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ABSTRACT

Link prediction in simple graphs is a fundamental problem in which new links
between nodes are predicted based on the observed structure of the graph. However,
in many real-world applications, there is a need to model relationships among nodes
which go beyond pairwise associations. For example, in a chemical reaction, rela-
tionship among the reactants and products is inherently higher-order. Additionally,
there is need to represent the direction from reactants to products. Hypergraphs
provide a natural way to represent such complex higher-order relationships. Even
though Graph Convolutional Networks (GCN) have recently emerged as a pow-
erful deep learning-based approach for link prediction over simple graphs, their
suitability for link prediction in hypergraphs is unexplored – we fill this gap in this
paper and propose Neural Hyperlink Predictor (NHP). NHP adapts GCNs for link
prediction in hypergraphs. We propose two variants of NHP – NHP-U and NHP-D
– for link prediction over undirected and directed hypergraphs, respectively. To the
best of our knowledge, NHP-D is the first method for link prediction over directed
hypergraphs. Through extensive experiments on multiple real-world datasets, we
show NHP’s effectiveness.

1 INTRODUCTION

The problem of link prediction in graphs has numerous applications in the fields of social network
analysis (Liben-Nowell & Kleinberg, 2003), knowledge bases (Nickel et al., 2016), bioinformatics
(Lü & Zhou, 2011) to name a few. However, in many real-world problems relationships go beyond
pairwise associations. For example, in chemical reactions data the relationship representing a group
of chemical compounds that can react is inherently higher-order and similarly, the co-authorship
relationship in a citation network is higher-order etc. Hypergraphs provide a natural way to model
such higher-order complex relations. Hyperlink prediction is the problem of predicting such missing
higher-order relationships in a hypergraph.

Besides the higher-order relationships, modeling the direction information between these relationships
is also useful in many practical applications. For example, in the chemical reactions data, in addition to
predicting groups of chemical compounds which form reactants and/or products, it is also important to
predict the direction between reactants and products, i.e., a group of reactants react to give a group of
products. Directed hypergraphs (Gallo et al., 1993) provide a way to model the direction information
in hypergraphs. Similar to the undirected hypergraphs, predicting the missing hyperlinks in a directed
hypergraph is also useful in practical settings. Figure 1 illustrates the difference between modeling
the chemical reactions data using undirected and directed hypergraphs. Most of the previous work on
hyperlink prediction (Zhou et al., 2006; Zhang et al., 2018) focus only on undirected hypergraphs. In
this work we focus both on undirected and directed hypergraphs.

Recently, Graph Convolutional Networks (GCNs) (Kipf & Welling, 2017) have emerged as a powerful
tool for representation learning on graphs. GCNs have also been successfully applied for link
prediction on normal graphs (Zhang & Chen, 2018; van den Berg et al., 2018; Schlichtkrull et al.,
2018; Kipf & Welling, 2016). Inspired by the success of GCNs for link prediction in graphs and deep
learning in general Wang et al. (2017), we propose a GCN-based framework for hyperlink prediction
which works for both undirected and directed hypergraphs. We make the following contributions:
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Figure 1: Illustrating the difference between modeling chemical reactions data using undirected
and directed hypergraphs. To the left is the undirected hypergraph, in which both the reactants and
products are present in the same hyperlink. Whereas in the directed hypergraph (to the right), for a
given reaction, the reactants are connected by one hyperlink and products are connected by another
hyperlink and both these hyperlinks are connected by a directed link.

• We propose a Graph Convolutional Networks (GCN)-based framework called Neural Hyper-
link Predictor (NHP) for the problem of hyperlink prediction. To the best of our knowledge,
this is the first ever deep learning based approach for this problem.
• We extend the proposed NHP for the problem of hyperlink prediction in directed hypergraphs.

To the best of our knowledge, this is the first ever attempt at the problem of link prediction
in directed hypergraphs.
• Through extensive experiments on multiple real-world datasets, we show the effectiveness

of proposed NHP for link prediction in both undirected and directed hypergraphs.

We have released NHP’s source code at this anonymous location: https://anonymous.4open.
science/repository/7d86231e-f6ba-4795-ae51-ac28d89f1521/.

2 RELATED WORK

In this section, we briefly review related work in deep learning on graphs and link prediction on
hypergraphs.

Learning representations on graphs: The key advancements in learning low-dimensional node
representations in graphs include matrix factorisation-based methods, random-walk based algorithms,
and deep learning on graphs (Hamilton et al., 2017). Our work is based on deep learning on graphs.

