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Abstract

Momentary fluctuations in attention (perceptual accuracy) correlate with neural1

activity fluctuations in primate visual areas. Yet, the link between such momentary2

neural fluctuations and attention state remains to be shown in the human brain. We3

investigate this link using a real-time cognitive brain machine interface (cBMI)4

based on steady state visually evoked potentials (SSVEPs): occipital EEG potentials5

evoked by rhythmically flashing stimuli. Tracking momentary fluctuations in6

SSVEP power, in real-time, we presented stimuli time-locked to when this power7

reached (predetermined) high or low thresholds. We observed a significant increase8

in discrimination accuracy (d′) when stimuli were triggered during high (versus9

low) SSVEP power epochs, at the location cued for attention. Our results indicate10

a direct link between attention’s effects on perceptual accuracy and and neural gain11

in EEG-SSVEP power, in the human brain.12

1 Introduction13

Visual attention improves perceptual accuracy and reaction times for attended stimuli, and also en-14

hances the activity (gain) of visual neurons. Previous studies have shown that momentary fluctuations15

in attention can be measured by tracking neural activity in primate visual areas (e.g. V4) (2, 7); such16

fluctuations correlate with animals’ perceptual accuracy on a trial-by-trial basis. Yet, the link between17

such momentary neural fluctuations and attention state remains to be shown in the human brain.18

Here, we investigated this link using a real-time cognitive brain machine interface (Fig. 1A), based19

on steady state visually evoked potentials (SSVEPs): occipital EEG potentials evoked by periodically20

flickering stimuli, whose power systematically modulates with attention (6). Our results show that21

EEG-SSVEP power can be used to track attentional fluctuations, in real-time, in the human brain.22

2 EEG cBMI system23

Real-time system: The cBMI system broadly comprises the presentation system, the EEG acquisi-24

tion system and the processing system (Fig. 1A). The presentation system (Intel Core i5, 8 GB RAM,25

Win 7) was used to present accurately controlled visual stimuli on the monitor (screen refresh rate =26

144 Hz) and send task specific events to the EEG acquisition system using a parallel port. Stimuli27

were presented with Psychtoolbox. For EEG acquisition, we used the Biosemi 128-channel ActiTwo28

System for EEG acquisition. The acquisition system synchronized the task specific events with EEG29

data, and sent it to the processing system. The processing system (Intel Core i7, 16 GB RAM, Win30

10) acquired the EEG and events data packet using an acquisition software. The data was processed31

and neurofeedback was generated. The neurofeedback was then sent to the presentation system by32

means of a shared file accessible by both systems.33
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Figure 1: Real-time tracking of attention fluctuations with a cBMI system. (A) Schematic of the
real-time cBMI system. The system acquires EEG signals in real-time, processes it and delivers a
neurofeedback with closed-loop delays of the order of 10 ms. (B) Round trip (closed-loop) delay
using Biosemi ActiView (left) and Fieldtrip (right) acquisition software (overhead: D, offset).

To identify efficient acquisition software, we compared the round-trip (closed-loop) delay for four34

acquisition software: ActiView, Lab Streaming Layer, OpenVibe and Fieldtrip (Fig. 1B). We measured35

round-trip delay by varying the EEG+event packet size, across different sampling frequencies, fit a36

line to the data, and estimated the intercept, which is a measure of the overhead. We observed that37

Fieldtrip produced the least overhead of 10.98± 0.50 ms.38

EEG data recording: Scalp EEG recordings were performed with 41 occipital electrodes out of39

the total 128 electrodes. The data was streamed in real-time using the Fieldtrip buffer at 128 Hz. EEG40

data was also stored at 4096 Hz for offline analyses. Spectral analysis was performed using Chronux41

2.12 toolbox (1) EEGLAB 13.6.5b (4) functions were used to generate the topographical plots.42

EEG data preprocessing followed standard protocols (SCADS: Statistical Correction of Artifacts in43

Dense-array Studies (5)). Finally, the EEG data was re-referenced to the average reference.44

3 Experimental task design45

Participants (n=15) performed the task in a dark, sound-attenuated room. Experimental protocols were46

approved by the Institute Human Ethics Committee at IISc. The participant’s head was positioned47

60 cm away from the monitor on a chin rest. The task was presented on a 24 inch LED monitor and a48

resolution of 1920 by 1080 at 144 Hz of screen refresh rate. We used MATLAB (Mathworks Inc.)49

based Psychtoolbox for the psychophysical task design. A Cedrus response box (RB-540) was used50

to record responses.51

The experiment began when a white fixation cross was presented in the center of a gray screen52

(Fig. 2A). Subjects were instructed to fixate on the cross throughout a trial. Two flickering stimuli53

(pedestals) appeared, each produced by superimposing gratings oriented at 45◦ and −45◦ from the54

horizontal. The pedestals were presented on either side of the fixation cross. Each pedestal flickered55

at a distinct frequency to evoke EEG oscillations at the corresponding frequency, known as Steady56

State Visually Evoked Potential or SSVEPs.57

After 1000 ms, a directed cue (central arrow) appeared, indicating the side to be attended. The cue58

was 100% valid and counterbalanced across left and right stimuli. Some time later (depending on59

SSVEP power, see next section), the pedestals disappeared, and task stimuli (oriented gratings at60

