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ABSTRACT

By maximizing an information theoretic objective, a few recent methods empower
the agent to explore the environment and learn skills without extrinsic reward.
However, when considering to use multiple consecutive skills to complete a spe-
cific task, the transition from one to another cannot guarantee the success of the
process due to the evident gap between skills. In this paper, we propose to learn
transitional skills (LTS) in addition to creating diverse primitive skills. By intro-
ducing an extra latent variable for transitional skills and a compensation term for
intrinsic reward, our LTS method discovers both primitive and transitional skills
by maximizing the mutual information with compensation. By considering var-
ious robotic tasks, our results demonstrate the effectiveness of LTS on learning
both diverse primitive skills and transitional skills, and show its superiority in
smooth transition of skills over the state-of-the-art baseline DIAYN. In addition,
we further show the significance of transitional skills for learning downstream
tasks.

1 INTRODUCTION

Deep reinforcement learning (DRL) has shown its great effectiveness in learning various reward-
driven skills in wide domains, such as performing robotic manipulation tasks (Levine et al. (2016)),
playing video games (Mnih et al. (2015)), playing adversarial board games (Silver et al. (2016))
and implementing robot navigation in complex environments (Wang et al. (2018)). Nevertheless,
for the majority of real applications, there is no reward in a long term until the agent reaches a goal
state (Wu & Chen (2007)), especially in unseen environments. In such cases, DRL has difficulty in
carrying out the tasks.

By observing the human intelligence that can explore their surroundings and learn valuable skills
without reward, a couple of prior works have been recently proposed to generate skills without
supervision by incorporating intrinsic motivation into DRL methods (Barto (2013),Ryan & Deci
(2000)). Diverse skills can be autonomously acquired without extrinsic reward by maximizing an
information theoretic objective using a maximum entropy policy (DIAYN (Eysenbach et al. (2018));
VIC (Gregor et al. (2016)); DAS (Sharma et al. (2019))). Discovered skills may help the exploration
in complex environments, and can also serve as primitive skills for hierarchical DRL. Particularly,
a high-level meta-policy could be adopted in the hierarchical framework to choose corresponding
low-level primitive skills to complete tasks in order.

Although discovered skills are both distinguishable and diverse, it is still exceedingly difficult to
integrate such skills for a complex task that requires smooth transitions between skills (Lee et al.
(2018)). Take the basketball as an example: learning the passing, catching and shooting skills in an
isolated way cannot guarantee to score in the court due to the possible failure in the process of tran-
sitions between skills. To address this problem, we propose to further learn transitional skills (LTS),
where discovered primitive skills, same as prior works (Eysenbach et al. (2018)), are distinguishable
and as diverse as possible.

More concretely, our LTS method learns both primitive and transitional skills by optimizing an in-
formation theoretic objective, where extra transitional skills are generated to fill in the gap between
diverse primitive skills. For such purpose, aside from using the latent variable on which we con-
dition primitive skills, an extra latent variable is introduced on which we condition our transitional
policy. Furthermore, a compensation term has to be considered in the objective function because the
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distinct between primitive skills and transitional skills will lead to the decline of multual informa-
tion between the latent variable corresponding to primitive skills and states generated by transitional
skills. This compensation considers the divergence of the latent variable corresponding to primitive
skills and that for transitional skills.

Different from learning primitive skills, our learning process considers two arbitrary primitive skills
and multiple transitional skills between them, where both primitive and transitional skillls are un-
known and to be learned. By maximizing the multual information with compensation, both primitive
skills and transitional skills are discovered, which can be used to effectively learn downstream tasks.
On four simulated robotic tasks, experimental results show that our LTS can discover both prim-
itive skills and transitional skills, successfully perform the transition between primitive skills that
are distinguishable, and achieve a better peformance in comparison to the state-of-the-art baseline
DIAYN.

The main contributions of our work can be summarized as follows. Our proposed LTS can learn both
primitive and transitional skills without extrinsic reward, where the primitive skills are distinguish-
able and diverse, and the transitional skills can accomplish smooth transitions between primitive
skills. And extensive experiments are conducted, which demonstrates the effectiveness of our LTS
method in solving downstream tasks, performing the transition between primitive skills as well as
the weighted way to compose skills.

2 PRELIMINARIES

RL: In the standard RL setup, an agent interacts with an environment over discrete time. At time
step t, the agent observes the current state st and selects an action at according to a policy π(at|st).
Then, the agent receives a reward rt and comes to the next state st+1. The objective of learning is
to maximize the discounted return R =

∑∞
t=0 γ

trt of the policy π, where γ ∈ [0, 1] is a discount
factor.

Learn Skills with RL: Using the notation from information theory: we introduce two random
variables S and A for states and actions, respectively. To discover diverse skills, a latent variable
ωn ∼ p(ω) is defined on which we condition the policy π(at|st, ωn). Such policy is defined as a
skill (Eysenbach et al. (2018)). Prior works verify that maximizing the mutual information between
the states S and the skills ωn will successfully generate lots of distinguishable, diverse and useful
skills.

By primarily maximizing the mutual information between the final state Sf and the skills ωn given
the initial state S0,

I(Sf ;ωn|S0)1, (1)

the variational intrinsic control (VIC) (Gregor et al. (2016)) shows the success of acquiring distin-
guishable skills from the final state. Furthermore, in order to enhance the diversity of skills as much
as possible, DIAYN primarily maximizes the mutual information between the state S at all time
stamps and the skills ωn (Eysenbach et al. (2018)),

I(St;ωn) + H[A|S, ωn]2, (2)

which indicates that different skills generate different trajectories that traverse different states, and
such diverse skills can be identified distinguishably.