Geometric deep learning (Bronstein et al., 2017) is an umbrella phrase for emerging techniques
attempting to generalise (structured) deep neural network models to non-Euclidean domains such as
graphs and manifolds. The earliest attempts to generalise neural networks to graphs embed each node
in an Euclidean space with a recurrent neural network (RNN) and use those embeddings as features
for classification or regression of nodes or graphs (Gori et al., 2005; Scarselli et al., 2009).

A CNN-like deep neural neural network on graphs was later formulated in the spectral domain in a
pioneering work (Bruna et al., 2014) by a mathematically sound definition of convolution on graph
employing the analogy between the classical Fourier transforms and projections onto the eigen basis
of the graph Laplacian operator (Hammond et al., 2011). Initial works proposed to learn smooth
spectral multipliers of the graph Laplacian, although at high computational cost (Bruna et al., 2014;
Henaff et al., 2015). To resolve the computational bottleneck and avoid the expensive computation
of eigenvectors, the ChebNet framework (Defferrard et al., 2016) learns Chebyshev polynomials of
the graph Laplacian (hence the name ChebNet). The graph convolutional network (GCN) (Kipf &
Welling, 2017) is a simplified ChebNet framework that uses simple filters operating on 1-hop local
neighborhoods of the graph.

A second formulation of convolution on graph is in the spatial domain (or equivalently in the vertex
domain) where the localisation property is provided by construction. One of the first formulations
of a spatial CNN-like neural network on graph generalised standard molecular feature extraction
methods based on circular fingerprints (Duvenaud et al., 2015). Subsequently, all of the above types
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(RNN, spectral CNN, spatial CNN on graph) were unified into a single message passing neural
network (MPNN) framework (Gilmer et al., 2017) and a variant of MPNN has been shown to achieve
state-of-the-art results on an important molecular property prediction benchmark.

The reader is referred to a comprehensive literature review (Bronstein et al., 2017) and a survey
(Hamilton et al., 2017) on the topic of deep learning on graphs and learning representation on graphs
respectively. Below, we give an overview of related research in link prediction on hypergraphs where
relationships go beyond pairwise.

Link Prediction on hypergraphs: Machine learning on hypergraphs was introduced in a seminal
work (Zhou et al., 2006) that generalised the powerful methodology of spectral clustering to hyper-
graphs and further inspired algorithms for hypergraph embedding and semi-supervised classification
of hypernodes.

Link prediction on hypergraph (hyperlink prediction) has been especially popular for social networks
to predict higher-order links such as a user releases a tweet containing a hashtag (Li et al., 2013) and
to predict metadata information such as tags, groups, labels, users for entities (images from Flickr)
(Arya & Worring, 2018). Techniques for hyperlink prediction on social networks include ranking
for link proximity information (Li et al., 2013) and matrix completion on the (incomplete) incidence
matrix of the hypergraph (Arya & Worring, 2018; Monti et al., 2017). Hyperlink prediction has also
been helpful to predict multi-actor collaborations (Sharma et al., 2014).

In other works, a dual hypergraph has been constructed from the intial (primal) hypergraph to cast
the hyperlink prediction as an instance of vertex classification problem on the dual hypergraph
(Lugo-Martinez & Radivojac, 2017). Coordinated matrix maximisation (CMM) predicts hyperlinks
in the adjacency space with non-negative matrix factorisation and least square matching performed
alternately in the vertex adjacency space (Zhang et al., 2018). CMM uses expectation maximisation
algorithm for optimisation for hyperlink prediction tasks such as predicting missing reactions of
organisms’ metabolic networks.

3 PRELIMINARIES

Undirected hypergraph is an ordered pair H = (V,E) where V = {v1, · · · , vn} is a set of n
hypernodes and E = {e1, · · · , em} ⊆ 2V is a set of m hyperlinks.

The problem of link prediction in an incomplete undirected hypergraphH involves predicting missing
hyperlinks from Ē = 2V − E based on the current set of observed hyperlinks E. The number
of hypernodes in any given hyperlink e ∈ E can be any integer between 1 and 2n. This variable
cardinality of a hyperlink makes traditional graph-based link prediction methods infeasible because
they are based on exactly two input features (those of the two nodes potentially forming a link). The
variable cardinality problem also results in an exponentially large inference space because the total
number of potential hyperlinks is O(2n). However, in practical cases, there is no need to consider all
the hyperlinks in Ē as most of them can be easily filtered out (Zhang et al., 2018). For example, for
the task of finding missing metabolic reactions, we can restrict hyperlink prediction to all feasible
reactions because the infeasible reactions seldom have biological meanings. In other cases such as
predicting multi-author collaborations of academic/technical papers, hyperlinks have cardinalities
less than a small number, as papers seldom have more than 6 authors. The number of restricted
hyperlinks in such practical cases is not exponential and hence hyperlink prediction on the restricted
set of hyperlinks becomes a feasible problem.

