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Abstract

We propose a novel reinforcement learning approach for finite Markov decision1

processes (MDPs) with delayed rewards. In this work, biases of temporal difference2

(TD) estimates are proved to be corrected only exponentially slowly in the number3

of delay steps. Furthermore, variances of Monte Carlo (MC) estimates are proved4

to increase the variance of other estimates, which number can exponentially grow5

in the number of delay steps. We introduce RUDDER, a return decomposition6

method, which creates a new MDP with same optimal policies as the original7

MDP but with redistributed rewards that have largely reduced delays. If the return8

decomposition is optimal, then the new MDP does not have delayed rewards and9

TD estimates are unbiased. In this case, the rewards track Q-values so that the10

future expected reward is always zero. We experimentally confirm our theoretical11

results on bias and variance of TD and MC estimates. On artificial tasks with12

different lengths of reward delays, we show that RUDDER is exponentially faster13

than TD, MC, and MC Tree Search (MCTS). RUDDER outperforms rainbow, A3C,14

DDQN, Distributional DQN, Dueling DDQN, Noisy DQN, and Prioritized DDQN15

on the delayed reward Atari game Venture in only a fraction of the learning time.16

RUDDER considerably improves the state-of-the-art on the delayed reward Atari17

game Bowling in much less learning time.18

1 Introduction19

Assigning the credit for a received reward to actions that were performed, is one of the central tasks20

in reinforcement learning [58]. Long term credit assignment has been identified as one of the largest21

challenges in reinforcement learning [46]. Current reinforcement learning methods are still slowed22

down significantly when facing long-delayed rewards [41, 30]. To learn delayed rewards there are23

three phases to consider: (1) discovering the delayed reward, (2) keeping information about the24

delayed reward, (3) learning to receive the delayed reward to secure it for the future. Recent successful25

reinforcement methods provide solutions to one or more of these items. Most prominent are Deep26

Q-Networks (DQNs) [32, 33], which combine Q-learning with convolutional neural networks for27

visual reinforcement learning [24]. The success of DQNs is attributed to experience replay [29],28

which stores observed state-reward transitions and then samples from them. Prioritized experience29

replay [47, 22] advanced the sampling from the reply memory. Different policies perform exploration30

in parallel for the Ape-X DQN and share a prioritized experience replay memory [22]. IMPALA31

improves A2C by parallel actors and corrects for policy-lags between actors and learners [10]. DQN32

was extended to double DQN (DDQN) [60, 61] which helps exploration as the overestimation bias33

is reduced. Noisy DQNs [11] explore by a stochastic layer in the policy network (see [18, 48]).34
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Distributional Q-learning [6] profits from noise since means that have high variance are more likely35

selected. The dueling network architecture [62, 63] separately estimates state values and action36

advantages, which helps exploration in unexperienced states. Policy gradient approaches [66] like37

A3C with asynchronous gradient descent [31] or Ape-X DPG [22] explore via parallel policies,38

too. Proximal policy optimization (PPO) extends A3C by a surrogate objective and a trust region39

optimization realized by clipping or a Kullback-Leibler distance penalty [50].40

Recent approaches aim to solve learning problems caused by delayed rewards. Function approxima-41

tions of value functions or critics [33, 31] bridge time intervals if states associated with rewards are42

similar to states that were encountered many steps earlier. For example, assume a function that learned43

to predict a large reward at the end of an episode if a state has a particular feature. The function44

can generalize this correlation to the begin of an episode and predict already high reward for states45

possessing the same feature. Multi-step temporal difference (TD) learning [56, 58] improved both46

DQNs and policy gradients [17, 31]. AlphaGo and AlphaZero learned to play Go and Chess better47

than human professionals using Monte Carlo Tree Search (MCTS) [51, 52]. MCTS simulates games48

from a time point until the end of the game or an evaluation point, therefore captures long-delayed49

rewards. Recently, world models using a evolution strategy were successful [14]. These forward50

view approaches using world models are not feasible in probabilistic environments with a high state51

transition branching factor. Backward view approaches trace back from known goal states [9] or from52

high-reward states [13]. However a step-by-step backward model has to be learned.53

We propose learning from a backward view, which is constructed from a forward model. The forward54

model predicts the return, while the backward analysis identifies states and actions which have55

caused the return. We apply Long Short-Term Memory (LSTM) [19, 21] to predict the return of56

an episode. LSTM was already used in reinforcement learning [49] for advantage learning [3] and57

learning policies [15, 31, 16]. However sensitivity analysis by “backpropagation through a model”58