Both VIC and DIAYN successfully discover primitive skills by maximizing the mutual information
betweens state and skills. However, prior works cannot accomplish a variety of robot tasks that
require smooth transition between skills. To address such problem, we propose the LTS scheme in
this paper to learn both primitive and transitional skills by using an information theoretic objective
function.

1The mutual information is denoted as the formation of conditional probability and contains the initial ob-
servation s0: I(Sf ;ω|S0) = −

∑
sf

p(sf |s0) log p(sf |s0) +
∑

ω,sf
pJ(sf |s0, ω)pC(ω|s0) log pJ(sf |s0, ω).

The controllability distribution pC(ω|s0) maximizes the behavior diversity.
2The second term suggests that each skill should act as randomly as possible, aiming improving the explo-

ration.
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Figure 1: Block diagram of primitive and transitional skills.

3 METHODOLOGY

In this section, we elaborate our proposed LTS method to discover both primitive and transitional
skills without extrinsic reward. Define by S and A states and actions, respectively. Define by
Ωn ∼ p(ω), 1 ≤ n ≤ N , N latent variables on which we condition the primitive skill π(at|st, ω).
Given the starting and ending primitive skill that are conditioned on ωi and ωj , respectively, we
define zi,j,k, 1 ≤ k ≤ K − 1, as K latent variables on which we condition the transitional skill
π(at|st, zi,j,k).

Figure 1 shows the block diagram of primitive and transitional skills as well as the correponding
states. Our objective is to discover primitive skills π(at|st, ωi), π(at|st, ωj), and transitional skills
π(at|st, zi,j,k). Specifically, we discover skills by maximizing the following mutual information

L(θ) , I(Sz; Ωi) + I(Sz; Ωj)

= Eωi∼p(ω),sz∼π(at|st,zi,j,k) [ log p(ωi|sz)− log p(ωi) ]

+ Eωj∼p(ω),sz∼π(at|st,zi,j,k) [ log p(ωj |sz)− log p(ωj) ] , (3)

where Sz represents one of states Sti,j,k at time stamp t, 1 ≤ k ≤ K−1, in Figure 1. It is worth being
noted that when the starting primitive skill is same with the ending primitive skill, no transitional
skill needs to be discovered. In such case, maximizing L(θ) in (3) is equivalent to maximizing
I(Sz; Ωi), which is identical to learning only primitive skills Gregor et al. (2016); Eysenbach et al.
(2018).

The challege is how to solve such problem associated with two primitive skills and acquire the
intrinsic reward. Our solution is to use a compensation for individual mutual information so that
two components become separable.

It is observed that, when the transitional skill π(at|st, zi,j,k) transits from the starting primitive skill
π(at|st, ωi) to the ending primitive skill π(at|st, ωj), the mutual information I(Sz; Ωi) decreases
progressively while the mutual information I(Sz; Ωj) increases progressively.

In order to compensate the mutual information, we define fdωi,zi,j,k
as the divergence of the latent

variables ωi and zi,j,k, which indicates the deviation of zi,j,k from ωi. Similarly, we define fdzi,j,k,ωj

as the divergence of the latent variables zi,j,k and ωj , which indicates the deviation of ωj from
zi,j,k. The divergence defined here can be measured in a couple of ways 3. Therefore, the objective
function to be maximized becomes

L(θ) ' I(Sz; Ωi) + I(Sz; Ωj) + fdωi,zi,j,k
+ fdzi,j,k,ωj

= Eωi∼p(ω),sz∼π(at|st,zi,j,k) [ log p(ωi|sz)− log p(ωi) ] + fdωi,zi,j,k︸ ︷︷ ︸
L1(θ)

+Eωj∼p(ω),sz∼π(at|st,zi,j,k) [ log p(ωj |sz)− log p(ωj) ] + fdzi,j,k,ωj︸ ︷︷ ︸
L2(θ)

. (4)

The sufficient condition of maximizing the objecive function in (4) is to simultaneously maximize
L1(θ) and L2(θ). It is further observed that, when the transitional skill π(at|st, zi,j,k) transits from

3For details, please see it in Section 4: Implementation.
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π(at|st, ωi) to π(at|st, ωj), the divergence fdωi,zi,j,k
increases progressively while the divergence

fdzi,j,k,ωj
decreases progressively. Thus, the first component L1(θ) that has a decreasing mutual

information and an increasing divergence, is symmetric to the second component L2(θ) that has an
increasing mutual information and a decreasing divergence. The sole difference lies in the transition
from π(at|st, ωi) to π(at|st, ωj) or from π(at|st, ωj) to π(at|st, ωi). So maximizing L1(θ) is
equivalent to maximizing L2(θ).

