
Work in Progress: Synthesis of Differentiable Functional Programs for
Lifelong Learning

1. Summary
Differentiable programming languages (Paszke et al., 2017;
Bosnjak et al., 2017; Gaunt et al., 2016; Bunel et al., 2016)
have recently emerged as a powerful approach to represent-
ing architectures with input-dependent structure, such as
deep networks over trees (Socher et al., 2013; Allamanis
et al., 2017) and graphs (Li et al., 2016; Kipf & Welling,
2017). Being able to induce differentiable programs purely
from data can have tremendous value in many applications.
Unfortunately, inferring the structure of differentiable pro-
grams is a fundamentally hard problem. While some recent
approaches (Gaunt et al., 2017; 2016) partially solve this
problem, a detailed hand-written template of the program is
required for even the simplest tasks.

In this paper, we show that functional programming abstrac-
tions and symbolic program synthesis can be useful tools
in overcoming this difficulty. The goal in program synthe-
sis (Alur et al., 2013; Solar-Lezama, 2013; Feser et al., 2015)
is to discover programs that accomplish a given task, out
of all programs in a language. While combinatorially hard,
the problem has seen substantial recent progress. Indeed, in
a recent head-to-head comparison, symbolic program syn-
thesis was reported to outperform gradient-based program
induction (Gaunt et al., 2016).

Functional programming is especially appealing for synthe-
sis of differentiable programs because functional combina-
tors can compactly describe many common neural archi-
tectures (Olah, 2015). Symbolic synthesis is appealing for
learning neural libraries because their strengths complement
those of stochastic gradient descent (SGD): while SGD is
remarkably effective for learning network parameters, each
step of a symbolic search can explore large changes to the
network structure.

Concretely, we present a neurosymbolic learning framework,
called HOUDINI, that is the first symbolic program synthesis
method for differentiable programs. In HOUDINI, a program
synthesizer is used to search over networks described as
compact, strongly typed functional programs, whose param-
eters are then tuned end-to-end using SGD. Programs in
HOUDINI specify the architecture of the network, and can
also facilitate learning transfer, by letting the synthesizer
choose among previously trained modules.

We show that the HOUDINI approach can be an espe-
cially powerful way of transferring knowledge across tasks.
Specifically, we evaluate HOUDINI in the setting of lifelong
learning (Thrun & Mitchell, 1995) of tasks that mix percep-
tion and procedural reasoning. Two challenges in lifelong
learning are catastrophic forgetting, in which later tasks
overwrite what Our results indicate that HOUDINI leads to
more significant transfer that several natural baselines.

2. The HOUDINI Framework
HOUDINI has two components. The first is a typed func-
tional language of differentiable programs. The second is
a learning procedure split into a symbolic module and a
neural module.

The language. Our language has three key features:

• The ubiquitous use of function composition to glue to-
gether different networks. Specifically, HOUDINI pro-
grams can compose two classes of functions: differen-
tiable functions ⊕w from a library L, that are parameter-
ized by weights w and implemented by neural networks,
and a set of symbolic combinators (described below).

• The heavy use of symbolic, higher-order combinators like
map, fold, and conv (convolution). These allow com-
pact expression of complex neural architectures: deep
feedforward networks can be represented by ⊕1 ◦ . . .⊕k,
where each ⊕i is a neural function and ◦ denotes compo-
sition; recurrent nets can be expressed as fold ⊕, where
⊕ is a neural function. The same combinators can also
express patterns of recursion in procedural tasks.

• The use of a strong type discipline to distinguish between
neural computations over different forms of data, and
to avoid generating provably incorrect programs during
symbolic exploration. Types in HOUDINI include base
types such as reals and booleans, tensors over these base
types, lists and graphs whose nodes are tensors, and first-
class functions.

Learning. Our learning algorithm consists of a symbolic
program synthesis module and a gradient-based optimiza-
tion module. The former module repeatedly generates pa-
rameterized programs and “proposes” them to the latter
module, which uses SGD to find optimal parameters. HOU-



Work in Progress: Synthesis of Differentiable Functional Programs for Lifelong Learning

Task 1 Task 2
RNN 0.37 5.96

HOUDINI 0.38 1.53
(a) Low-level transfer (task sequence GS1).

