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Abstract—Reinforcement learning has been successfully used
to solve difficult tasks in complex unknown environments.
However, these methods typically do not provide any safety
guarantees, which prevents their use in safety-critical, real-
world applications. In this paper, we attempt to bridge the gap
between learning-based techniques that are scalable and highly
autonomous but often unsafe and robust control techniques,
which have a solid theoretical foundation that guarantees safety
but often require extensive expert knowledge to identify the
system and estimate disturbance sets. We combine a provably
safe learning-based MPC scheme that allows for input-dependent
uncertainties with techniques from model-based RL to solve tasks
with only limited prior knowledge. We evaluate the resulting
algorithm to solve a reinforcement learning task in a simulated
cart-pole dynamical system with safety constraints.

I. INTRODUCTION

In model-based reinforcement learning (RL,[8]), we aim to
learn the dynamics of an unknown system from data and use
it to derive a policy that optimizes the long-term behavior of
the system. In order to be successful, these methods need to
explore regions of the state-space that are unknown to collect
observations that improve the model. In real-world safety-
critical systems, we require exploratory actions to be safe to
perform by satisfying state and control constraints at all times.
In contrast, current approaches often use exploration strategies
that could lead to unsafe behavior and, hence, have limited
applicability to real-world systems [11]. Learning-based ap-
proaches that guarantee safety, on the other hand, often rely
on conservative assumptions, such as fixed, state-independent
disturbance sets, or require extensive computation [1, 7].
In this paper, we extend a previously proposed learning-based
MPC algorithm with safety guarantees to solve RL tasks [6].
We design an objective function that allows the MPC scheme
to find controls that maximize the performance of the system
while remaining safe at all times. This is illustrated in Figure 1.

II. PROBLEM STATEMENT

We consider a nonlinear, continuously differentiable,
discrete-time dynamical system

xt+1 = f(xt, ut) = h(xt, ut)︸ ︷︷ ︸
prior model

+ g(xt, ut)︸ ︷︷ ︸
unknown error

, (1)

where xt ∈ Rp is the state and ut ∈ Rq is the control
input to the system at time step t ∈ N. We encode all the

Fig. 1. Simultaneous planning of a performance trajectory (green ellipsoids)
using an approximate uncertainty propagation technique and a safety trajectory
(purple ellipsoids) based on a robust multi-step ahead prediction technique
[6]. While the performance trajectory optimizes the expected long-term utility
(e.g. distance to goal state xg) of applying a control input at x0, the safety
trajectory guarantees that the same input could return the system to the safe
set XSafe without violating the safety constraints X and control constraints U .

prior knowledge that we have about our system in a prior
model h, while the model errors and disturbances are given
by the a priori unknown function g. We want to learn the
unknown model-error g by actively collecting observations of
our system. To this end, we use a statistical model with mean
µn(xt, ut) and corresponding input-dependent uncertainty es-
timates σn(xt, ut), where n is the number of observations
we collected so far. We now make the assumption that our
statistical model reliably estimates the uncertainty about our
system. That is, we assume that for every δ > 0 there exists a
β > 0 such that with probability at least 1−δ, jointly ∀n ∈ N
we have for all 1 ≤ j ≤ p, z ∈ X × U that

|µn−1,j(z)− gj(z)| ≤ β · σn−1,j(z), (2)

where both, the set of admissible states X ⊂ Rp and controls
U ⊂ Rq are assumed to be polytopic. Under certain technical
assumptions on g and the choice of our statistical model, a β
can be computed in closed-form that guarantees (2) [2]. In a
more practical sense, we can regard the scaling factor β as a
parameter that controls our confidence in the statistical model.

Further, we rely on the assumption that, typically around the
origin, we often have a good understanding of the behavior of
a system. This often allows us to find a controller that satisfies
our constraints in a bounded region of the state space. Hence,
we assume the existence of a safety controller πsafe and a
polytopic safety region Xsafe such that for arbitrary k ∈ N, we
have xk ∈ Xsafe ⇒ f(xt, πsafe(xt)) ∈ X , ∀t ≥ k [6, 10]. As
the safety controller can only be used in this possibly small
region, we want to design a controller π that can be used



outside of Xsafe. Given the limited knowledge of our system,
we can only require probabilistic worst-case safety guarantees,

Pr [∀t ∈ N : f(xt, π(xt)) ∈ X , π(xt) ∈ U ] ≥ 1− δ, (3)

i.e. a high-probability safety guarantee over the whole oper-
ation time. Given a mission objective to reach and remain at
certain set point xg of our system, we want to find a controller
that solves this RL task while guaranteeing that (3) holds.

III. SAFE REINFORCEMENT LEARNING

We design a MPC scheme that can solve a given RL task
under safety constraints. In order to do so, we need to reliably
propagate the uncertainty of our system, design appropriate
constraints and find a suitable objective function.