Consequently, maximizing the overall objective function L(θ) is equivalent to maximizing L1(θ) or
L2(θ). In such case, we have

arg max L(θ) ≈ arg max L1(θ)

= arg maxEωi∼p(ω),sz∼π(at|st,zi,j,k)

[
log p(ωi|sz)− log p(ωi) + fdωi,zi,j,k

]
.(5)

Because it is difficult to find p(ωi|sz), it is common to approximate p(ωi|sz) with a learned discrim-
inator qφ(ωi|sz). According to Jensen’s Inequality, we know that replacing p(ωi|sz) with qφ(ωi|sz)
gives us a variational lower bound G(θ, φ) of L(θ). So we have

arg max L(θ)⇐⇒ arg maxEωi∼p(ω),sz∼π(at|st,zi,j,k)

[
log qφ(ωi|sz)− log p(ωi) + fdωi,zi,j,k

]
︸ ︷︷ ︸

,G(θ,φ)

.

(6)

4 IMPLEMENTATION

4.1 HINDSIGHT AND ONE-HOT ENCODING

In this section, we discuss about the implementation of learning transitional skills, where there are a
couple of issues with the usage of the latent variable corresponding to transitional skills.

Problem 1: Along with the growth of the number of primitive skills N and transitional skills K −
1, we have a high training complexity. In our approach, we calculate the conditional probability
qφ(ωi|sz) with a low efficiency because qφ(ωi|sz) can just keep the consistency of zi,j,k with ωi but
ignore the relation with ωj .

To enhance the efficiency, we utilize the hindsight experience reply mechanism to allow sample-
based learning from the sparse reward.

Problem 2: The categorical distribution of the latent variable ωi, 1 ≤ i ≤ N , suffers from a dilemma
when the discriminator qφ(ωi|sz) judges the states.

Our solution is to use one-hot encoding for the latent variable ωi, 1 ≤ i ≤ N , corresponding to
primitive skills. In such case, the latent variable zi,j,k corresponding to transitional skills has a
different expression and further analysis is given in Appendix B.

In the implementation, we change qφ(ωi|sz) in (6) to the following conditional probability distribu-
tion:

qφ(Ω̃|sz) = [qφ(ω0|sz), qφ(ω1|sz), ..., qφ(ωN−1|sz)]T. (7)

Correspondingly, the divergence of fdi,j,k is organized as the following fdi,k,

fdi,k = [fdi,1,k, f
d
i,2,k, ..., f

d
i,N,k]T, (8)

where k 6= i. Consequently, the objective is to maximize the following G(θ, φ),

G(θ, φ) =
1

N
· Eωi∼p(ω),sz∼π(zi,k)(‖ log qφ(Ω̃|sz) + αfdi,k‖2), (9)

where zi,k ∼ pz(z|ωi) = {zi,k|zi,k = zi,j,k, 0 ≤ j ≤ N − 1, zi,j,k ∈ p(zi,j |ωi, ωj)}, α is a
hyperparameter, and we ignore the term p(ωi) by taking a uniform distribution for ωi.
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Algorithm 1 Learning Transitional Skills (LTS)
1: while NOT converged do
2: Sample ωi ∼ p(ω)
3: Sample a skill z ∼ pz(z|ωi) and an initial state s0 ∼ p0(s)
4: for t← 1 to steps per episode do
5: Sample an action at ∼ πθ(at|st, z);
6: Interact with the environment: st+1 ∼ p(st+1|st, at);
7: Compute Dt = 1

N ‖qφ(Ω̃|st+1) + αfdi,k‖2 with the discriminator (φ);
8: Set the reward for current skill: rt = Dt.
9: By using SAC, update the policy (θ) to maximize the discounted returnR =

∑∞
t=0 γ

trt;
10: Update the discriminator (φ) to maximize Dt with SGD.
11: end for
12: end while

4.2 ALGORITHM

We summarize our LTS method in Algorithm 1. At each roll-out, given the latent variable of prim-
itive skill ωi, we sample a transitional skill z from a fixed distribution pz(z|ωi). After the agent
interacts with the environment at time step t, the discriminator finds the discriminability by

Dt =
1

N
‖qφ(Ω̃|szt+1) + αfdi,k‖2, (10)

where szt+1 denotes the states at time step t. As mentioned above, we encode primitive skills using
one-hot encoding. We constrain

∑
j zi,j,k = 1, 0 ≤ zi,j,k ≤ 1, so we simplify the divergence as

fdi,k = Array(zi,j,k), where Array(·) means convert one-hot encoding into an array. (See example
in Appendix B.1 for more details (16, 17)).

In addition, we adopt soft actor-critic (SAC) algorithm to train our policy, adding the regularization
Ei,j [ H[A|S,Zi,j ] to maximize the policy’s entropy over actions given states and skills.

5 RELATED WORK

Real-world tasks often require diverse behaviors. Wang et al. (2017) notes that building versatile em-
bodied agents capable of performing a wide and diverse set of behaviors is one of the long-standing
challenges of AI. And learning continuous control of diverse behaviors in locomotion (Merel et al.
(2017); Heess et al. (2017); Peng et al. (2017)) and robotic manipulation (Ghosh et al. (2018);
Gu et al. (2017)) is an active research area. In this scenario, although some complex tasks can
be solved through extensive reward engineering, undesired behaviors often emerge because of the
sparse nature of reward (Riedmiller et al. (2018)). Moreover, training complex skills from scratch is
not computationally practical. These issues can be addressed by use of intrinsic motivation (Barto
(2013); Chentanez et al. (2005); Singh et al. (2010)), which is a reward-free learning method. His-
torically, the intrinsic motivation comes from the tendency of organisms to play and explore their
environment without any reward (Ryan & Deci (2000), White (1959)).