Task 1 Task 2 Task 3
RNN 1.21 5.33 6.16

HOUDINI 1.32 1.64 3.44
(b) High-level transfer (task sequence GS2).

Table 1. Lifelong learning on graphs. Column 1: RMSE on
speed/distance from image. Column 2: RMSE on shortest path.

DINI currently uses two synthesis algorithms: top-down
iterative refinement, as in the λ2 synthesizer (Feser et al.,
2015), and an evolutionary algorithm inspired by work on
functional genetic programming (Briggs & O’neill, 2006).
The former algorithm performed better in our experiments.

To enable transfer across a series of learning tasks, we add
back to the library all neural functions whose parameters
have been discovered during a round of learning. The pa-
rameter vectors of these functions are frozen and can no
longer be updated by subsequent tasks. Thus, we prevent
catastrophic forgetting by design. Importantly, it is always
possible for the synthesizer to introduce “fresh networks”
whose parameters have not been pretrained. This is because
the library always monotonically increases over time, so that
an original neural library function with untrained parameters
is still available.

3. Results: Shortest path in a grid of images

Figure 1. A grid of 32x32x3 im-
ages from the GTSRB dataset
(Stallkamp et al., 2012). The
least-cost path from the top left
to the bottom right node is
marked.

Detailed results on HOU-
DINI are available in an
online technical report. In
this abstract, we only give
experimental evidence on
a single benchmark exam-
ple. This example gen-
eralizes a navigation task
previously proposed by
Gaunt et al. (2017).

Suppose we are given a
grid of images (e.g., Fig-
ure 1), whose elements
represent speed limits and
are connected horizon-
tally and vertically, but
not diagonally. Pass-
ing through each node in-

duces a penalty, which depends on the node’s speed limit,
with lower speed limit having a higher penalty. At a high
level, our goal is to predict the minimum cost d(u) incurred

while traveling from a fixed starting point init (the top left
element) to each of the remaining nodes u.

To evaluate transfer in this setting, we instantiate this task
in two settings: one (shortest path street) in which the im-
age grid consists of speed limit signs, and another (short-
est path mnist) in which the image grid consists of MNIST
digits. We also consider two elementary tasks: return-
ing the speed value from an image of speed limit sign
(regress speed), and returning the value from a digit image
from MNIST dataset (regress mnist). Now we design the
following task sequences, with the expectation that learning
of earlier tasks will benefit learning of later tasks.

• GS1: Learning of complex algorithms.
Task 1: regress speed; Task 2: shortest path street
• GS2: High-level transfer of complex algorithms.

Task 1: regress mnist; Task 2: shortest path mnist; Task
3: shortest path street

Of these, the former sequence involves low-level transfer,
in which earlier tasks are perceptual tasks like recognizing
digits, while later tasks introduce higher-level algorithmic
problems. The latter sequence involves higher-level transfer,
in which earlier tasks introduce a high-level concept, later
tasks require a learner to re-use this concept on different per-
ceptual inputs. We compare HOUDINI against a monolithic
network (specifically, an RNN).

Table 1 compares the Root Mean Square Error between
the actual and predicted shortest path distance in the two
task sequences. We see that the programs learned by HOU-
DINI on the later tasks in the sequences have significantly
less error than the RNN. For the shortest path street task in
GS1, HOUDINI learns a graph-convolution-based program
“repeat(9, conv g(nn gs1 2)) ◦map g(lib.nn gs1 1)”,
where nn gs1 2 is a learned function that is broadly similar
to the “relaxation” operator in classic shortest-path algo-
rithms, and lib.nn gs1 1 is the neural module learned for
the earlier task regress speed. This algorithm can be seen
as an approximation of the dynamic-programming-based
Bellman-Ford shortest path algorithm.