Formally, a hyperlink prediction problem (Zhang et al., 2018) is a tuple (H, E), where H = (V,E)
is a given incomplete hypergraph and E is a set of (restricted) candidate hyperlinks with E ⊆ E . The
problem is to find the most likely hyperlinks missing in H from the set of hyperlinks E − E.

Directed hypergraph (Gallo et al., 1993) is an ordered pair H = (V,E) where V = {v1, · · · , vn}
is a set of n hypernodes and E = {(t1, h1), · · · , (tm, hm)} ⊆ 2V is a set of m directed hyperlinks.
Each e ∈ E is denoted by (t, h) where t ⊆ V is the tail and h ⊆ V is the head with t 6= Φ, h 6= Φ.
As shown in figure 1, chemical reactions can be modeled by directed hyperlinks with chemical
substances forming the set V . Observe that this model captures and is general enough to subsume
previous graph models:

• an undirected hyperlink is the special case when t = h
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• a directed simple link (edge) is the special case when |t| = |h| = 1

Similar to the undirected case, the directed hyperlink prediction problem is a tuple (H, E), where
H = (V,E) is a given incomplete directed hypergraph and E is a set of candidate hyperlinks with
E ⊆ E . The problem is to find the most likely hyperlinks missing in H from the set of hyperlinks
E − E.

4 PROPOSED FRAMEWORK NHP

In this section we discuss the proposed approach for link prediction in hypergraphs. Our proposed
NHP can predict both undirected and directed hyperlinks in a hypergraph. We start with how NHP
can be used to predict undirected hyperlinks and then explain how NHP can be extended to the
directed case.

4.1 NHP-U: LINK PREDICTION IN UNDIRECTED HYPERGRAPHS

Given an undirected hypergraph H = (V,E), as a first step NHP constructs a dual hypergraph
H∗ = (V ∗, E∗) of H defined as follows.

Hypergraph Duality (Scheinerman & Ullman, 2011) The dual hypergraph of a hypergraph H =
(V,E) with V = {v1, . . . , vn} and E = {e1, . . . , em}, denoted by H∗ = (V ∗, E∗) is obtained by
taking V ∗ = E as the set of hypernodes and E∗ = {e∗1, . . . , e∗n} such that e∗i = {e ∈ E : vi ∈ e}
with e∗i corresponding to vi for i = 1, . . . , n. The vertex-hyperedge incidence matrices of H and H∗
are transposes of each other.

The problem of link prediction in H can be posed as a binary node classification problem in H∗
(Lugo-Martinez & Radivojac, 2017). A label +1 on a node inH∗ indicates the presence of a hyperlink
in H and a label of −1 indicates the absence. For the problem of semi-supervised node classification
on the dual hypergraph H∗, we use Graph Convolutional Networks (GCN) on the graph obtained
from the clique expansion of H∗. Clique expansion (Zhou et al., 2006; Feng et al., 2019) is a standard
and a simple way of approximating a hypergraph into a planar graph by replacing every hyperlink of
size s with an s-clique (Feng et al., 2018).

Graph Convolutional Network (Kipf & Welling, 2017) Let G = (V, E), withN = |V|, be a simple
undirected graph with the adjacency matrix A ∈ RN×N , and let the data matrix be X ∈ RN×p. The
data matrix has p-dimensional real-valued vector representations for each node in the graph. The
forward model for a simple two-layer GCN takes the following simple form:

Z = fGCN (X,A) = softmax

(
Ā ReLU

(
ĀXΘ(0)

)
Θ(1)

)
, (1)

where Ā = D̃−
1
2 ÃD̃−

1
2 , Ã = A + I, and D̃ii =

∑N
j=1 Ãij . Θ(0) ∈ Rp×h is an input-to-hidden

weight matrix for a hidden layer with h hidden units and Θ(1) ∈ Rh×r is a hidden-to-output weight
matrix. The softmax activation function is defined as softmax(xi) = exp(xi)∑

j exp(xj) and applied row-wise.