Another line of work that is conceptually close to our method copes with information theories that
are used to drive the agent’s exploration. The information gain is a reward based on the reduction
of uncertainty on environment’s dynamics (Little & Sommer (2013); Oudeyer & Kaplan (2007)),
which can also be assimilated to learning progress (Frank et al. (2013); Oudeyer & Kaplan (2007)).
This can push agents into unknown areas on the one hand, and prevent them from being attracted to
random areas on the other.

Recent work has also applied information theory for skill discovery. VIC (Gregor et al. (2016)) is
an optional discovery technique by optimizing a variational lower bound on the mutual information
between the context and the final state in a trajectory, conditioned on the initial state. Furthermore,
DIAYN (Eysenbach et al. (2018)) maximizes the mutual information between states and skill to
achieve diversity and shows the interest as a pre-training for hierarchical reinforcement learning
or as an initialization for learning a task. While discriminative embedding reward networks (DIS-
CERN) (Warde-Farley et al. (2018) aim to simultaneously learn a goal-conditioned policy and a
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goal achievement reward function by maximizing the mutual information between the goal state and
the achieved state. Let us notice that the skill space here is discrete, with just one or multiple poli-
cies. However, we considered the relationship between different skills during the training process
and finally formed a continuous skill space, likely because of inducing a novel latent variable for
transitional skills.

In addition, it is important to point out that our skills are transitional with an intrinsically driven ap-
proach, which is very different from numerous previous works. While Sharma et al. (2019) discovers
predictable behaviors to let the single skill more predictable, it need an external model-predictive-
control (MPC) paradigm (Garcia et al. (1989)) to connect skills. Peng et al. (2019) learns reusable
motor primitives that can be composed to produce a continuous spectrum of skills. To bridge the gap
between skills, Lee et al. (2018) propose a transition policy to get a new smooth skill. In compar-
ison, our method captures intrinsic transition, which is independent from external tasks, and could
eliminate the extra fine-tuning process.

6 EXPERIMENTS

In our experiments, we aim to demonstrate the effectiveness of our approach for learning primitive
and transitional skills. We evaluate LTS and compare it to prior works.

6.1 DIVERSITY AND TRANSITIONAL SKILLS
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(a) Trajectories of 4 skills.
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(b) Box-plots of 4 skills. (c) Frames of 3 skills.

Figure 2: Diverse primitive skills (ω0, ω1, ω2, ω3) in MountainCar (a, b) and HalfCheetah (c). (a)
shows the changes of the feature values of 4 diverse skills. (b) shows the corresponding statistical
characteristics of 4 skills in (a), where a single box-plot denotes a skill. (c) shows 3 diverse skills of
the half-cheetah.

In this section, we provide visualizations and quantitative analysis for our LTS method. The tasks
of CartPole-v0, MountainCar-v0, Pendulum-v0 and HalfCheetah-v3 are based on OpenAI gym 4.

To evaluate different skills in different environment, we extract features from the observation of the
agent, e.g. in the MountainCar environment, where we use the variance of the car’s altitude as the
feature. For more details on the features in other environments, please refer to Appendix C.

Figure 2 illustrates the discovered primitive skills in the MountainCar and Halfcheetah environ-
ment. As shown in Figure 2(a), all four skills move in an periodic manner. Corresponding to all 4
skills in Figure 2(a), the statistical values of features are shown in Figure 2(b) using Box-plot. It
is observed that, these four skills have different movement patterns so that these skills are easy to
be distinguished, so as the skills shown in Figure 2(c). Moreover, we consider a different number
of primitive skills and different environments as in Appendix E, from which it is observed that all
primitive skills have an evident difference in feature statistics and are easy to be distinguished.

Transition. Furthermore, we use the transitional skill z0,1,k to show the performance of transi-
tion from one primitive skill ω0 = [1, 0, 0, 0]) to another ω1 = [0, 1, 0, 0]), where the number of
transitional skills is set as 9.

4http://gym.openai.com/
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(a) Trajectory of transition.

Transition from 0 to 1.
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(b) Box-plots of transition.

(c) Illustration of 4 transitional skills.

Figure 3: Transition in Mountain-Car (a,b) and HalfCheetah (c). (a) shows the transition of the
trajectory, where 9 transitional skills are uniformly distributed along the horizontal axis from Step 0
to 5500. (b) shows the transition of feature statistics, where the features of two primitive skills and
9 transitional skills are included. (c) shows the sampled frames of the transition trajectory, where
K − 1 = 9.

In Figure 3(a) and 3(b), it is observed that the primitive skill ω0 smoothly changes to ω1 via 9
transitional skills. More specifically, there exists a slight increment on the amplitude of features in
the first three skills, which is followed by consecutive declines until the ending primitive skill ω1

is discovered. In Figure 3(c), we can see the clear transition process between two primitive skills.
More experiments on skill transition are given in Appendix F. This demonstrates the effectiveness
of our LTS method on discovering transitional skills and accomplishing the successful transition
between two primitive skills.

6.2 COMPARISON WITH DIAYN

In this subsection, we compare our LTS method with the state-of-the-art DIAYN (Eysenbach et al.
(2018)) in terms of learning diverse primitive skills and transitional skills. Experimental results
show that LTS achieves an approximate performance on diversity of primitive skills, and a much
better performance on skill transition.

Diversity: Different skills have different means or variances from their own trajectories. In this
subsection, we use (1) variance of means and (2) mean of variances of the features as metrics to
evaluate the diversity of learned primitive skills using LTS and DIAYN.