[35, 44, 45, 4] has major drawbacks: local minima, instabilities, exploding or vanishing gradients in59

the world model, proper exploration, contribution (relevance) of actions are not regarded only their60

sensitivity [18, 48].61

Since sensitivity analysis substantially hinders learning, we use contribution analysis for backward62

analysis like contribution-propagation [25], contribution approach [38], excitation backprop [68],63

layer-wise relevance propagation (LRP) [2], Taylor decomposition [2, 34], or integrated gradients64

(IG) [55]. Using contribution analysis, a predicted return can be decomposed into contributions along65

the state-action sequence. Substituting the prediction by the actual return, we obtain a redistributed66

reward leading to new MDP with the same optimal policies as for the original MDP. Redistributing67

the reward is fundamentally different from reward shaping [36, 64], which changes the reward68

as a function of states but not of actions. Reward redistribution is related to “look-back advice”69

[65] which, in contrast to reward redistribution, still requires the original MDP for learning. We70

propose RUDDER, which performs reward redistribution by return decomposition and, therefore,71

overcomes problems of TD and MC stemming from delayed rewards. RUDDER vastly decreases72

the variance of MC and largely avoids the exponentially slow bias corrections of TD — for optimal73

return decomposition TD is even unbiased.74

2 Bias-Variance for MDP Estimates75

We perform a bias-variance analysis for temporal difference (TD) and Monte Carlo (MC) estimators of76

the action-value function. A finite Markov decision process (MDP)P is 6-tupleP = (S,A,R, p, π, γ)77

of finite sets S of states s (random variable St at time t), A of actions a (random variable At),78

and R of rewards r (random variable Rt+1). Furthermore, P has transition-reward distributions79

p(St+1 = s′, Rt+1 = r | St = s,At = a) conditioned on state-actions, a policy given as an action80

distributions π(At+1 = a′ | St+1 = s′) conditioned on states, and a discount factor γ ∈ [0, 1].81

The marginals are p(r | s, a) =
∑
s′ p(s

′, r | s, a) and p(s′ | s, a) =
∑
r p(s

′, r | s, a). The82

expected reward is r(s, a) =
∑
r rp(r | s, a). The return Gt is Gt =

∑∞
k=0 γ

kRt+k+1. We often83

consider finite horizon MDPs with sequence length T and γ = 1 giving Gt =
∑T−t
k=0 Rt+k+1. The84

action-value function qπ(s, a) for policy π is qπ(s, a) = Eπ [Gt | St = s,At = a]. Goal of learning85

is to maximize the expected return at time t = 0, that is vπ0 = Eπ [G0].86
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Bias-Variance Analysis for MDP Estimates. MC estimates qπ(s, a) by an arithmetic mean of the87

return, while TD methods like SARSA or Q-learning estimate qπ(s, a) by an exponential average of88

the return. When using Monte Carlo for learning a policy we use an exponential average, too, since the89

policy steadily changes. The ith update of action-value q at state-action (st, at) is (qπ)i+1(st, at) =90

(qπ)i(st, at) + α
(∑T

t rt+1 − (qπ)i(st, at)
)

. Assume n samples {X1, . . . , Xn} from a distribution91

with mean µ and variance σ2. For these samples, we compute bias and variance of the arithmetic92

mean µ̂n = 1
n

∑n
i=1Xi and the exponential average µ̃n = α

∑n
i=1(1 − α)n−iXi + (1 − α)nµ093

with µ0 as initial value and α ∈ (0, 1). We obtain bias(µ̂n) = 0 and var(µ̂n) = σ2/n as well94

as bias(µ̃n) = (1− α)n(µ0 − µ) and var(µ̃n) = σ2
(
α(1− (1− α)2n)

)
/(2− α) (see Appendix95

A1.2.1 for more details). Both variances are proportional to σ2, which is the variance when sampling96

a return from the MDP P .97

Using Es′,a′(f(s′, a′)) =
∑
s′ p(s

′ | s, a)
∑
a′ π(a′ | s′)f(s′, a′), and analog Vars′,a′ and Varr, the98

next theorem gives mean and variance V π(s, a) = Varπ [Gt | s, a] of sampling returns from an MDP.99