For semi-supervised multi-class classification with q classes, we minimise the cross-entropy error
over the set of labeled examples, VL.

L = −
∑
i∈VL

q∑
j=1

Yij lnZij . (2)

The weights of the graph convolutional network, viz. Θ(0) and Θ(1), are trained using gradient
descent.

We note that Lugo-Martinez & Radivojac (2017) also follow a similar approach of constructing dual
graph followed by node classification for hyperlink prediction. However, ours is a deep learning based
approach and (Lugo-Martinez & Radivojac, 2017) do not perform link prediction in the directed
hypergraphs.
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Figure 2: (best seen in colour) The proposed NHP framework. We convert the hypergraph with the
observed hyperlinks and the candidate hyperlinks into its dual in which hyperlinks are converted into
hypernodes. We then use a technique from positive unlaballed learning to get plausible negatively
labelled hypernodes. The clique expansion of the hypergraph is used to approximate the hypergraph.
Then a GCN is run on the graph to classify the unlabelled hypernodes. A label of +1 on e1 indicates
presence of the e1 in the primal. For more details, refer to section 4.

Learning on hypergraphs in the positive unlabelled setting The cross-entropy objective of GCN
in equation 2 inherently assumes the presence of labeled data from at least two different classes
and hence cannot be directly used for the positive unlabeled setting. A challenging variant of
semi-supervised learning is positive-unlabelled learning (Elkan & Noto, 2008) which arises in many
real-world applications such as text classification, recommender systems, etc. In this setting, only a
limited amount of positive examples are available and the rest are unlabelled examples.

In positive unlabelled learning framework, we construct a plausible negative sampling set based on
data similarity (Han & Shen, 2016). We calculate the average similarity of each unlabelled point
u ∈ E − E, to the positive labelled examples in E:

su =
1

|E|
∑
e∈E

S

(
f(u), f(e)

)
(3)

where S represents a similarity function and f represents a map that maps an example to a d-
dimensional emebedding space f : E → Rd. We then rank the unlabelled training examples in E −E
in the ascending order of their average similarity scores. We then select the top ones in the ascending
order (i.e. with the lowest similarity values) to construct the set of plausible negative examples
F ⊆ E − E. The intuition here is that the set of plausible negative examples contain examples
most dissimilar to the positive examples. The GCN on the hypergraph can subsequently be run by
minimising the objective 2 over the positive examples in E and the plausible negative examples in F
i.e. VL = E ∪ F .

4.2 NHP-D: LINK PREDICTION IN DIRECTED HYPERGRAPHS

As explained in Section 3, hyperlink prediction in directed hypergraphs is the problem of predicting
directing links which are tail-head set pairs. However, in practice the collection of the tail and head
sets is also incomplete. Therefore, the problem of link prediction in directed hypergraphs also requires
to predict missing tail and head sets of nodes besides predicting directed links among them. The
tail and head sets of nodes can be thought of as undirected hyperlinks and the directed hyperlink
is between these undirected hyperlinks. A straight forward approach for this problem would be to
predict the undirected hyperlinks first and then followed by predicting the directed links between
pairs. However, this sequential approach may not produce desirable results as the error during the
training for directed part would not have any impact on the training for the undirected part. Therefore,
we propose the following joint learning scheme,

Ljoint = Lu + Ld =

(
−
∑
i∈VL

2∑
j=1

Yij lnZij

)
+

(
−

∑
(i,j)∈WL

1∑
k=0

dijk lnDijk

)
. (4)
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dataset iAF692 iHN637 iAF1260b iJO1366
# substances, |V | 628 698 1668 1805

# actual reactions, |E| 690 785 2388 2583
# candidate reactions, |E| 2406 3050 7260 7672

Table 1: Statistics of the four metabolic networks used as undirected hypergraphs

dataset CORA DBLP
# authors, |V | 1072 685

# actual papers (collaborations), |E| 2708 1590
# candidate papers, |E| 5416 3180

# features (vocabulary size), p 1433 602

Table 2: Statistics of the two coauthorship networks used as undirected hypergraphs

We denoteW+
L = {(t, h) ∈ E} to be a set of positively labelled directed pairs in loss Ld. In other

words dij1 = 1 and dij0 = 0 for all (i, j) ∈ W+
L . The tail hyperlink and the corresponfding head

hyperlink are separate hypernodes in the dual and form directed hyperlinks in the primal (with the
direction from t to h). The setW+