Figure 4(a) shows the variance of means while Figure 4(b) shows the mean of variances, where the
black perpendicular line represents the range of values from a single experiment and we collect all
trajectories of various primitive skills. In Figure 4(a), the height of this line depicts the range of
variance of means by considering all trajectories of primitive skills. As shown, LTS obtains a lower
variance of means in compare to DIAYN because the learned transitional skills from LTS affect the
variance of learned primitive skills.

The lower variance of means does not degrade the diversity of learned primitive skills, which can be
observed from Figure 4(b). Although there is a large difference between experiments with random
seeds, LTS has generally a similar mean of variance as DIAYN, indicating that our method performs
similar with the baseline in terms of learning diverse primitive skills.
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Figure 4: Comparison of diversity of primitive skills between LTS and DIAYN.
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Figure 5: Comparison of transitional skills.

Transition: We also conduct experiments to
evaluate the transitional skills of LTS and DI-
AYN, where we use identical encoding scheme
for both and the number of transitional skills is
set as 9.

Figure 5 shows the all statistical characteristics
of 11 skills that including two primitive skills,
where the value denotes the mean of features
like the middle bar in Figure 3(b). It is ob-
served that LTS experiences a smooth transition
state from one primitive skill to another while
the transitional states in DIAYN suffer from one
sharp-rising phase and two steady phases indicating a rigid changes of transition states. The steady
phase indicates that changing z will not change states very much, and the sharp change indicates
that a little fluctuate of z will cause a huge change of states, which is not reasonable in practice.
Because of the huge gap, controlling the skills learned by DIAYN changing from ω0 to ω1 will not
push the agent standing in the state space of ω2. On the contrary, we control the transitional skills in
LTS changing from ω0 to ω1 as in Figure 2(b), and the agent reaches the target states.

More studies including real statistical characteristics of different transitional skills are conducted
and the results are reported in Appendix G.

6.3 GENERALIZATION
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Figure 6: Transitional skills with related to 2 dif-
ferent number of them.

Our LTS method suffers from the high training
complexity to learn transitional skills. A rea-
sonable approach to tackle this problem is to
use a fixed number of transitional skills. In this
experiment, we set this number as 3, indicating
that the nonzero element of zi,j,k is from the set
{0.25, 0.50, 0.75} in the training phase.

Figure 6 shows the transitional skills, where the
training phase considers 3 transitional skills and
adopting 3 and 50 transitional skills to evaluate
the generalization of our LTS method. It is ob-
served that the transitional skills in blue (tran-
ing and testing both with 3 transitional skills)
suffers from severe declines, possibly leading
to the failure of the transition process in practice. Fortunately, the transitional skills in red (training
with 3 transitional skills while testing with 50) go through a steady and smooth process from one
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Table 1: Success rate(%) for practical tasks, where our method is compared with the baselines
with or without hierarchical framework. Our transitional skills outperforms the baselines in all
cases, demonstrating the effectiveness of the learning transitional skills for down-stream tasks. Here
we adopt spectral clustering to cluster the trajectories. When the label of ending segment of the
trajectory keeps the same label with that generated the target skills solely, the transition is regarded
as a success; otherwise a failure transition. The target skills are regard as the goal of our tasks, which
are generated by sample primitive skills or weighting the actions of different primitives.

Policy
DIAYN LTS

random smooth master random smooth master

MountainCar 0 0 20.8 0.2 50.2 100
Pendulum 0 14.2 100 1 100 100
CartPole 1.6 10 36.8 0 25.8 48
HalfCheetah 0 29.2 44.7 0 43.0 78.6

primitive skill to another. This experiment demonstrates that the strong generalization of LTS can
improve the efficiency of the training. These means that even we use a small number of transi-
tional skills in training, we could sample the transitional skills with a higher density and achieve the
success of the skill transition, by which we could further improve the efficiency of training model.
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Figure 7: Skill space of DIAYN and LTS.

6.4 EQUIP THE AGENT WITH MORE TRANSITIONAL SKILLS

Figure 7 shows much more skills and corresponding transitions between them, where each small
square denotes a different skill, the number of primitive skills is 2 and the number of transitional
skills is 98. Two primitive skills [1, 0, 0, 0] and [0, 1, 0, 0] locate at the lower left and upper right
squares.

It is observed that our LTS method is able to accomplish a smooth transition between two arbitrary
skills, whatever primitive skills or transitional skills. However, DIAYN suffers from a rigid transition
between two skills, resulting in a possible failure in practical transition. Furthermore, these results
provide a deep insight that LTS has the ability to learn a larger continuous skill space. The agent
equipped with such numerous skills is expected to become much more powerful.

6.5 TRANSITION WITH HIERARCHICAL FRAMEWORK

In this subsection, we conduct experiments to answer the question: how do transitional skills yield
benefit to the downstream tasks? To evaluate the effect of the transition policies, we take as bench-
mark hierarchical control for primitives learned by DIAYN. Moreover, we conduct hierarchical
framework to weight (or choose) the action modeled by different primitive skills.

9
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(a) DIAYN-random (b) DIAYN-smooth (c) LTS-smooth

Figure 8: Visualization of transition trajectories of (a) DIAYN-random, (b) DIAYN-smooth and
(c) LTS-smooth. Top row contains the states generated by different skills noted by the dots and the
red lines represent the agent’s sampled trajectories, both of which are mapped to a two-dimensional
space by t-SNE. Bottom contains the frames of transition trajectories.

