, non-responder class discriminator,
and classifier, respectively), 1 and 0.8 (regularization coefficients for class-wise
and global discriminators, respectively), 64 and 16 (batch size for source and target
domains, respectively).

Figure A1: three approaches to inductive transfer learning with respect to the number of samples
required for each class in the target domain, denoted as k
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