Theorem 1. The mean qπ and variance V π of sampled returns from an MDP are100

qπ(s, a) =
∑
s′,r

p(s′, r | s, a)

(
r + γ

∑
a′

π(a′ | s′)qπ(s′, a′)

)
= r(s, a) + γEs′,a′ [q

π(s′, a′) | s, a] ,

V π(s, a) = Varr [r | s, a] + γ2 (Es′,a′ [V
π(s′, a′) | s, a] + Vars′,a′ [q

π(s′, a′) | s, a]) . (1)

The proof is given after Theorem A1 in the appendix. The theorem extends the deterministic101

reward case [54, 59]. The variance V π(s, a) consists of three parts: (i) The immediate vari-102

ance Varr [r | s, a] stemming from the probabilistic reward p(r | s, a). (ii) The local variance103

γ2Vars′,a′ [q
π(s′, a′) | s, a] caused by probabilistic state transitions and probabilistic policy. (iii)104

The expected variance γ2Es′,a′ [V
π(s′, a′) | s, a] of the next Q-values, which is zero for TD since105

it replaces qπ(s′, a′) by fixed q̂π(s′, a′). Therefore TD has less variance than MC which uses the106

complete future return. See Appendix A1.2.2 for more details.107

Delayed Reward Aggravates Learning. The ith temporal difference update with learning rate α108

of the action-value q(st, at) is109

qi+1(st, at) = qi(st, at) + α
(
rt+1 + Aa′

(
qi(st+1, a

′)
)
− qi(st, at)

)
, (2)

with Aa′(.) = maxa′(.) (Q-learning), Aa′(.) =
∑
a′ π(a′ | st+1)(.) (expected SARSA), Aa′(.)110

sample a′ from π(a′ | st+1) (SARSA). The next theorem states that TD has an exponential decay for111

Q-value updates even for eligibility traces [23, 5, 57, 53].112

Theorem 2. For initialization q0(st, at) = 0 and delayed reward with rt = 0 for t 6 T ,113

q(sT−i, aT−i) receives its first update not earlier than at episode i via qi(sT−i, aT−i) = αi+1r1T+1,114

where r1T+1 is the reward of episode 1. Eligibility traces with λ ∈ [0, 1) lead to an exponential decay115

of (γλ)k when the reward is propagated k steps back.116

The proof is given after Theorem A2 in the appendix. To correct the TD bias by a certain amount117

requires exponentially many updates with the number of delay steps.118

For Monte Carlo the variance of a single delayed reward can increase the variance of action-values of119

all previously visited state-actions. We define the “on-site” variance ω120

ω(s, a) = Varr [r | s, a] + Vars′,a′ [q
π(s′, a′) | s, a] , (3)

V π is the vector with value V π(s′, a′) at position (s′, a′) and Pt the transition matrix from states121

st to st+1 with entries p(st+1 | st, at)π(at+1 | st+1) at position ((st, at), (st+1, at+1)). For finite122

time horizon, the “backward induction algorithm” [39, 40] gives with V π
T+1 = 0 and ωT+1 = 0 and123

row-stochastic matrix, Pt←k =
∏k−1
τ=t Pτ :124

V π
t =

T∑
k=t

k−1∏
τ=t

Pτ ωk =

T∑
k=t

Pt←k ωk , (4)

where we define
∏t−1
τ=tPτ = I and [ωk](sk,ak) = ω(sk, ak). We are interested in the number of125

action-values which variances are affected through the increase of the variance of a single delayed126
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reward. Let Nt be the number of all states st that are reachable after t time steps of an episode. Let127

ct be the random average connectivity of a state in st to states in st−1. Let nt be number of states128

in st that are affected by ωk for t 6 k with nk = 1 (only one action-value with delayed reward at129

time t = k). Next theorem says that the on-site variance ωk can have large effects on the variance of130

action-values of all previously visited state-actions, which number can grow exponentially.131

Theorem 3. For t 6 k, on-site variance ωk at step k contributes to V π
t by the term Pt←kωk, where132