For primitive skills modeled by DIAYN, we consider the following approaches:1) DIAYN-random:
Transition policy with random weights to affect actions; 2) DIAYN-smooth: Transition policy with
smoothly changed weights (artificially designed) to affect actions; 3) DIAYN-master: Transition
policy with optimal weights learned by meta-policy.

For transitional skills modeled by LTS, we consider the following approaches: 1) LTS-random: Ran-
domly choose transitional skills between two primitive skills; 2) LTS-smooth: Choosing continously
changed transitional skills zi,j,k ( 1 ≤ k ≤ K − 1); 3) LTS-master: Transfer policy with optimal
weights learned by meta-policy.

Table 1 shows the performance. It is observed that we choose skills randomly or weighted actions
modeled by primitive skills, the transition process is more likely to fail. Even with an extensively
forecast through the hierarchical framework, DIAYN-master is possible to fail. We believe this is
because the primitive skills have a large gap and therefore, one skill are unable to associate with
another. Even with meta-policy, it is also hard to transit between primitive skills. In contrast, LTS-
smooth has a better performance than DIAYN-master without any meta-policy because of abundant
transitional skills. Moreover, LTS-master could select most appropriate transitional skills to fill in
the gap between two arbitrary skills.

6.6 VISUALIZING TRANSITION TRAJECTORIES

Figure 8 shows the two-dimensional t-SNE embedding of the agent’s states generated by different
skills. Different colors represent different skills (including primitive skills and transitional skills).
The red lines represent the agents’ transition trajectories. In Figure 8(a) and 8(b), we can see a clear
boundary between two kinds of skills, which is consistent with the boundary of Figure 7.

Starting from the initiatial state, the agent tries to transit to another state. But both of agents with
DIAYN-random-policy and DIAYN-smooth-policy fail for transiton. The state space of different
skills in Figure 8(c) seems to be more diverse, while it is a pseudomorphism. Because the space is a
two-dimensional mapping, the difference between Figure 8(a) and 8(b) only discloses that different
skills do exist a conclusive gap between two kinds of skills, but this uncovers that the learned transi-
tional skills are also distinguishable. We can find in Figure 8(c) also exits many intersections which
are the crucial transition states between two different skills. In the t-SNE space, distant dots with
same color are also connective, so there exits many long line. And the intersections existing two
endpoints must go through a transition between two skills. Particularly, the trajectory of the agent
in Figure 8(c) shows the transition between different 11 skills.

7 CONCLUSION

In this paper, we introduce a novel LTS method to learn transitional skills without extrinsic reward
by using two kinds of latent varibles to depict different skills. As a result, LTS can discover both

10
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primitive skills and transitional skills. Also, LTS achieves a great success in the smooth transition
from one primitive skill to another and exhibits its potential in learning a large continuous skill
space. Extensive experiments demonstrate the effectiveness of our LTS in the discovery of diverse
skills and the smooth transition between skills even for complex down-stream tasks.
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Appendices

A METHODOLOGY

A.1 DERIVATION OF THE VARIATION BOUND ON MUTUAL INFORMATION

Here we derive the variational bound:

Eωi∼p(ω) [log p(ωi|st)] = Eωi∼p(ω) [log qφ(ωi|st)) + αKL(p(ωi|st)|qφ(ωi|st)]
≥ Eωi∼p(ω) [log qφ(ωi|st)]

(11)

B IMPLEMENTATION

B.1 HINDSIGHT AND ONE-HOT ENCODING

In our approach, we model the conditional probability given by the discriminator qφ(ωi|st) w.r.t. the
divergence (or distance) between transitional skill zi,j,k and specific primitive skill ωi. Although (4)
constrains two mutual information terms, but (??) is adopted to train our model, which constrains
only one term. These efficiency is relatively low. For example, if we want to simultaneously con-
strain the probability qφ(ωi1 |st) and qφ(ωi2 |st) in terms of the same transition state st generated
by the same skill z (z = zi1,j1,k1 = zi2,j2,k2) but two different primitive skills (ωi1 and ωi2) in
the training stage, we must wait for the next time step to sample the same z and a different ω in
the experience. The efficiency is relatively low because that qφ(ωi|st) just constrain the consistency
of zi,j,k and ωi which ignores the consistency to other primitive skills. So we utilize the hindsight
experience reply mechanism to allow sample-efficient learning form sparse rewards. We calculate
a distribution of the conditional probability given by the discriminator instead of a single value. So
we change qφ(ωi|st) to the conditional probability distribution:

qφ(Ω, st) = [qφ(ω0|st), qφ(ω1|st), ..., qφ(ωN−1|st)]T. (12)

By doing this, we could simultaneously constrain the similarity probability distribution given by the
discriminator with related to all primitive skills.

+

Figure 9: The space of primitive skills and transitional skills, where we set N = 3, K − 1 = 3.