±45◦) on each side) appeared briefly for 75 ms. Subjects detected and reported the orientation of61

the grating on the cued side (Target), ignoring the grating on the uncued side (Distractor). We used62

signal detection theory (Fig. 2A, inset) to measure the discriminability d′ and decision bias (c) for63

discriminating clockwise from counterclockwise target stimuli.64

4 Isolating SSVEP components and real-time triggering65

We employed a dimensionality reduction algorithm, Denoising Source Separation (DSS) to isolate66

and quantify, with high SNR (signal-to-noise ratio), SSVEP power evoked by the flickering pedestals67

(3). Briefly, DSS identifies low-dimensional sources from high-dimensional, noisy sensor data. It68

involves whitening of the considered sensor signals, filtering for the desired feature (here power at69

a particular SSVEP frequency), followed by rotating the data along a direction that maximizes the70
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Figure 2: Schematic of real-time triggering. (A) Attention task timeline. (B) Dimensionality
reduction and SSVEP isolation using Denoising Source Separation. (C) (top) SSVEP distributions
from a baseline block. (bottom) Thresholds estimated using the CDF of this distribution (Attention
idex or AI). (D) Schematic of task stimulus triggering based on high and low thresholds for the AI.

variance along the desired feature. In our case, each DSS latent dimension (Y ) is a linear combination71

(Y = WX) of the raw EEG signals (X) from the occipital electrodes. For these analyses, we72

identified, with visual inspection, the DSS dimension with the clearest peak in the spectrum at the73

corresponding SSVEP frequency (Fig. 2B); typically, this was the first DSS dimension.74

Next, we employed the following procedure for triggering task stimuli (the grating discriminanda):75

We conducted a “baseline” block before the actual experiment. In the baseline block, no attention76

cues were presented and the duration between the onset of the flickering pedestals and the task stimuli77

were selected randomly from an exponential distribution, with a minimum duration of 2.5 s and a78

maximum of 5 s. We estimated SSVEP power in moving windows of 0.5 s (64 samples) each with a79

step-size of 7.8 ms (1 sample), using multi-taper spectral analyses using one Slepian taper, to generate80

an SSVEP power distribution across time for each SSVEP frequency (Fig. 2C, top). Next, we fit a81

non-parametric distribution to this distribution, and calculated the cumulative distribution function82

(CDF). This CDF provides a normalized measure of SSVEP power, which accounts for variations in83

baseline SSVEP power across subjects. The CDF value corresponding to the SSVEP power evoked84

by the pedestal on each side (cued/target, or uncued/distractor) was termed the attention index (AI)85

for that side (Fig. 2C, bottom).86

In the actual experiment, we tracked, in real time the AI of the pedestal the cued (target) side or87

uncued (distractor) side, on separate trials. When the AI on the respective side reached a particular88

“high” or “low” threshold value, the presentation of the task stimuli (gratings) was immediately89

triggered (Fig. 2D). This paradigm enabled us to measure a direct link between the participants’90

behavioral accuracy when the EEG-SSVEP power was in particular states (high or low) at the target91

or distractor locations, immediately preceding their presentation.92

5 Results93

All 15 participants were tested on trials with target-based triggering: task stimulus (grating) presen-94

tation was triggered when the attention index (AI) based on the SSVEP power of the cued (target)95

flickering pedestal crossed a high (AI-high) or low (AI-low) threshold. We tested for behavioral96

differences between the AI-high and AI-low conditions. Fig. 3A shows the comparison of four97

behavioral measures: percentage correct, reaction time, discrimination accuracy (d′) and choice98
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Figure 3: Behavioral measures of attention based on SSVEP power. (A) Scatter plots of the
values of four behavioral metrics, for the target SSVEP triggered condition. x-axis: AI-high trials;
y-axis: AI-low trials. (B) Same as in (A), but for the distractor SSVEP triggered condition.

criterion (c) for AI-high vs AI-low trials. Percentage correct was marginally higher for AI-high as99

compared to AI-low trials (n-way ANOVA p = 0.026). Discrimination accuracy (d′) was significantly100

higher, across the population, for AI-high trials as compared to AI-low trials (p < 0.01). We did not101

observe any significant differences in other measures like reaction time and criterion (p > 0.3).102

In a subset of the participants (n=10), we also triggered task stimuli based on the uncued side103

(distractor) SSVEP power (AI). Fig. 3B shows the comparision of the same four behavioral measures:104

percentage correct, reaction time, d′ and choice criterion (c) for distractor based AI-high vs AI-low105

trials. We observed no systematic effects for any of the four behavioral measures (ANOVA p >106

0.3) with distractor based triggering. In summary, discrimination accuracy, d′, was higher when the107

SSVEP power on the target (cued) side was high, compared to when it was low. Furthermore, the108

d′ effect did not depend on distractor SSVEP power. Neither target- nor distractor-based triggering109

produced reliable effects on reaction times.110

Overall, our results indicate a direct link between attentional effects on perceptual accuracy and111

neural gain in EEG-SSVEP power, in the human brain. Furthermore, the results suggest that neural112

mechanisms that mediate target enhancement may be distinct from those that mediate distractor113

suppression. Additionally, attention’s effects on behavioral accuracies and reaction times may engage114

distinct neural mechanisms.115
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