‖Pt←k‖∞ = 1. The number ak of states affected by ωk is ak =
∑k
t=0

(
1−

(
1− ct

Nt−1

)nt
)
Nt−1.133

The proof can be found after Theorem A3. For small k, the number ak of states affected by on-site134

variance ωk at step k growths exponentially with k. For large k and after some time t > t̂, the number135

ak of states affected by ωk growths linearly. (See Corollary A1 in the appendix). Consequently, we136

aim for decreasing the on-site variance ωk for large k, in order to reduce the variance. In summary,137

delayed rewards lead to exponentially slow corrections of biases of temporal difference (TD) and138

can increase exponentially many variances of Monte Carlo (MC) action-value estimates, where the139

exponentially grows is in both cases in the number of delay steps.140

3 Return Decomposition and Reward Redistribution141

A Markov decision process (MDP) P̃ is state-enriched compared to a MDP P if P̃ has the same142

states, actions, transition probabilities, and reward probabilities as P but with additional information143

in their states. We observe that P is a homomorphic image of P̃ with the same actions. Therefore144

each optimal policy π̃∗ of P̃ has an equivalent optimal policy π∗ of P , and vice versa, with the same145

optimal return [42, 43]. These properties are known from state abstraction and aggregation [28] and146

from bisimulation [12]. For more details see Appendix A1.3.1. Two Markov decision processes P̃147

and P are return-equivalent if they differ only in p(r̃ | s, a) and p(r | s, a) but for each policy π they148

have the same expected return at t = 0: ṽπ0 = vπ0 . Return-equivalent decision processes have the149

same optimal policies.150

We assume to have an MDP P with immediate reward which is transformed to a state-enriched151

MDP P̃ with delayed reward, where the return is given as reward at sequence end. The transformed152

delayed state-enriched MDP has reward r̃t = 0, t 6 T , and r̃T+1 =
∑T
k=0Rk+1. The states are153

enriched by ρ which records the accumulated already received rewards, therefore s̃t = (st, ρt),154

where ρt =
∑t−1
k=0 rk+1. We show in Proposition ?? that q̃π̃(s̃, a) = qπ(s, a) +

∑t−1
k=0 rk+1 for155

π̃(a | s̃) = π(a | s). Thus, each immediate reward MDP can be transformed into a delayed reward156

MDP without changing the optimal policies.157

Next we consider the opposite direction, where the delayed reward MDP P̃ is given and we want158

to find an immediate reward MDP P . P should be return-equivalent to P̃ and differ from P̃ only159

by its reward distributions. We have to redistribute the final reward, which is the return, r̃T+1 to160

previous time steps, therefore we have to decompose the return into a sum of rewards at different161

time steps. To allow for a return decomposition, we predict the return r̃T+1 by a function g using the162

state-action sequence: g((s, a)0:T ) = r̃T+1, where (s, a)0:T is the state-action sequence from t = 0163

to t = T . In a next step we decompose g into a sum: g((s, a)0:T ) =
∑T
t=0 h(at, st), where h is the164

prediction contribution. Since P̃ is an MDP, the reward can be predicted from (aT , sT ) since sT165

contains information about the already accumulated reward. Therefore we use a difference ∆(s, s′)166

between state s and its successor s′ instead of s to avoid the Markov property in the input sequence.167

The difference ∆ is assumed to make (at,∆(st, st+1)) statistically independent from each other in168

the sequence (a,∆)0:T =
(
a0,∆(s0, s1), . . . , at,∆(st, st+1)

)
. The function g is decomposed by169

contribution analysis into a sum of h by g
(
(a,∆)0:T

)
= r̃T+1 =

∑T
t=0 h(at,∆(st, st+1)). The170

actual reward redistribution is rt+1 = r̃T+1h(at,∆(st, st+1))/g
(
(a,∆)0:T

)
to ensure

∑T
t=0 r̃t+1 =171

r̃T+1 =
∑T
t=0 rt+1.172

If for partial sums
∑t
τ=0 h(aτ ,∆(sτ , sτ+1)) = q̃π(st, at) holds, then the return decomposition is173

optimal. We have for g
(
(a,∆)0:T

)
= r̃T+1 rewards R0 = h0 = h(a0,∆(s0, s1)) = q̃π(s0, a0) and174

Rt = ht = h(at,∆(st, st+1)) = q̃π(st, at)− q̃π(st−1, at−1). The term q̃π(st−1, at−1) introduces175

variance in Rt.176
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Theorem 4. The MDP P based on the redistributed reward given by an optimal return decomposition177