L consists of directed hyperlinks that currently exist in the given
directed hypergraph. Note that, for loss Lu, the set of positively labelled hypernodes will be,

V+
L =

⋃
(t,h)∈W+

L

t ∪ h. (5)

We sample |W+
L | = |E| hypernodes (in the dual) from the unlabelled data using the positive

unlabelled approach of 3 to get the set ofW−L pairs. We label these pairs negative i.e. dij1 = 0

and dij0 = 1 for all (i, j) ∈ W−L . We construct V−L =
⋃

(t,h)∈W−
L
t ∪ h similarly as in 5. The sets

VL = V+
L ∪ V

−
L andWL =W+

L ∪W
−
L are used to minimise the objective 6.

To explain how D is computed, we rewrite equation 1 as:

Z = fGCN (X,A) = softmax

(
Ā ReLU

(
ĀXΘ(0)

)
Θ(1)

)
= softmax(X ), (6)

We use D = g(x1, x2) with g being a function that takes the dual hypernode representations x1 ∈ X
and x2 ∈ X and is parameterised by for example a simple neural network. In the experiments, we
used a simple 2-layer multilayer perceptron on the concatenated embeddings x1||x2 i.e.

g(x1, x2) = MLPΘ

(
x1||x2

)
.

We train Θ(0), Θ(1), and Θ end-to-end using backpropagation.

5 EXPERIMENTS FOR UNDIRECTED HYPERLINK PREDICTION

In this section, we evaluate NHP on hyperlink prediction in undirected hypergraphs. We performed
two different sets of experiments whose motivations and setups are as follows.

Predicting reactions of metabolic networks: Reconstructed metabolic networks are important
tools for understanding the metabolic basis of human diseases, increasing the yield of biologically
engineered systems, and discovering novel drug targets. We used four datasets of (Zhang et al.,
2018) and we show the statistics of the datasets used in table 1. For each dataset, we randomly
generated fake reactions according to the substance distribution of the existing reactions. So, the
candidate reactions contain already existing ones and the randomly generated fake ones. The number
of fake reactions generated is equal to the number of already existing ones. Given a small number of
reactions the task is to predict the other reactions.
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dataset iAF692 iHN637 iAF1260b iJO1366 CORA DBLP
SHC (Zhou et al., 2006) 0.69 0.69 0.69 0.70 0.61 0.64
node2vec (Grover & Leskovec, 2016) 0.72 0.73 0.71 0.70 0.59 0.61
CMM (Zhang et al., 2018) 0.50 0.54 0.58 0.60 0.63 0.44
GCN on star expansion (Ying et al., 2018) 0.56 0.54 0.53 0.48 0.54 0.42
NHP-U (ours) 0.75 0.75 0.71 0.72 0.64 0.65

Table 3: mean AUC (higher is better) over 10 trials. NHP achieves consistently superior performance
over its baselines for all the datasets. Refer to section 5 for more details.

dataset iAF692 iHN637 iAF1260b iJO1366 CORA DBLP
SHC (Zhou et al., 2006) 248± 6 289± 4 1025± 4 1104± 19 1056± 14 845± 18
node2vec (Grover & Leskovec, 2016) 299± 10 303± 4 1100± 13 1221± 21 1369± 15 813± 9
CMM (Zhang et al., 2018) 170± 6 225± 10 827± 1 963± 15 1452± 13 651± 20
GCN on star expansion (Ying et al., 2018) 174± 5 219± 12 649± 10 568± 18 1003± 14 646± 15
NHP-U (ours) 313± 6 360± 5 1258± 9 1381± 9 1476± 20 866± 15

# missing hyperlinks, |∆E| 621 706 2149 2324 2437 1431
Recall@ |∆E| for NHP-U 0.50 0.51 0.58 0.59 0.60 0.61

Table 4: mean (± std) number of hyperlinks recovered over 10 trials (higher is better) among the top
ranked |∆E| hyperlinks. NHP achieves consistently superior performance over its baselines for all
the datasets. Refer to section 5 for more details.

Predicting multi-author collaborations in coauthorship networks: Research collaborations in
scientific community have been extensively studied to understand team dynamics in social networks
(Newman, 2001; Barabási et al., 2002; Bai et al., 2018; Chen et al., 2015). Coauthorship data provide
a means to analyse research collaborations. We used cora and dblp for coauthorship data. The
statistics are shown in table 2 and the construction of the datasets is pushed to the supplementary. A
coauthorship hypergraph (primal) contains each author as a hypernode and each paper represents
a hyperlink connecting all the authors of the paper. The corresponding dual hypergraph considers
each author as a hyperlink connecting all the papers (hypernodes) coauthored by the author. The
hyperlink prediction problem is given a small number of collaborations, to essentially predict other
collaborations among a given set of candidate collaborations.