Moreover, we change the criterion of fdi,j,k into fdi,k:

fdi,k = [fdi,1,k, f
d
i,2,k, ..., f

d
i,N−1,k]T. (13)

On the other hand, for categorical encoded primitive skills, when ωi − ωj 6= ±1 (i 6= j), the
discriminator qφ will face a dilemma: the intersection of transition states and primitive states are
not empty, i.e. STi,j ∩ SP 6= �, leading to a conflict between diversity and transition. Here we give
an example: considering transferring two skills from ωi to ωj (ωi 6= ωj), the former categorical
encoding will cause extra consumption: if ωi − ωj 6= ±1, primitive states with related to primitive
skills {ω|ω ∈ [ωi, ωj ] or [ωj , ωi]} will occur in the transition states. For three primitive skills ωi1 ,
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ωi2 and ωi3 , given the optimal discriminator q∗φ, there should be q∗φ(ωi3 |s′t) = 0 (s′t ∼ π(ωi1)

and ωi1 6= ωi3 ) and q∗φ(ωi3 |s′′t ) = 0 (s′′t ∼ π(ωi2) and ωi2 6= ωi3 ). While if ωi1 < ωi3 < ωi2 ,
q∗φ(ω3|s′t) = log p(ωi1) − fd(ωi1) + c and q∗φ(ω3|s′′t ) = log p(ωi2) − fd(ωi2) + c 5, which is in
contrast to the conditional probability of 1 (ωi3 is also a primitive skill). So, we encode ω ∼ p(ω)
with one-hot way:

ω0 = [1, 0, 0, ..., 0];

ω1 = [0, 1, 0, ..., 0];

...

ωN−1 = [0, 0, 0, ..., 1].

(14)

And we denote primitive skills and transitional skills as a set Z+
i,j :

Z+
i,j = [ωi, zi,j,1, ..., zi,j,k, ..., zi,j,K−1, ωj ]

T

=


0 ... 1 ... 0 ... 0
0 ... 1− 1

K ... 1
K ... 0

....
0 ... 1− k

K ... k
K ... 0

...
0 ... 0 ... 1 ... 0


(K+1)×N

,
(15)

where the value of i-th and j-th column keeps decreasing and increasing respectively. Other column
always keep 0, which could constrain the incoherence between transition states and other primitive
skills. Without causing any misunderstanding, following zi,j,k all comes from Z+

i,j . For transition,
we assure that the change of zi,j,k only happens on the corresponding dimension, which overcomes
the conflict caused by categorical encoding. As show in Fig.9, all transition skills in Z3,1 and prim-
itive skills ω3 are orthogonal. The transition only reflects on the plane defined by the corresponding
primitive skills. Although these will induce a problem of the generation issue, but this could also
learning continuous transitional skills as shown in Figure 6 and 7. In fact, there is more than one
transitional path, which can be a directed line or any directed curve. As in Figure 7(b), we can find
more than one transitional paths.

An example Z+
i,j shows below:

Z+
3,1 = [ω3, z3,1,1, z3,1,2, z3,1,3, ω1]T

=


0 0 0 1 0
0 0.25 0 0.75 0
0 0.5 0 0.5 0
0 0.75 0 0.25 0
0 1 0 0 0


5×4

,
(16)

where N = 4, K − 1 = 3. A transition path could be ω3 → z3,1,1 → z3,1,2 → z3,1,3 → ω1.
And an alternative way could be [0, 0, 0, 1, 0] → [0, 0.2, 0, 0.8, 0] → [0.1, 0.3, 0.2, 0.3, 0.1] →
[0, 0.8, 0, 0.2, 0] → [0, 1, 0, 1, 0]. For the similairity fdi,k, examples are shown below (generated by
Z+
3,1 in Formula(16) ):

fs3,0 = [0, 0, 0, 1, 0]T;

fs3,1 = [0, 0.25, 0, 0.75, 0]T;

fs3,2 = [0, 0.5, 0, 0.5, 0]T;

fs3,3 = [0, 0.75, 0, 0.25, 0]T;

fs3,4 = [0, 1, 0, 0, 0]T,

(17)

where fsi,j = 1− fdi,j .

5c is a constant.
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C EXPERIMENTAL ENVIRONMENT

The experiments were carried out over four opened reinforcement learning environments (CartPole6,
MountainCar7, Pendulum8 and HalfCheetah9.

C.1 CARTPOLE

In this environment, a pole is attached by an un-actuated joint to a cart, which moves along a fric-
tionless track. The system is controlled by applying a force of +1 or -1 to the cart. The pendulum
starts upright, and the goal is to prevent it from falling over by increaseing and reducing the cart’s
velocity. The episode ends when the pole is more than 15 degrees from vertical, or the cart moves
more than 2.4 units from the center.

C.2 MOUNTAINCAR

A car is on a one-dimensional track, positioned between two ”mountains”. The goal is to drive up
the mountain on the right; however, the car’s engine is not strong enough to scale the mountain in a
single pass. Therefore, the only way to succeed is to drive back and forth to build up momentum.

C.3 PENDULUM

The inverted pendulum swingup problem is a classic problem in the control literature. The problem
of the pendulum starts in a random position, and the goal is to swing it up so it stays upright.

C.4 HALFCHEETAH

In the HalfCheetah environment, there is a two-legged robot, restricted to a vertical plane, meaning
it can only run forward or backward. The agent has 17 dimensions of state space and 6 dimensions
of action space.

D HYPERPARAMETERS

For all RL algorithm in our experiments, we use the SAC (Haarnoja et al. (2018)) as implementation
framework. The hyperparameters are summed up in the Table 2 and we use ADAM (Kingma & Ba
(2014)) optimizer.