(I) has the same optimal policies as P̃ of the delayed reward, and (II) the Q-values are given by178

qπ(st, at) = r(st, at) = q̃π(st, at)− E [q̃π(st−1, at−1) | st, at].179

The proof can be found after Theorem 4 in the appendix. In particular, when start-180

ing with zero initialized Q-values, then TD learning of P is not biased at the be-181

ginning. For policy gradients with eligibility traces using λ ∈ [0, 1] for Gλt182

[58], we have the expected updates Eπ

[
∇θ log π(at | st;θ)

∑T−t
τ=0 λ

τqπ(st+τ , at+τ )
]

=183

Eπ

[
∇θ log π(at | st;θ)

∑T−t
τ=0 λ

τr(st+τ , at+τ )
]
, where r(st, at) is replaced during learning by184

a sample from Rt which is the redistributed reward for an episode.185

RUDDER: Return Decomposition using LSTM. We introduce RUDDER “RetUrn Decomposi-186

tion for DElayed Rewards”, which performs return decomposition using a Long Short-Term Memory187

(LSTM) network for redistributing the original reward. RUDDER consists of (I) a safe exploration188

strategy, (II) a lessons replay buffer, and, most importantly, (III) an LSTM with contribution analysis189

for return decomposition. (I) Safe exploration. Exploration strategies should assure that LSTM190

receives training data with delayed rewards. Toward this end we introduce a new exploration strategy191

which initiates at a certain time in the episode an exploration sequence to discover delayed rewards.192

To avoid an early stop of the exploration sequence, we perform a safe exploration which avoids193

actions associated with low Q-values. Low Q-values hint at states with zero future reward where the194

agent gets stuck. Exploration parameters are starting time, length, and the action selection strategy195

with safety constraints. (II) Lessons replay buffer. If safe exploration discovers an episode with196

unexpected delayed reward, it is secured in a lessons replay buffer [29]. Episodic memory has been197

used for episodic control [27] and for episodic backward update to efficiently propagate delayed198

rewards [26]. Unexpected is indicated by a large prediction error of LSTM. Sampling from lessons199

replay buffer is done similar to prioritized experience replay. Episodes with larger error are more often200

sampled. (III) LSTM and contribution analysis. LSTM networks [19, 21]), are used to predict the201

return from a input sequence. LSTM solves the vanishing gradient problem [19, 20], which severely202

impedes credit assignment in recurrent neural networks, i.e. the correct identification of relevant but203

delayed input events. LSTM backward analysis is done through contribution analysis like layer-wise204

relevance propagation (LRP) [2], Taylor decomposition [2, 34], or integrated gradients (IG) [55].205

These methods identify the contributions of the inputs to the final prediction, therefore supply the206

return decomposition.207

The LSTM return decomposition is optimal if LSTM predicts at every time step the expected208

final return. To push LSTM toward optimal return decomposition, we introduce continuous return209

predictions as auxiliary tasks, where the LSTM has to predict the final return during the sequence.210

Hyperparameters are when and how often LSTM predicts and how continuous prediction errors are211

weighted. Strictly monotonic LSTM architecture (see AppendixA4.3.1) can also ensure that LSTM212

decomposition is optimal.213

4 Experiments214

We use γ = 1 for delayed rewards in MDPs with finite time horizon or absorbing states which has215

been confirmed to be suited to long delays by meta-gradient reinforcement learning [67].216

Grid World: RUDDER is tested on a grid world with delayed reward at the end of an episode. The217

MDP is a 7× 7 grid with 3 special locations (start, key and door), and 4 actions (up, down, left and218

right). An episode begins with a random start and ends at the fixed door or after 25 time steps. key219

defines the minimal delay. If the agent visits door at time t, then the reward is −t · 0.1 and increased220

by 10 if the agent has visited key, otherwise the reward is 0. To investigate how the delay affects bias221

and variance, Q-values are estimated by TD and MC for a random policy which assures that all states222

are visited. After computing the true Q-values by backward induction, we compare the bias, variance223

and mean squared error (MSE) of the estimators for the MDP with delayed reward and the new MDP224

obtained by RUDDER with optimal reward redistribution. Figure 1 shows that RUDDER has smaller225

number of Q-values with high variance than the original MDP, when learning MC estimators. It also226

shows that RUDDER corrects the bias faster than TD estimators in the original MDP. So far we kept227

the policy constant and focused on learning the action-value function. Next, we compare Q-learning,228
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Monte Carlo (MC), and Monte Carlo Tree Search (MCTS) at learning a policy for the grid world.229