5.1 EXPERIMENTAL SETUP

For each dataset we randomly sampled 10% of the hypernodes to get E and then we sampled an equal
number of negatively-labelled hypernodes from E − E in the positive-unlabelled setting of 3. To get
the feature matrix X , we used random 32−dimensional Gaussian features (p = 32 in equation 1)
for the metabolic networks and bag-of-word features shown in table 2 for the coauthorship datasets.
For fake papers we generated random Gaussian bag-of-word features. We used node2vec (Grover
& Leskovec, 2016) to learn low dimensional embedding mapping, f : E → Rd with d = 128. We
used the clique expansion of the dual hypergraph as input graph to node2vec and cosine similarity to
compute similarity between two embeddings.

We compared NHP against the following state-of-the-art baselines for the same E as constructed
above.

• Spectral hypergraph Clustering (SHC) (Zhou et al., 2006): SHC outputs classification
scores by f = (I − ξΘ)−1y. We used SHC on the dual hypergraph.
• node2vec (Grover & Leskovec, 2016): One of the most popular node embedding ap-

proaches. We note that (Grover & Leskovec, 2016) have shown node2vec to be superior
to DeepWalk (Perozzi et al., 2014) and LINE (Tang et al., 2015) and hence we compared
against only node2vec. We used node2vec to embed the nodes of the clique expansion (of
the dual). We then used an MLP on the embeddings with the semi-supervised objective of
equation 2 in the positive unlabelled setting of equation 3.
• Co-ordinated Matrix Maximisation (CMM) (Zhang et al., 2018): The matrix

factorisation-based CMM technique uses the EM algorithm to determine the presence
or absence of candidate hyperlinks.
• GCN on star expansion (Ying et al., 2018): PinSage (Ying et al., 2018) is a GCN-based

method designed to work on the (web-scale) bipartite graph of Pinterest. The Pinterest
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graph can be seen as the star expansion of a hypergraph (Agarwal et al., 2006) with pins
(hypernodes) on one side of the partition and boards (hyperlinks) on the other side. We have
compared NHP against star expansion. This is essentially approximating the hypergraph
with its star exapansion and then running a GCN over it (instead of the clique expansion of
NHP).

5.2 EXPERIMENTAL RESULTS

Similar to (Zhang et al., 2018), we report mean AUC over 10 trials in table 3 and the mean number of
hyperlinks recovered over 10 trials in the top ranked |∆E| ones in table 4. Note that ∆E ⊂ E is the
set of missing hyperlinks with |∆E| = 0.9 ∗ |E|. As we can observe, we consistently outperform the
baselines in both the metrics. We believe this is because of the powerful non-linear feature extraction
capability of GCNs. We also report Recall@ |∆E| for NHP-U for all datasets (to make the numbers
across datasets somewhat comparable). It is got through dividing the mean number of hyperlinks
recovered by ∆E.

6 EXPERIMENTS FOR DIRECTED HYPERLINK PREDICTION

dataset iAF692 iHN637 iAF1260b iJO1366
# substances, |V | 595 668 1542 1665
# actual reactions 519 571 1544 1683

# candidate reactions, |E| 917 1160 2531 2669

Table 5: Statistics of the four metabolic networks used as directed hypergraphs

dataset iAF692 iHN637 iAF1260b iJO1366
node2vec (Grover & Leskovec, 2016) + MLP 0.53 0.52 0.58 0.56
CMM (Zhang et al., 2018) + MLP 0.53 0.52 0.52 0.51
GCN on star expansion (Ying et al., 2018) + MLP 0.48 0.52 0.53 0.50
NHP-D (sequential) 0.57 0.48 0.63 0.60
NHP-D (joint) 0.58 0.51 0.62 0.59

Table 6: mean AUC over 10 trials for all the datasets. Both the proposed models achieve similar
results. Refer to section 6 for more details.

dataset iAF692 iHN637 iAF1260b iJO1366
node2vec (Grover & Leskovec, 2016) + MLP 255± 5 237± 5 838± 13 902± 11
CMM (Zhang et al., 2018) + MLP 253± 9 241± 11 757± 26 848± 21
GCN on star expansion (Ying et al., 2018) + MLP 242± 5 241± 10 786± 13 852± 11
NHP-D (sequential) 263± 7 221± 10 867± 31 954± 29
NHP-D (joint) 262± 8 236± 8 869± 13 944± 20

# missing hyperlinks, |∆E| 467 514 1390 1683
Recall@ |∆E| for NHP-D (joint) 0.56 0.46 0.63 0.56

Table 7: mean (± std) number of hyperlinks recovered over 10 trials (higher is better) among the top
ranked |∆E| hyperlinks. Both the proposed models achieve similar results. Refer to section 6 for
more details.