For the shortest path street task in the graph
sequence GS2, HOUDINI learns a program
“repeat(9, conv g(lib.nn gs2 2)) ◦map g(nn gs2 5)”,
where nn gs2 5 is the newly learned regression function for
the street signs and lib.nn gss 2 is the relaxation function
already learned from the earlier task shortest path mnist.
Thus, a graph program with the relaxation function learned
on MNIST can be applied to a graph of street signs,
suggesting that a domain-general operation is being learned.



Work in Progress: Synthesis of Differentiable Functional Programs for Lifelong Learning

References
Allamanis, Miltiadis, Chanthirasegaran, Pankajan, Kohli,

Pushmeet, and Sutton, Charles. Learning continuous se-
mantic representations of symbolic expressions. In Inter-
national Conference on Machine Learning (ICML), 2017.
URL http://arxiv.org/abs/1611.01423.

Alur, Rajeev, Bodı́k, Rastislav, Juniwal, Garvit, Martin,
Milo M. K., Raghothaman, Mukund, Seshia, Sanjit A.,
Singh, Rishabh, Solar-Lezama, Armando, Torlak, Emina,
and Udupa, Abhishek. Syntax-guided synthesis. In For-
mal Methods in Computer-Aided Design, FMCAD, pp.
1–17, 2013.

Bosnjak, Matko, Rocktäschel, Tim, Naradowsky, Jason, and
Riedel, Sebastian. Programming with a differentiable
forth interpreter. In International Conference on Machine
Learning, ICML, pp. 547–556, 2017.

Briggs, Forrest and O’neill, Melissa. Functional genetic
programming with combinators. In Proceedings of the
Third Asian-Pacific workshop on Genetic Programming,
ASPGP, pp. 110–127, 2006.

Bunel, Rudy R., Desmaison, Alban, Mudigonda, Pawan Ku-
mar, Kohli, Pushmeet, and Torr, Philip H. S. Adaptive
neural compilation. In Advances in Neural Information
Processing Systems 29, pp. 1444–1452, 2016.

Feser, John K., Chaudhuri, Swarat, and Dillig, Isil. Synthe-
sizing data structure transformations from input-output
examples. In ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pp. 229–239,
2015.

Gaunt, Alexander L., Brockschmidt, Marc, Singh, Rishabh,
Kushman, Nate, Kohli, Pushmeet, Taylor, Jonathan, and
Tarlow, Daniel. Terpret: A probabilistic programming
language for program induction. CoRR, abs/1608.04428,
2016.

Gaunt, Alexander L., Brockschmidt, Marc, Kushman, Nate,
and Tarlow, Daniel. Differentiable programs with neu-
ral libraries. In International Conference on Machine
Learning (ICML), pp. 1213–1222, 2017.

Kipf, Thomas N. and Welling, Max. Semi-supervised clas-
sification with graph convolutional networks. In Interna-
tional Conference on Learning Representations (ICLR),
2017.

Li, Yujia, Tarlow, Daniel, Brockschmidt, Marc, and Zemel,
Richard. Gated graph sequence neural networks. In
International Conference on Learning Representations
(ICLR), 2016.

Olah, Christopher. Neural networks, types, and func-
tional programming, 2015. http://colah.github.

io/posts/2015-09-NN-Types-FP/.

Paszke, Adam, Gross, Sam, Chintala, Soumith, Chanan,
Gregory, Yang, Edward, DeVito, Zachary, Lin, Zeming,
Desmaison, Alban, Antiga, Luca, and Lerer, Adam. Au-
tomatic differentiation in pytorch. 2017.

Socher, Richard, Perelygin, Alex, Wu, Jean Y, Chuang, Ja-
son, Manning, Christopher D, Ng, Andrew Y, and Potts,
Christopher. Recursive deep models for semantic compo-
sitionality over a sentiment treebank. In EMNLP, 2013.

Solar-Lezama, Armando. Program sketching. STTT, 15
(5-6):475–495, 2013.

Stallkamp, J., Schlipsing, M., Salmen, J., and Igel, C. Man
vs. computer: Benchmarking machine learning algo-
rithms for traffic sign recognition. Neural Networks,
(0), 2012.

Thrun, Sebastian and Mitchell, Tom M. Lifelong robot
learning. Robotics and Autonomous Systems, 15(1-2):
25–46, 1995.