Figure 2 shows the number of episodes required by different methods to learn a policy that achieves230

90% of the return of the optimal policy for different delays. Optimal reward redistribution speeds up231

learning a policy exponentially. More information is available in Appendix A5.1.1.
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Figure 1: Experimental evaluation of MSE, bias, and variance of different Q-value estimators on the
Grid World. Left: Variance of the MC estimator grows exponentially with the delay. Shown are the
number of samples needed to go below a threshold. Right: Bias correction in TD is exponentially
small with the delay. Shown are the number of samples needed to half the initial error for the initial
state estimator in TD.
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Figure 2: Number of observed states required by different methods to learn a policy that achieves 90%
of the return of the optimal policy for different delays. We compare Q-learning, Monte Carlo (MC),
and Monte Carlo Tree Search (MCTS). Left: Grid World environment. Right: Charge-Discharge
environment. Reward redistribution requires an exponentially smaller number of states than the
original methods.

232 Charge-Discharge environment: We test RUDDER on another task, the Charge-Discharge envi-233

ronment, which has two states: discharged D / charged C and two actions discharge d / charge c.234

The deterministic reward is r(D, d) = 1, r(C, d) = 10, r(D, c) = 0, and r(D, c) = 0. The reward235

r(C, d) is accumulated for the whole episode and given only at time T ∈ {3, . . . , 13}, which deter-236

mines the maximal delay of a reward. The deterministic state transitions are ({D, C}, d) → D and237

({D, C}, c) → C. The optimal policy alternates between charging and discharging to accumulate238

a reward of 10 every other time step. RUDDER is based on a monotonic LSTM with layer-wise239

relevance propagation (LRP) for the backwards analysis (see Appendix ?? for more details). The240

reward redistribution provided by RUDDER served to learn a policy by Q-learning. We compare241

RUDDER with Q-learning, MC and MCTS. The results are shown in Figure 2. Reward redistribution242

requires an exponentially smaller number of states than Q-learning, MC and MCTS to learn the243

optimal policy.244

Atari Games Bowling and Venture: We investigated the Atari games supported by the Arcade245

Learning Environment [7] and OpenAI Gym [8] for games with delayed reward. Requirements for246

proper games to demonstrate performance on delayed reward are: (I) large delay between an action247

and the resulting reward, (II) no distractions due to other rewards or changing characteristics of the248

environment, (III) no skills to be learned to receive the delayed reward. The requirements were met249
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by Bowling and Venture. In Bowling the only reward of the game is given at the end of the episode,250

200 frames after the first relevant action. In Venture the first reward has a minimum delay of 120251

frames from the first relevant action. Figure 3 shows that RUDDER learns faster than rainbow [17],252

Prioritized DDQN [47], Noisy DQN [11], Dueling DDQN [63], DQN [33], C51 (Distributional253

DQN) [6], DDQN [60], A3C [31], and Ape-X DQN [22]. RUDDER sets a new state-of-the-art score254

in Bowling after 12M environment frames. Thus, RUDDER outperforms its competitors in only 10%255

of their training time, as shown in Table 1. For more details see For more details see Appendix A5.2.256
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Figure 3: RUDDER learns the delayed reward for the Atari games Bowling and Venture faster than
other methods. Normalized human-percentage scores during training for Bowling (left) and for
Venture (right), where learning curves are taken from previous publications [17, 22]. RUDDER sets a
new state-of-the-art for Bowling.

Algorithm Frames Bowling Venture
% raw % raw

RUDDER 12M 62.10 108.55 96.55 1,147
rainbow 200M 5.01 30 0.46 5.5
Prioritized DDQN 200M 28.71 62.6 72.67 863
Noisy DQN 200M 39.39 77.3 0 0
Dueling DDQN 200M 30.81 65.5 41.85 497
DQN 200M 19.84 50.4 13.73 163
Distributional DQN 200M 37.06 74.1 93.22 1,107
DDQN 200M 32.7 68.1 8.25 98
Ape-X DQN 22,800M -17.6 4 152.67 1,813
Random – 0 23.1 0 0
Human – 100 160.7 100 1,187

Table 1: Results of RUDDER and other methods when learning the Atari games Bowling and Venture.
Normalized human-percentage and raw scores over 200 testing-games with no-op starting condition:
A3C scores are not reported, as not available for no-op starting condition. Scores for other methods
were taken from previous publications [6, 17]. The RUDDER model is chosen based only on its
training loss over 12M frames.