We used the same four metabolic networks to construct directed hyperlinks. The metabolic reactions
are encoded by stoichiometric matrices. The negative entries in a stoichiometric matrix indicate
reactants and positive entries indicate products. We extracted only those reactions which have at
least two substances in each of the reactant side and the product side and the statistics are shown in
table 5. We labelled randomly sampled 10% of the hyperlinks in the data and use the remaining 90%
unlabelled data for testing. Tables 6 and 7 show the results on the datasets. NHP-D (joint) is the
model proposed in 4.2. On the other hand, NHP-D (sequential) is the model which treats undirected
hyperlink prediction and direction prediction separately. NHP-D (sequential) first runs a GCN on the
clique expansion of the undirected hypergraph to get the node embeddings (without softmax) and
then runs a multi-layer perceptron on the concatenated emebeddings to predict the directions.
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dataset iAF692 iHN637 iAF1260b iJO1366 CORA DBLP
random negative sampling 0.72 0.76 0.77 0.77 0.62 0.58
positive-unlabeled learning 0.75 0.75 0.71 0.72 0.64 0.65
mixed 0.78 0.79 0.78 0.79 0.74 0.69

Table 8: mean AUC (higher is better) over 10 trials. Mixed consistently achieves the best AUC
values. It provides benefits of both positive unlabeled learning and random negative sampling. Refer
to section 7 for more details.

dataset iAF692 iHN637 iAF1260b iJO1366 CORA DBLP
random negative sampling 236± 32 415± 47 967± 125 1074± 168 978± 181 543± 125
positive-unlabeled learning 313± 6 360± 5 1258± 9 1381± 9 1476± 20 866± 15
mixed 317± 11 481± 13 1202± 29 1336± 34 1496± 62 813± 36

# missing hyperlinks, |∆E| 621 706 2149 2324 2437 1431

Table 9: mean (± std) number of hyperlinks recovered over 10 trials among the top ranked |∆E|
hyperlinks. Positive unlabeled learning of 3 achieves consistently lower standard deviations than the
the other two. The standard deviations of random negative sampling are on the higher side. Refer to
section 7 for more details.

We compared against the following baselines with a multi-layer perceptron (MLP):

• node2vec (Grover & Leskovec, 2016) + MLP: We used node2vec for the undirected
hyperlink prediction part (as explained in section 5 and a 2-layer perceptron to predict the
direction between hyperlinks with the joint objective of equation 4.

• Co-ordinated Matrix Maximisation (CMM) (Zhang et al., 2018) + MLP: The matrix
factorisation-based CMM technique uses the EM algorithm to determine the presence or
absence of candidate hyperlinks for the following optimisation problem:

min
Λ,W
||A+ UΛUT −WWT ||2F

subject to λi ∈ {0, 1}, i = 1, · · · ,m
W ≥ 0

We used a 2−layer perceptron in a sequential manner. To get a representation for a hyperlink
e, we took the mean of the representations of all the hypernodes v ∈ e from the matrix W
above. Note CMM works on the primal hypergraph.

• GCN on star expansion (Ying et al., 2018) + MLP: We used the star expansion to approx-
imate the input hypergraph and then run a GCN on it (instead of the clique expansion of
NHP). A 2-layer perceptron is used to predict the direction between hyperlinks with the
joint objective of equation 4.

As we see in the tables, both NHP-D (joint) and NHP-D (sequential) perform similarly. This can
be attributed to the fact that training data to predict directions between hyperlinks is sparse and
hence the learned hypernode representations of both the models are similar. Please note that existing
apporaches for link prediction on directed simple graphs cannot be trivially adopted for this problem
because of the sparsity in the training data.

Comparison to baselines NHP-D outperforms the baselines on 3 out of 4 datasets. The dataset
iHN637 seems to be a very challenging dataset on which each model recovers less than half the
number of missing hyperlinks.