A. Uncertainty propagation and constraints

Given control inputs u = {u0, .., uT−1} and an ellipsoidal
state estimate R0 known to contain the true system state, an
ellipsoidal uncertainty propagation technique of the form

Rt+1 = m̃(Rt, ut), t = 0, .., T − 1, (4)

is derived in [6] using our statistical model and Lipschitz
information of the prior model h and the statistical model
(µn, σn). Independently of T and how often this technique is
applied, the system will be contained in the corresponding se-
quences of ellipsoids jointly with high probability. The system
constraints along the trajectory, Ri ⊂ X , t = 1, .., T, u ⊂ U ,
can now be verified analytically [9].

B. Reinforcement learning objective and MPC scheme

We require an objective function that jointly encourages
exploration and finding a good control strategy based on
our current statistical model. Since (4) provides a worst-case
outer approximation of our system, it does not reflect the
probabilistic nature of our statistical model. This prevents
us from accurately estimating the expected performance of a
sequence of control inputs. We hence employ a second, proba-
bilistic uncertainty propagation technique using our statistical
model, st+1 = mperf (st, vt) ∼ N (mt, St), t = 0, ..,H − 1,
with s0 = p0, the center of the ellipsoid R0, providing us
with a peformance trajectory s0, .., sT of Gaussian distributed
states under inputs v = {v0, .., vH−1}. We then compute the
approximated expected long-term cost of applying the controls
in closed-form using the saturating cost function csat, i.e.

Jv(s0) =

T∑
t=0

E[csat(st, xg)], (5)

providing an efficient trade-off between exploration and
exploitation [3]. We can now formulate the MPC problem

minimize
u⊂U,v⊂U

Jv(s0) (6a)

subject to Rt+1 = m̃(Rt, ut), t = 0, .., T − 1 (6b)
Rt ⊂ X , ut ∈ U , t = 1, .., T − 1 (6c)
RT ⊂ Xsafe (6d)
v0 = u0, u0 ∈ U , (6e)

TABLE I
RATIO OF FAILED ROLLOUTS OF ALL EPISODES AND CUMULATIVE FINAL
EPISODE COST (AVERAGED OVER SUCCESSFUL ROLLOUTS) FOR VARYING
LENGTHS H ∈ {5, 10, 15} OF THE PERFORMANCE TRAJECTORY. LOWER

IS BETTER FOR BOTH BENCHMARKS.

Cautious MPC (T = 0) SafeMPC (T = 2)
H Failures[%] Cep Failures[%] Cep

5 87.5 281.88 0.0 > 1000
10 10.4 164.26 0.0 661.04
15 18.7 153.16 0.0 163.42

where (6c), (6d) guarantees that there exists a collision-free
return path to Xsafe. With v0 = u0, we ensure that the
first control input both optimizes the long-term cost (5) and
can recover the system to the safe set if needed. In case of
infeasibility of (6) in the next time step, we execute the safety
controls u open-loop until there is a new feasible solution
or we switch to πsafe after T − 1 consecutively infeasible
solutions. This guarantees that the system remains safe with
high probability throughout operation [6, Theorem 2].

IV. EXPERIMENTS

We evaluate the proposed MPC scheme to solve a RL task
in an underactuated cart-pole system. The state of the system
is given by the position xcart and velocity ẋcart of the cart as
well as the pendulum angle θ and the corresponding velocity
θ̇. Initialized in an upright position at xcart = −2, the task
is to control the system to xcart = 2.6. We limit the length
of the rail by xcart ∈ [−10, 3.0] and simulate a floor, i.e.
θ ∈ [−90, 90]. The known part of our system h is given by a
linearized and discretized wrongly identified system. We use
Gaussian process (GP) regression to estimate the unknown
model-error g and the performance trajectory is computed
using the uncertainty propagation technique proposed in [4]
with varying length H ∈ {5, 10, 15}. We compare a cautious
MPC setting with T = 0 and chance constraints on the
performance trajectory, similar to [5], with our proposed
algorithm using T = 2 and β = 2. We run our MPC
algorithm in an episode setting over 50 time steps, reset the
system afterwards and update the GP model with the observed
noisy transition and repeat. We report the cumulative episode
cost Cep =

∑nsteps

t=0 0.1(xcartt − xg)2 and the percentage of
rollouts that violate the constraints after eight episodes. We
average over ten repetitions of the experiment. The results
show that our approach can safely solve the task, while
approaches without explicit safety strategies may violate the
safety constraints.

V. CONCLUSION

We extended a provably safe learning-based MPC algorithm
to solve a RL task under safety constraints. By combining the
safety features of the learning based MPC framework with
techniques from model-based RL, we can guarantee the safety
of the system while learning a given task. We experimentally
showed that our proposed RL algorithm is capable of learning
a task in a simulated cart-pole system without violating safety
constraints.
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