RUDDER Implementation for Bowling and Venture. We implemented RUDDER for the prox-257

imal policy optimization (PPO) algorithm [50]. For policy gradients the expected updates are258

Eπ [∇θ log π(a | s;θ)qπ(s, a)], where qπ(s, a) is replaced during learning by the return Gt or its259

expectation. RUDDER policy gradients replace qπ(s, a) by the redistributed reward r(s, a) assuming260

an optimal return decomposition. With eligibility traces using λ ∈ [0, 1] for Gλt [58], we have261

the rewards ρt = rt + λρt+1 with ρT+1 = 0 and the expected updates Eπ [∇θ log π(at | st;θ)ρt].262

We use integrated gradients [55] for the backward analysis of RUDDER. The LSTM prediction263

g is decomposed by the integrated gradient IG via the equation g(x) = IG(g,x,0) + g(0) =264 ∑T
t=0

(
h(at,∆(st, st+1)) + (1/(T + 1))g(0)

)
. For Atari games, ∆ is defined as pixel-wise differ-265

ence of two consecutive frames. To make static objects visible, we augment the input with the current266

frame. For more implementation details see Appendix A5.2. Source code will be made available.267
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Evaluation Methodology. Agents were trained for 12M environment frames with no-op starting268

condition, i.e. a random number of up to 30 no-operation actions at the start of a game. Training269

episodes are terminated by loss of life or at 108K frames. After training, the best model was270

selected based on training data and evaluated on 200 games with no-op starting condition and a271

maximum length of 108K frames, following [61]. For comparison across games, the normalized272

human-percentage scores according to [6] are reported.273

Visual Confirmation of the Learning Boost of Reward Redistribution. We visually confirmed274

a meaningful and helpful redistribution of reward in both Bowling and Venture during training.275

As illustrated in Figure 4, RUDDER is capable of redistributing a reward to key events in game,276

drastically shortening the delay of the reward and quickly steering the agent toward good policies.277

Furthermore, it enriches sequences that were sparse in reward with a dense reward signal.

Figure 4: Observed return decomposition by RUDDER in two Atari games with long delayed rewards.
Left: In the game Bowling reward is only given after three strikes have been performed. RUDDER
identifies the actions that guide the ball in the right direction to hit all pins. Once the ball hit the
pins, RUDDER detects the delayed reward associated with striking the pins down. In the figure
only 100 frames are represented but the whole episode spans 200 frames. In the original game, the
reward is given only at the end of the episode. Right: In the game Venture reward is only obtained
after picking the treasure. RUDDER guides the agent (red) towards the treasure (golden) via reward
redistribution. Reward is redistributed to entering a room with treasure. Furthermore, the redistributed
reward gradually increases as the agent approaches the treasure. For illustration purposes, the green
curve shows the return redistribution before applying lambda. The environment only gives reward at
the event of collecting treasure (blue curve).

278

5 Discussion and Conclusion279

Exploration is the most critical part of RUDDER, since discovering delayed rewards is the first step280

to exploit them.281

Human expert episodes are an alternative to exploration and can serve to fill the lessons replay282

buffer. Learning can be sped up considerably when LSTM identifies human key actions. Return283

decomposition will reward human key actions even for episodes with low return since other actions284

that thwart high returns receive negative reward. Using human demonstrations in reinforcement285

learning led to a huge improvement on some Atari games like Montezuma’s Revenge [37, 1].286

Conclusion. We have shown that for finite Markov decision processes with delayed rewards TD287

exponentially slowly corrects biases and MC can increase exponentially many variances of estimates,288

both in the number of delay steps. We have introduced RUDDER, a return decomposition method,289

which creates a new MDP that keps the optimal policies but its redistributed rewards do not have290

delays. In the optimal case TD for the new MDP is unbiased. On two artificial tasks we demonstrated291

that RUDDER is exponentially faster than TD, MC, and MC Tree Search (MCTS). For the Atari292

game Venture with delayed reward RUDDER outperforms all methods except Ape-X DQN in293

much less learning time. For the Atari game Bowling with delayed reward RUDDER improves the294

state-of-the-art and outperforms PPO, Rainbow, and APE-X with less learning time.295
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