7 COMPARISON OF POSITIVE UNLABELED LEARNING VS. NEGATIVE
SAMPLING UNIFORMLY AT RANDOM

In order to justify positive-unlabeled learning of equation 3, we compared NHP-U and negative
samples chosen uniformly at random. The results for all the undirected hypergraph datasets are
shown in tables 8 and 9. In the tables, we have called negative samples chosen uniformly at random
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from E − E as random negative sampling. We have called negative samples chosen through positive
unlabeled learning of equation 3, i.e. NHP-U, as positive-unlabeled learning. Note that the numbers
corresponding to this row are the same as those in tables 3 and 4.

In addition to the above two, we used positive unlabeled learning technique of equation 3 to sort
the hyperedges (primal) in nondecreasing order of their similarities and then selected uniformly
at random from only the first half of the sorted order (i.e. most dissimilar hyperedges). We have
called this technique mixed as, intuitively, it provides benefits of both positive unlabeled learning and
uniform random negative sampling. More principled approaches than mixed is left for future work.

DISCUSSION OF RESULTS

As we can see in table 9, the standard deviations of random negative sampling are on the higher side.
This is expected as the particular choice made for negative samples decides the decision boundary
for the binary classifier. The superior AUC values of mixed in table 8 supports our intuition that
it provides benefits of both positive unlabeled learning and uniform random negative sampling.
The standard deviations of mixed are much lower but still higher than positive-unlabeled learning.
In general, summarising the results for all datasets, we believe that positive-unlabeled learning is
superior to random negative sampling because of the higher confidence (low standard deviation)
predictions.

8 CONCLUSION AND FUTURE WORK

We have introduced NHP, a novel neural approach for hyperlink prediction in both undirected and
directed hypergraphs. To the best of our knowledge, this is the first neural method for hyperlink
prediction in undirected hypergraphs. NHP is also the first method for hyperlink prediction in
directed hypergraphs. Through extensive experiments on multiple real-world datasets, we have
demonstrated NHP’s effectiveness over state-of-the art baselines. Approaches that augment GCNs
with attention (Veličković et al., 2018), self-training and co-training with random walks (Li et al.,
2018), edge-feature learning in a dual-primal setup (Monti et al., 2018) have been recently proposed
on graph-based semi-supervised learning tasks. Our NHP framework provides the flexibility to
incorporate these approaches for more improved performance. An interesting future direction is
predicting hyperlinks in partial-order hypergraphs (Feng et al., 2018). We leave extending NHP
framework to inductive settings as part of future work.
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APPENDIX

8.1 HYPERPARAMETER DETAILS

We used the same hyperparameters as Kipf & Welling (2017) for the 2-layer GCN model for all the
datasets in all the experiments.

Additionally for the 2-layer multi-layer perceptron used for the directed hyperlink prediction experi-
ments, we used 16 hidden units with a dropout rate of 0.25

COAUTHORSHIP DATASETS CONSTRUCTION DETAILS

• Cora: We used the author data1 to get the co-authorship hypergraph for cora2.

1https://people.cs.umass.edu/ mccallum/data.html
2https://linqs.soe.ucsc.edu/data
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hyperparameter value
number of hidden units 16
number of hidden layers 2
dropout rate 0.5

L2 regularisation 5× 10−4

learning rate 0.01
non-linearity ReLU

Table 10: Hyperparameters of GCN used for all the datasets

• DBLP: We used the DBLP database v43. We filtered out papers without abstracts, and
processed each abstract by tokenizing it and removing stop-words removal. Further, we
filtered out papers with one author only. This left 540532 papers.
In order to ensure that the hypergraph formed would be sufficiently dense, we found the
number of papers authored by each author and took the top 1000 authors as ‘selected
authors’. Then we filtered out the papers that were not authored by at least three of the
selected authors. Finally, we were left with 1590 papers by 685 of the original 1000 selected
authors.
To extract word features from each of these abstracts, we took all words appearing in
these abstracts with a frequency greater than 50. Each abstract was thus represented by a
602-dimensional bag-of-words representation.

For both datasets, we randomly sample |E| fake papers according to the author distribution of
the existing non-fake papers (2708 and 1590 for CORA and DBLP respectively). We randomly
generated Gaussian p dimensional features for these fake papers (1433 and 602 for CORA and DBLP
respectively).

3https://aminer.org/lab-datasets/citation/DBLP-citation-Jan8.tar.bz2
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