E VISUALIZING PRIMITIVE SKILLS

In order to better visualize the distinction between skills, we did various experiments and finally
determined some optimal observations as feature vector for each skill (see Table 3). Please note that
the feature values adopted are aimed at visualizing the skills, and what we put into the discriminator
is the all state of the agent instead the single feature value. The following experiments show that it
makes sense to calculate the statistical characteristics of skills’ characteristics to represent a skill.
Three experiments’ performance was shown in Figure 10, Figure 11 and Figure 12.

F VISUALIZING TRANSITION PROCESS

For Cartpole, MountainCar, Pendulum and HalfCheetah, we get 4 primitive skills, and control vari-
ant z only takes 3 fixed values (0.25 0.5 0.75) during training. However, at the test phase of transi-
tion, z is added every 0.1. This ways reduce the training complexity as analyzed in Section 6.3. So
we can obtain 9 transition skills between any two primitive skills( z = [0, 1]) (See Figure 13, Figure
14, and Figure 15).

6https://gym.openai.com/envs/CartPole-v0/
7https://gym.openai.com/envs/MountainCar-v0/
8https://gym.openai.com/envs/Pendulum-v0/
9https://gym.openai.com/envs/HalfCheetah-v2/
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Table 2: Parameter setting
Parameters Description Value

H hidden state size

32 for CartPole,
MountainCar
and Pendulum;
64 for HalfCheetah

layer layer count 3
epoch eposide size 2*12(cpus)
vf lr value network learning rate 1e-5
dc lr discriminator network learning rate 5e-4
pi lr policy network learning rate 3e-4
max episodes the maximal length of episode 250
train dc iterv epoch number of training discriminator network 5
train ac iterv epoch number of training actor network 1
train v iterv epoch number of training critic network 1
train dc iters iteration number of updating discriminator network 80
train ac iters iteration number of updating actor network 50
train v iters iteration number of updating critic network 1

Table 3: Selection of skill features.
RL enviroment Observations Selected as skill feature
CartPole 0: Cart Position;

1: Cart Velocity
2: Pole Angle
3: Pole Velocity at Tip

2: Pole Angle

MountainCar 0: Position
1: Velocity

0: Position

Pendulum 0: cos(Angle)
1: sin(Angle)
2: speed

1: sin(Angle)

HalfCheetah 17-dim values (including the positions
and velocities)

the frames
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Figure 10: Cartpole primitive skills. (a) - (j) stand for 10 random trials with 4 primitive skills for
each, and different skills are distinguished by Boxplot. (k) shows the skills in time domain for one
trial.

G TRANSITIONAL SKILLS COMPARISON

Studies including motion trail and statistical characteristics on MountainCar was reported in Fig-
ure 16. The value of the y-axis denotes the mean of feature values (which is also the statistical
characteristic). Here we do not test the transition processes between skills and we just run differ-
ent transitional skills independently. There should be many isolated dots instead a transition line.
Skills with two distant features will means a larger probability of failure of transition. For DIAYN’s
primitive skills, there exists a large gap which notes an harder transition between the two skills,
comparing the smooth line of LTS’s skills. Please note that there exits no faster transition instead a
large gap.
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Figure 11: Mountain Car primitive skills. (a) - (j) stand for 10 random trials with 4 primitive skills
for each, and different skills are distinguished by Boxplot. (k) shows the skills in time domain for
one trial.
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Figure 12: Pendulum primitive skills. (a) - (j) stand for 10 random trials with 4 primitive skills for
each, and different skills are distinguished by Boxplot. (k) shows the skills in time domain for one
trial.
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Figure 13: Mountain Car transition process. (a) (e), (b) (f), (c) (g), and (d) (g) are from different
4 trials respectively. Each transitional skill holds 500 steps and then transfers the final state to the
next skill.

Transition from 0 to 1.

0.0

0.1

0.2

0.3

0.4

St
at

ist
ica

l c
ha

ra
ct

er
ist

ics

(a)

Transition from 1 to 0.

0.0

0.1

0.2

0.3

0.4

St
at

ist
ica

l c
ha

ra
ct

er
ist

ics

(b)

Transition from 2 to 3.

0.1

0.0

0.1

0.2

0.3

0.4

St
at

ist
ica

l c
ha

ra
ct

er
ist

ics

(c)

Transition from 3 to 2.

0.2

0.1

0.0

0.1

0.2

0.3

0.4

St
at

ist
ica

l c
ha

ra
ct

er
ist

ics

(d)

0 1000 2000 3000 4000 5000
Step

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

Fe
at

ur
e 

va
lu

e

(e)

0 1000 2000 3000 4000 5000
Step

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

Fe
at

ur
e 

va
lu

e

(f)

0 1000 2000 3000 4000 5000
Step

0.2

0.0

0.2

0.4

0.6

0.8

Fe
at

ur
e 

va
lu

e

(g)

0 1000 2000 3000 4000 5000
Step

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Fe
at

ur
e 

va
lu

e

(h)

Figure 14: Pendulum transition process. (a) (e), (b) (f), (c) (g), and (d) (g) are from different 4
trials respectively. Each transitional skill holds 500 steps and then transfers the final state to the next
skill.
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Figure 15: Cartpole transition process. (a) (e), (b) (f), (c) (g), and (d) (g) are from different 4 trials
respectively. Each transitional skill holds 500 steps and then transfers the final state to the next skill.
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Figure 16: Transitional skills comparison on MountainCar. The subgraphs (a),(b),(c),(d) repre-
sent the mean of features in terms of the transitional skills, and subgraphs (e),(f),(g),(h) represent
the variance of features.
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